OpenCloudOS-Kernel/drivers/net/wireless/iwlwifi/pcie/trans.c

1612 lines
44 KiB
C
Raw Normal View History

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <linux/pci.h>
#include <linux/pci-aspm.h>
#include <linux/interrupt.h>
#include <linux/debugfs.h>
#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/gfp.h>
#include "iwl-drv.h"
#include "iwl-trans.h"
#include "iwl-csr.h"
#include "iwl-prph.h"
#include "iwl-agn-hw.h"
#include "internal.h"
static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
{
if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
~APMG_PS_CTRL_MSK_PWR_SRC);
else
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~APMG_PS_CTRL_MSK_PWR_SRC);
}
/* PCI registers */
#define PCI_CFG_RETRY_TIMEOUT 0x041
static void iwl_pcie_apm_config(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
u16 lctl;
/*
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
* Check if BIOS (or OS) enabled L1-ASPM on this device.
* If so (likely), disable L0S, so device moves directly L0->L1;
* costs negligible amount of power savings.
* If not (unlikely), enable L0S, so there is at least some
* power savings, even without L1.
*/
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
/* L1-ASPM enabled; disable(!) L0S */
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
dev_info(trans->dev, "L1 Enabled; Disabling L0S\n");
} else {
/* L1-ASPM disabled; enable(!) L0S */
iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
dev_info(trans->dev, "L1 Disabled; Enabling L0S\n");
}
trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
}
/*
* Start up NIC's basic functionality after it has been reset
* (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
* NOTE: This does not load uCode nor start the embedded processor
*/
static int iwl_pcie_apm_init(struct iwl_trans *trans)
{
int ret = 0;
IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
/*
* Use "set_bit" below rather than "write", to preserve any hardware
* bits already set by default after reset.
*/
/* Disable L0S exit timer (platform NMI Work/Around) */
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
*/
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
iwl_pcie_apm_config(trans);
/* Configure analog phase-lock-loop before activating to D0A */
if (trans->cfg->base_params->pll_cfg_val)
iwl_set_bit(trans, CSR_ANA_PLL_CFG,
trans->cfg->base_params->pll_cfg_val);
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. iwl_write_prph()
* and accesses to uCode SRAM.
*/
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
if (ret < 0) {
IWL_DEBUG_INFO(trans, "Failed to init the card\n");
goto out;
}
/*
* Enable DMA clock and wait for it to stabilize.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
* do not disable clocks. This preserves any hardware bits already
* set by default in "CLK_CTRL_REG" after reset.
*/
iwl_write_prph(trans, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
udelay(20);
/* Disable L1-Active */
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
/* Clear the interrupt in APMG if the NIC is in RFKILL */
iwl_write_prph(trans, APMG_RTC_INT_STT_REG, APMG_RTC_INT_STT_RFKILL);
set_bit(STATUS_DEVICE_ENABLED, &trans->status);
out:
return ret;
}
static int iwl_pcie_apm_stop_master(struct iwl_trans *trans)
{
int ret = 0;
/* stop device's busmaster DMA activity */
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
ret = iwl_poll_bit(trans, CSR_RESET,
CSR_RESET_REG_FLAG_MASTER_DISABLED,
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
if (ret)
IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
IWL_DEBUG_INFO(trans, "stop master\n");
return ret;
}
static void iwl_pcie_apm_stop(struct iwl_trans *trans)
{
IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
/* Stop device's DMA activity */
iwl_pcie_apm_stop_master(trans);
/* Reset the entire device */
iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
udelay(10);
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
iwl_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
}
static int iwl_pcie_nic_init(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/* nic_init */
spin_lock(&trans_pcie->irq_lock);
iwl_pcie_apm_init(trans);
spin_unlock(&trans_pcie->irq_lock);
iwl_pcie_set_pwr(trans, false);
iwl_op_mode_nic_config(trans->op_mode);
/* Allocate the RX queue, or reset if it is already allocated */
iwl_pcie_rx_init(trans);
