OpenCloudOS-Kernel/drivers/net/ethernet/sfc/mcdi.h

372 lines
15 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2008-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_MCDI_H
#define EFX_MCDI_H
/**
* enum efx_mcdi_state - MCDI request handling state
* @MCDI_STATE_QUIESCENT: No pending MCDI requests. If the caller holds the
* mcdi @iface_lock then they are able to move to %MCDI_STATE_RUNNING
* @MCDI_STATE_RUNNING_SYNC: There is a synchronous MCDI request pending.
* Only the thread that moved into this state is allowed to move out of it.
* @MCDI_STATE_RUNNING_ASYNC: There is an asynchronous MCDI request pending.
* @MCDI_STATE_COMPLETED: An MCDI request has completed, but the owning thread
* has not yet consumed the result. For all other threads, equivalent to
* %MCDI_STATE_RUNNING.
*/
enum efx_mcdi_state {
MCDI_STATE_QUIESCENT,
MCDI_STATE_RUNNING_SYNC,
MCDI_STATE_RUNNING_ASYNC,
MCDI_STATE_COMPLETED,
};
/**
* enum efx_mcdi_mode - MCDI transaction mode
* @MCDI_MODE_POLL: poll for MCDI completion, until timeout
* @MCDI_MODE_EVENTS: wait for an mcdi_event. On timeout, poll once
* @MCDI_MODE_FAIL: we think MCDI is dead, so fail-fast all calls
*/
enum efx_mcdi_mode {
MCDI_MODE_POLL,
MCDI_MODE_EVENTS,
MCDI_MODE_FAIL,
};
/**
* struct efx_mcdi_iface - MCDI protocol context
* @efx: The associated NIC.
* @state: Request handling state. Waited for by @wq.
* @mode: Poll for mcdi completion, or wait for an mcdi_event.
* @wq: Wait queue for threads waiting for @state != %MCDI_STATE_RUNNING
* @new_epoch: Indicates start of day or start of MC reboot recovery
* @iface_lock: Serialises access to @seqno, @credits and response metadata
* @seqno: The next sequence number to use for mcdi requests.
* @credits: Number of spurious MCDI completion events allowed before we
* trigger a fatal error
* @resprc: Response error/success code (Linux numbering)
* @resp_hdr_len: Response header length
* @resp_data_len: Response data (SDU or error) length
* @async_lock: Serialises access to @async_list while event processing is
* enabled
* @async_list: Queue of asynchronous requests
* @async_timer: Timer for asynchronous request timeout
* @logging_buffer: buffer that may be used to build MCDI tracing messages
* @logging_enabled: whether to trace MCDI
*/
struct efx_mcdi_iface {
struct efx_nic *efx;
enum efx_mcdi_state state;
enum efx_mcdi_mode mode;
wait_queue_head_t wq;
spinlock_t iface_lock;
bool new_epoch;
unsigned int credits;
unsigned int seqno;
int resprc;
size_t resp_hdr_len;
size_t resp_data_len;
spinlock_t async_lock;
struct list_head async_list;
struct timer_list async_timer;
#ifdef CONFIG_SFC_MCDI_LOGGING
char *logging_buffer;
bool logging_enabled;
#endif
};
struct efx_mcdi_mon {
struct efx_buffer dma_buf;
struct mutex update_lock;
unsigned long last_update;
struct device *device;
struct efx_mcdi_mon_attribute *attrs;
struct attribute_group group;
const struct attribute_group *groups[2];
unsigned int n_attrs;
};
struct efx_mcdi_mtd_partition {
struct efx_mtd_partition common;
bool updating;
u16 nvram_type;
u16 fw_subtype;
};
#define to_efx_mcdi_mtd_partition(mtd) \
container_of(mtd, struct efx_mcdi_mtd_partition, common.mtd)
/**
* struct efx_mcdi_data - extra state for NICs that implement MCDI
* @iface: Interface/protocol state
* @hwmon: Hardware monitor state
* @fn_flags: Flags for this function, as returned by %MC_CMD_DRV_ATTACH.