/* Allocate or reset and init all Tx and Command queues */
if (iwl_pcie_tx_init(trans))
return -ENOMEM;
if (trans->cfg->base_params->shadow_reg_enable) {
/* enable shadow regs in HW */
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
}
return 0;
}
#define HW_READY_TIMEOUT (50)
/* Note: returns poll_bit return value, which is >= 0 if success */
static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
{
int ret;
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
/* See if we got it */
ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
HW_READY_TIMEOUT);
IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
return ret;
}
/* Note: returns standard 0/-ERROR code */
static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
{
int ret;
int t = 0;
IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
ret = iwl_pcie_set_hw_ready(trans);
/* If the card is ready, exit 0 */
if (ret >= 0)
return 0;
/* If HW is not ready, prepare the conditions to check again */
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_PREPARE);
do {
ret = iwl_pcie_set_hw_ready(trans);
if (ret >= 0)
return 0;
usleep_range(200, 1000);
t += 200;
} while (t < 150000);
return ret;
}
/*
* ucode
*/
static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr,
dma_addr_t phy_addr, u32 byte_cnt)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
int ret;
trans_pcie->ucode_write_complete = false;
iwl_write_direct32(trans,
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
iwl_write_direct32(trans,
FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
dst_addr);
iwl_write_direct32(trans,
FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
iwl_write_direct32(trans,
FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
(iwl_get_dma_hi_addr(phy_addr)
<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
iwl_write_direct32(trans,
FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
iwl_write_direct32(trans,
FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
trans_pcie->ucode_write_complete, 5 * HZ);
if (!ret) {
IWL_ERR(trans, "Failed to load firmware chunk!\n");
return -ETIMEDOUT;
}
return 0;
}
static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
const struct fw_desc *section)
{
u8 *v_addr;
dma_addr_t p_addr;
u32 offset, chunk_sz = section->len;
int ret = 0;
IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
section_num);
v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
GFP_KERNEL | __GFP_NOWARN);
if (!v_addr) {
IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
chunk_sz = PAGE_SIZE;
v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
&p_addr, GFP_KERNEL);
if (!v_addr)
return -ENOMEM;
}
for (offset = 0; offset < section->len; offset += chunk_sz) {
u32 copy_size;
copy_size = min_t(u32, chunk_sz, section->len - offset);
memcpy(v_addr, (u8 *)section->data + offset, copy_size);
ret = iwl_pcie_load_firmware_chunk(trans,
section->offset + offset,
p_addr, copy_size);
if (ret) {
IWL_ERR(trans,
"Could not load the [%d] uCode section\n",
section_num);
break;
}
}
dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
return ret;
}
static int iwl_pcie_secure_set(struct iwl_trans *trans, int cpu)
{
int shift_param;
u32 address;
int ret = 0;
if (cpu == 1) {
shift_param = 0;
address = CSR_SECURE_BOOT_CPU1_STATUS_ADDR;
} else {
shift_param = 16;
address = CSR_SECURE_BOOT_CPU2_STATUS_ADDR;
}
/* set CPU to started */
iwl_trans_set_bits_mask(trans,
CSR_UCODE_LOAD_STATUS_ADDR,
CSR_CPU_STATUS_LOADING_STARTED << shift_param,
1);
/* set last complete descriptor number */
iwl_trans_set_bits_mask(trans,
CSR_UCODE_LOAD_STATUS_ADDR,
CSR_CPU_STATUS_NUM_OF_LAST_COMPLETED
<< shift_param,
1);
/* set last loaded block */
iwl_trans_set_bits_mask(trans,
CSR_UCODE_LOAD_STATUS_ADDR,
CSR_CPU_STATUS_NUM_OF_LAST_LOADED_BLOCK
<< shift_param,
1);
/* image loading complete */
iwl_trans_set_bits_mask(trans,
CSR_UCODE_LOAD_STATUS_ADDR,
CSR_CPU_STATUS_LOADING_COMPLETED
<< shift_param,
1);
/* set FH_TCSR_0_REG */
iwl_trans_set_bits_mask(trans, FH_TCSR_0_REG0, 0x00400000, 1);
/* verify image verification started */
ret = iwl_poll_bit(trans, address,
CSR_SECURE_BOOT_CPU_STATUS_VERF_STATUS,
CSR_SECURE_BOOT_CPU_STATUS_VERF_STATUS,
CSR_SECURE_TIME_OUT);
if (ret < 0) {
IWL_ERR(trans, "secure boot process didn't start\n");
return ret;
}
/* wait for image verification to complete */
ret = iwl_poll_bit(trans, address,
CSR_SECURE_BOOT_CPU_STATUS_VERF_COMPLETED,
CSR_SECURE_BOOT_CPU_STATUS_VERF_COMPLETED,
CSR_SECURE_TIME_OUT);
if (ret < 0) {
IWL_ERR(trans, "Time out on secure boot process\n");
return ret;
}
return 0;
}
static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
const struct fw_img *image)
{
int i, ret = 0;
IWL_DEBUG_FW(trans,
"working with %s image\n",
image->is_secure ? "Secured" : "Non Secured");
IWL_DEBUG_FW(trans,
"working with %s CPU\n",
image->is_dual_cpus ? "Dual" : "Single");
/* configure the ucode to be ready to get the secured image */
if (image->is_secure) {
/* set secure boot inspector addresses */
iwl_write32(trans, CSR_SECURE_INSPECTOR_CODE_ADDR, 0);
iwl_write32(trans, CSR_SECURE_INSPECTOR_DATA_ADDR, 0);
/* release CPU1 reset if secure inspector image burned in OTP */
iwl_write32(trans, CSR_RESET, 0);
}
/* load to FW the binary sections of CPU1 */
IWL_DEBUG_INFO(trans, "Loading CPU1\n");
for (i = 0;
i < IWL_UCODE_FIRST_SECTION_OF_SECOND_CPU;
i++) {
if (!image->sec[i].data)
break;
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
if (ret)
return ret;
}
/* configure the ucode to start secure process on CPU1 */
if (image->is_secure) {
/* config CPU1 to start secure protocol */
ret = iwl_pcie_secure_set(trans, 1);
if (ret)
return ret;
} else {
/* Remove all resets to allow NIC to operate */
iwl_write32(trans, CSR_RESET, 0);
}
if (image->is_dual_cpus) {
/* load to FW the binary sections of CPU2 */
IWL_DEBUG_INFO(trans, "working w/ DUAL CPUs - Loading CPU2\n");
for (i = IWL_UCODE_FIRST_SECTION_OF_SECOND_CPU;
i < IWL_UCODE_SECTION_MAX; i++) {
if (!image->sec[i].data)
break;
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
if (ret)
return ret;
}
if (image->is_secure) {
/* set CPU2 for secure protocol */
ret = iwl_pcie_secure_set(trans, 2);
if (ret)
return ret;
}
}
return 0;
}
static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
const struct fw_img *fw, bool run_in_rfkill)
{
int ret;
bool hw_rfkill;
/* This may fail if AMT took ownership of the device */
if (iwl_pcie_prepare_card_hw(trans)) {
IWL_WARN(trans, "Exit HW not ready\n");
return -EIO;
}
iwl_enable_rfkill_int(trans);
/* If platform's RF_KILL switch is NOT set to KILL */
hw_rfkill = iwl_is_rfkill_set(trans);
if (hw_rfkill)
set_bit(STATUS_RFKILL, &trans->status);
else
clear_bit(STATUS_RFKILL, &trans->status);
iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
if (hw_rfkill && !run_in_rfkill)
return -ERFKILL;
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
ret = iwl_pcie_nic_init(trans);
if (ret) {
IWL_ERR(trans, "Unable to init nic\n");
return ret;
}
/* make sure rfkill handshake bits are cleared */
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear (again), then enable host interrupts */
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
iwl_enable_interrupts(trans);
/* really make sure rfkill handshake bits are cleared */
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
/* Load the given image to the HW */
return iwl_pcie_load_given_ucode(trans, fw);
}
static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
{
iwl_pcie_reset_ict(trans);
iwl_pcie_tx_start(trans, scd_addr);
}
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
static void iwl_trans_pcie_stop_device(struct iwl_trans *trans)
{
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
bool hw_rfkill, was_hw_rfkill;
was_hw_rfkill = iwl_is_rfkill_set(trans);
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
/* tell the device to stop sending interrupts */
spin_lock(&trans_pcie->irq_lock);
iwl_disable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
/* device going down, Stop using ICT table */
iwl_pcie_disable_ict(trans);
/*
* If a HW restart happens during firmware loading,
* then the firmware loading might call this function
* and later it might be called again due to the
* restart. So don't process again if the device is
* already dead.
*/
if (test_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
iwl_pcie_tx_stop(trans);
iwl_pcie_rx_stop(trans);
/* Power-down device's busmaster DMA clocks */
iwl_write_prph(trans, APMG_CLK_DIS_REG,
APMG_CLK_VAL_DMA_CLK_RQT);
udelay(5);
}
/* Make sure (redundant) we've released our request to stay awake */
iwl_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/* Stop the device, and put it in low power state */
iwl_pcie_apm_stop(trans);
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
/* Upon stop, the APM issues an interrupt if HW RF kill is set.