*/
struct efx_mcdi_data {
struct efx_mcdi_iface iface;
#ifdef CONFIG_SFC_MCDI_MON
struct efx_mcdi_mon hwmon;
#endif
u32 fn_flags;
};
static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
{
EFX_BUG_ON_PARANOID(!efx->mcdi);
return &efx->mcdi->iface;
}
#ifdef CONFIG_SFC_MCDI_MON
static inline struct efx_mcdi_mon *efx_mcdi_mon(struct efx_nic *efx)
{
EFX_BUG_ON_PARANOID(!efx->mcdi);
return &efx->mcdi->hwmon;
}
#endif
int efx_mcdi_init(struct efx_nic *efx);
void efx_mcdi_fini(struct efx_nic *efx);
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf,
size_t inlen, efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual);
int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual);
int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
const efx_dword_t *inbuf, size_t inlen);
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
efx_dword_t *outbuf, size_t outlen,
size_t *outlen_actual);
int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd,
size_t inlen, efx_dword_t *outbuf,
size_t outlen, size_t *outlen_actual);
typedef void efx_mcdi_async_completer(struct efx_nic *efx,
unsigned long cookie, int rc,
efx_dword_t *outbuf,
size_t outlen_actual);
int efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen, size_t outlen,
efx_mcdi_async_completer *complete,
unsigned long cookie);
int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
const efx_dword_t *inbuf, size_t inlen,
size_t outlen,
efx_mcdi_async_completer *complete,
unsigned long cookie);
void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
size_t inlen, efx_dword_t *outbuf,
size_t outlen, int rc);
int efx_mcdi_poll_reboot(struct efx_nic *efx);
void efx_mcdi_mode_poll(struct efx_nic *efx);
void efx_mcdi_mode_event(struct efx_nic *efx);
void efx_mcdi_flush_async(struct efx_nic *efx);
void efx_mcdi_process_event(struct efx_channel *channel, efx_qword_t *event);
void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev);
/* We expect that 16- and 32-bit fields in MCDI requests and responses
* are appropriately aligned, but 64-bit fields are only
* 32-bit-aligned. Also, on Siena we must copy to the MC shared
* memory strictly 32 bits at a time, so add any necessary padding.
*/
#define _MCDI_DECLARE_BUF(_name, _len) \
efx_dword_t _name[DIV_ROUND_UP(_len, 4)]
#define MCDI_DECLARE_BUF(_name, _len) \
_MCDI_DECLARE_BUF(_name, _len) = {{{0}}}
#define MCDI_DECLARE_BUF_ERR(_name) \
MCDI_DECLARE_BUF(_name, 8)
#define _MCDI_PTR(_buf, _offset) \
((u8 *)(_buf) + (_offset))
#define MCDI_PTR(_buf, _field) \
_MCDI_PTR(_buf, MC_CMD_ ## _field ## _OFST)
#define _MCDI_CHECK_ALIGN(_ofst, _align) \
((_ofst) + BUILD_BUG_ON_ZERO((_ofst) & (_align - 1)))
#define _MCDI_DWORD(_buf, _field) \
((_buf) + (_MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _OFST, 4) >> 2))
#define MCDI_WORD(_buf, _field) \
((u16)BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 2) + \
le16_to_cpu(*(__force const __le16 *)MCDI_PTR(_buf, _field)))
#define MCDI_SET_DWORD(_buf, _field, _value) \
EFX_POPULATE_DWORD_1(*_MCDI_DWORD(_buf, _field), EFX_DWORD_0, _value)
#define MCDI_DWORD(_buf, _field) \
EFX_DWORD_FIELD(*_MCDI_DWORD(_buf, _field), EFX_DWORD_0)
#define MCDI_POPULATE_DWORD_1(_buf, _field, _name1, _value1) \
EFX_POPULATE_DWORD_1(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1)
#define MCDI_POPULATE_DWORD_2(_buf, _field, _name1, _value1, \
_name2, _value2) \
EFX_POPULATE_DWORD_2(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2)
#define MCDI_POPULATE_DWORD_3(_buf, _field, _name1, _value1, \
_name2, _value2, _name3, _value3) \
EFX_POPULATE_DWORD_3(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2, \
MC_CMD_ ## _name3, _value3)
#define MCDI_POPULATE_DWORD_4(_buf, _field, _name1, _value1, \
_name2, _value2, _name3, _value3, \
_name4, _value4) \