* Clean again the interrupt here
*/
spin_lock(&trans_pcie->irq_lock);
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
iwl_disable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
iwlwifi: avoid a panic when unloading the module with RF Kill When HW RF kill switch is set to kill the radio, our NIC issues an interrupt after we stop the APM module. When we unload the module, the driver disables and cleans the interrupts before stopping the APM. So we have a real interrupt (inta not zero) pending. When this interrupts pops up the tasklet has already been killed and we crash. Here is a logical description of the flow: disable and clean interrupts synchronize interrupts kill the tasklet stop the APM <<== creates an RF kill interrupt free_irq <<== somehow our ISR is called here and we crash Here is the panic message: [ 201.313636] BUG: unable to handle kernel paging request at ffff8800911b7150 [ 201.314541] IP: [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.315149] PGD 1c06063 PUD db37f067 PMD db408067 PTE 80000000911b7160 [ 201.316456] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [ 201.317324] CPU 1 [ 201.317495] Modules linked in: arc4 iwlwifi(-) mac80211 cfg80211 netconsole configfs binfmt_misc i915 drm_kms_helper drm uvcvideo i2c_algo_bit videodev dell_laptop dcdbas intel_agp dell_wmi intel_ips psmouse intel_gtt v4l2_compat_ioctl32 asix usbnet mii serio_raw video sparse_keymap firewire_ohci sdhci_pci sdhci firewire_core e1000e crc_itu_t [last unloaded: configfs] [ 201.323839] [ 201.324015] Pid: 2061, comm: modprobe Not tainted 3.1.0-rc9-wl #4 Dell Inc. Latitude E6410/0667CC [ 201.324736] RIP: 0010:[<ffffffff8106d652>] [<ffffffff8106d652>] tasklet_action+0x62/0x130 [ 201.325128] RSP: 0018:ffff88011bc43ea0 EFLAGS: 00010286 [ 201.325338] RAX: ffff88008ae70000 RBX: ffff8800911b7150 RCX: ffff88008ae70028 [ 201.325555] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88008ae70000 [ 201.325775] RBP: ffff88011bc43ec0 R08: 0000000000000000 R09: 0000000000000000 [ 201.325994] R10: 0000000000000002 R11: 0000000000000001 R12: 0000000000000001 [ 201.326212] R13: 0000000000000006 R14: 0000000000000100 R15: ffff88008e259fd8 [ 201.326431] FS: 00007f4b90ea9700(0000) GS:ffff88011bc40000(0000) knlGS:0000000000000000 [ 201.326657] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 201.326864] CR2: ffff8800911b7150 CR3: 000000008fd6d000 CR4: 00000000000006e0 [ 201.327083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 201.327302] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 201.327521] Process modprobe (pid: 2061, threadinfo ffff88008e258000, task ffff88008ae70000) [ 201.327747] Stack: [ 201.330494] 0000000000000046 0000000000000030 0000000000000001 0000000000000006 [ 201.333870] ffff88011bc43f30 ffffffff8106cd8a ffffffff811e1016 ffff88011bc43f08 [ 201.337186] 0000000100000046 ffff88008e259fd8 0000000a10be2160 0000000000000006 [ 201.340458] Call Trace: [ 201.342994] <IRQ> [ 201.345656] [<ffffffff8106cd8a>] __do_softirq+0xca/0x250 [ 201.348185] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.350730] [<ffffffff8131aeae>] ? do_raw_spin_unlock+0x5e/0xb0 [ 201.353261] [<ffffffff811e1016>] ? pde_put+0x76/0x90 [ 201.355776] [<ffffffff8163ccfc>] call_softirq+0x1c/0x30 [ 201.358287] [<ffffffff8101531d>] do_softirq+0x9d/0xd0 [ 201.360823] [<ffffffff8106cb05>] irq_exit+0xd5/0xf0 [ 201.363330] [<ffffffff8163d5d6>] do_IRQ+0x66/0xe0 [ 201.365819] [<ffffffff81632673>] common_interrupt+0x73/0x73 [ 201.368257] <EOI> Cc: <stable@kernel.org> 3.1+ Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-11-10 08:50:50 +08:00
/* stop and reset the on-board processor */
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET);
/* clear all status bits */
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
clear_bit(STATUS_INT_ENABLED, &trans->status);
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
clear_bit(STATUS_TPOWER_PMI, &trans->status);
clear_bit(STATUS_RFKILL, &trans->status);
/*
* Even if we stop the HW, we still want the RF kill
* interrupt
*/
iwl_enable_rfkill_int(trans);
/*
* Check again since the RF kill state may have changed while
* all the interrupts were disabled, in this case we couldn't
* receive the RF kill interrupt and update the state in the
* op_mode.