EFX_POPULATE_DWORD_4(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2, \
MC_CMD_ ## _name3, _value3, \
MC_CMD_ ## _name4, _value4)
#define MCDI_POPULATE_DWORD_5(_buf, _field, _name1, _value1, \
_name2, _value2, _name3, _value3, \
_name4, _value4, _name5, _value5) \
EFX_POPULATE_DWORD_5(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2, \
MC_CMD_ ## _name3, _value3, \
MC_CMD_ ## _name4, _value4, \
MC_CMD_ ## _name5, _value5)
#define MCDI_POPULATE_DWORD_6(_buf, _field, _name1, _value1, \
_name2, _value2, _name3, _value3, \
_name4, _value4, _name5, _value5, \
_name6, _value6) \
EFX_POPULATE_DWORD_6(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2, \
MC_CMD_ ## _name3, _value3, \
MC_CMD_ ## _name4, _value4, \
MC_CMD_ ## _name5, _value5, \
MC_CMD_ ## _name6, _value6)
#define MCDI_POPULATE_DWORD_7(_buf, _field, _name1, _value1, \
_name2, _value2, _name3, _value3, \
_name4, _value4, _name5, _value5, \
_name6, _value6, _name7, _value7) \
EFX_POPULATE_DWORD_7(*_MCDI_DWORD(_buf, _field), \
MC_CMD_ ## _name1, _value1, \
MC_CMD_ ## _name2, _value2, \
MC_CMD_ ## _name3, _value3, \
MC_CMD_ ## _name4, _value4, \
MC_CMD_ ## _name5, _value5, \
MC_CMD_ ## _name6, _value6, \
MC_CMD_ ## _name7, _value7)
#define MCDI_SET_QWORD(_buf, _field, _value) \
do { \
EFX_POPULATE_DWORD_1(_MCDI_DWORD(_buf, _field)[0], \
EFX_DWORD_0, (u32)(_value)); \
EFX_POPULATE_DWORD_1(_MCDI_DWORD(_buf, _field)[1], \
EFX_DWORD_0, (u64)(_value) >> 32); \
} while (0)
#define MCDI_QWORD(_buf, _field) \
(EFX_DWORD_FIELD(_MCDI_DWORD(_buf, _field)[0], EFX_DWORD_0) | \
(u64)EFX_DWORD_FIELD(_MCDI_DWORD(_buf, _field)[1], EFX_DWORD_0) << 32)
#define MCDI_FIELD(_ptr, _type, _field) \
EFX_EXTRACT_DWORD( \
*(efx_dword_t *) \
_MCDI_PTR(_ptr, MC_CMD_ ## _type ## _ ## _field ## _OFST & ~3),\
MC_CMD_ ## _type ## _ ## _field ## _LBN & 0x1f, \
(MC_CMD_ ## _type ## _ ## _field ## _LBN & 0x1f) + \
MC_CMD_ ## _type ## _ ## _field ## _WIDTH - 1)
#define _MCDI_ARRAY_PTR(_buf, _field, _index, _align) \
(_MCDI_PTR(_buf, _MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _OFST, _align))\
+ (_index) * _MCDI_CHECK_ALIGN(MC_CMD_ ## _field ## _LEN, _align))
#define MCDI_DECLARE_STRUCT_PTR(_name) \
efx_dword_t *_name
#define MCDI_ARRAY_STRUCT_PTR(_buf, _field, _index) \
((efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_VAR_ARRAY_LEN(_len, _field) \
min_t(size_t, MC_CMD_ ## _field ## _MAXNUM, \
((_len) - MC_CMD_ ## _field ## _OFST) / MC_CMD_ ## _field ## _LEN)
#define MCDI_ARRAY_WORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 2) + \
le16_to_cpu(*(__force const __le16 *) \
_MCDI_ARRAY_PTR(_buf, _field, _index, 2)))
#define _MCDI_ARRAY_DWORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 4) + \
(efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_SET_ARRAY_DWORD(_buf, _field, _index, _value) \
EFX_SET_DWORD_FIELD(*_MCDI_ARRAY_DWORD(_buf, _field, _index), \
EFX_DWORD_0, _value)
#define MCDI_ARRAY_DWORD(_buf, _field, _index) \
EFX_DWORD_FIELD(*_MCDI_ARRAY_DWORD(_buf, _field, _index), EFX_DWORD_0)
#define _MCDI_ARRAY_QWORD(_buf, _field, _index) \
(BUILD_BUG_ON_ZERO(MC_CMD_ ## _field ## _LEN != 8) + \
(efx_dword_t *)_MCDI_ARRAY_PTR(_buf, _field, _index, 4))
#define MCDI_SET_ARRAY_QWORD(_buf, _field, _index, _value) \
do { \
EFX_SET_DWORD_FIELD(_MCDI_ARRAY_QWORD(_buf, _field, _index)[0],\
EFX_DWORD_0, (u32)(_value)); \
EFX_SET_DWORD_FIELD(_MCDI_ARRAY_QWORD(_buf, _field, _index)[1],\
EFX_DWORD_0, (u64)(_value) >> 32); \
} while (0)
#define MCDI_ARRAY_FIELD(_buf, _field1, _type, _index, _field2) \
MCDI_FIELD(MCDI_ARRAY_STRUCT_PTR(_buf, _field1, _index), \
_type ## _TYPEDEF, _field2)
#define MCDI_EVENT_FIELD(_ev, _field) \
EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field)
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len);
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list, u32 *capabilities);
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq);
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out);
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
size_t *size_out, size_t *erase_size_out,
bool *protected_out);
int efx_mcdi_nvram_test_all(struct efx_nic *efx);
int efx_mcdi_handle_assertion(struct efx_nic *efx);
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode);
int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac,
int *id_out);
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out);
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id);
int efx_mcdi_wol_filter_reset(struct efx_nic *efx);
int efx_mcdi_flush_rxqs(struct efx_nic *efx);
int efx_mcdi_port_probe(struct efx_nic *efx);
void efx_mcdi_port_remove(struct efx_nic *efx);
int efx_mcdi_port_reconfigure(struct efx_nic *efx);
int efx_mcdi_port_get_number(struct efx_nic *efx);
u32 efx_mcdi_phy_get_caps(struct efx_nic *efx);
void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev);
int efx_mcdi_set_mac(struct efx_nic *efx);
#define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
void efx_mcdi_mac_start_stats(struct efx_nic *efx);
void efx_mcdi_mac_stop_stats(struct efx_nic *efx);
void efx_mcdi_mac_pull_stats(struct efx_nic *efx);
bool efx_mcdi_mac_check_fault(struct efx_nic *efx);
enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason);
int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method);
int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled);
sfc: Cope with permissions enforcement added to firmware for SR-IOV * Accept EPERM in some simple cases, the following cases are handled: 1) efx_mcdi_read_assertion() Unprivileged PCI functions aren't allowed to GET_ASSERTS. We return success as it's up to the primary PF to deal with asserts. 2) efx_mcdi_mon_probe() in efx_ef10_probe() Unprivileged PCI functions aren't allowed to read sensor info, and worrying about sensor data is the primary PF's job. 3) phy_op->reconfigure() in efx_init_port() and efx_reset_up() Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have to accept the settings (including flow-control, which is what efx_init_port() is worried about) they've been given. 4) Fallback to GET_WORKAROUNDS in efx_ef10_probe() Unprivileged PCI functions aren't allowed to set workarounds. So if efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds() to find out if workaround_35388 is enabled. 5) If DRV_ATTACH gets EPERM, try without specifying fw-variant Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff (MC_CMD_FW_DONT_CARE). 6) Don't try to exit_assertion unless one had fired Previously we called efx_mcdi_exit_assertion even if efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS. This is unnecessary, and the resulting MC_CMD_REBOOT, even if the AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged PCI functions. So make efx_mcdi_read_assertion return whether an assert happened, and only call efx_mcdi_exit_assertion if it has. Signed-off-by: Shradha Shah <sshah@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-06 07:59:18 +08:00
int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
unsigned int *enabled_out);
#ifdef CONFIG_SFC_MCDI_MON
int efx_mcdi_mon_probe(struct efx_nic *efx);
void efx_mcdi_mon_remove(struct efx_nic *efx);
#else
static inline int efx_mcdi_mon_probe(struct efx_nic *efx) { return 0; }
static inline void efx_mcdi_mon_remove(struct efx_nic *efx) {}
#endif
#ifdef CONFIG_SFC_MTD
int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, u8 *buffer);
int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len);
int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, const u8 *buffer);
int efx_mcdi_mtd_sync(struct mtd_info *mtd);
void efx_mcdi_mtd_rename(struct efx_mtd_partition *part);
#endif
#endif /* EFX_MCDI_H */