* Don't call the op_mode if the rkfill state hasn't changed.
* This allows the op_mode to call stop_device from the rfkill
* notification without endless recursion. Under very rare
* circumstances, we might have a small recursion if the rfkill
* state changed exactly now while we were called from stop_device.
* This is very unlikely but can happen and is supported.
*/
hw_rfkill = iwl_is_rfkill_set(trans);
if (hw_rfkill)
set_bit(STATUS_RFKILL, &trans->status);
else
clear_bit(STATUS_RFKILL, &trans->status);
if (hw_rfkill != was_hw_rfkill)
iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
}
iwlwifi: mvm: implement D3 testing For testing the D3 (WoWLAN) firmware, it is useful to be able to run the firmware with instrumentation while the host isn't sleeping and can poke at the firmware debug logging etc. Implement this by a debugfs file. When the file is opened the D3 firmware is loaded and all regular commands are blocked. While the file is being read, poll the firmware's PME status flag and report EOF once it changes to non-zero. When it is closed, do (most of) the resume processing. This lets a user just "cat" the file. Pressing Ctrl-C to kill the cat process will resume the firwmare as though the platform resumed for non-wireless reason and when the firmware wants to wake up reading from the file automatically completes. Unlike in real suspend, only disable interrupts and don't reset the TX/RX hardware while in the test mode. This is a workaround for some interrupt problems that happen only when the PCIe link isn't fully reset (presumably by changing the PCI config space registers which the core PCI code does.) Note that while regular operations are blocked from sending commands to the firmware, they could still be made and cause strange mac80211 issues. Therefore, while using this testing feature you need to be careful to not try to disconnect, roam or similar, and will see warnings for such attempts. Als note that this requires an upcoming firmware change to tell the driver the location of the PME status flag in SRAM. D3 test will fail if the firmware doesn't report the pointer. Reviewed-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-05-14 19:53:45 +08:00
static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test)
{
iwl_disable_interrupts(trans);
iwlwifi: mvm: implement D3 testing For testing the D3 (WoWLAN) firmware, it is useful to be able to run the firmware with instrumentation while the host isn't sleeping and can poke at the firmware debug logging etc. Implement this by a debugfs file. When the file is opened the D3 firmware is loaded and all regular commands are blocked. While the file is being read, poll the firmware's PME status flag and report EOF once it changes to non-zero. When it is closed, do (most of) the resume processing. This lets a user just "cat" the file. Pressing Ctrl-C to kill the cat process will resume the firwmare as though the platform resumed for non-wireless reason and when the firmware wants to wake up reading from the file automatically completes. Unlike in real suspend, only disable interrupts and don't reset the TX/RX hardware while in the test mode. This is a workaround for some interrupt problems that happen only when the PCIe link isn't fully reset (presumably by changing the PCI config space registers which the core PCI code does.) Note that while regular operations are blocked from sending commands to the firmware, they could still be made and cause strange mac80211 issues. Therefore, while using this testing feature you need to be careful to not try to disconnect, roam or similar, and will see warnings for such attempts. Als note that this requires an upcoming firmware change to tell the driver the location of the PME status flag in SRAM. D3 test will fail if the firmware doesn't report the pointer. Reviewed-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-05-14 19:53:45 +08:00
/*
* in testing mode, the host stays awake and the
* hardware won't be reset (not even partially)
*/
if (test)
return;
iwl_pcie_disable_ict(trans);
iwl_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
iwl_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* reset TX queues -- some of their registers reset during S3
* so if we don't reset everything here the D3 image would try
* to execute some invalid memory upon resume
*/
iwl_trans_pcie_tx_reset(trans);
iwl_pcie_set_pwr(trans, true);
}
static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
iwlwifi: mvm: implement D3 testing For testing the D3 (WoWLAN) firmware, it is useful to be able to run the firmware with instrumentation while the host isn't sleeping and can poke at the firmware debug logging etc. Implement this by a debugfs file. When the file is opened the D3 firmware is loaded and all regular commands are blocked. While the file is being read, poll the firmware's PME status flag and report EOF once it changes to non-zero. When it is closed, do (most of) the resume processing. This lets a user just "cat" the file. Pressing Ctrl-C to kill the cat process will resume the firwmare as though the platform resumed for non-wireless reason and when the firmware wants to wake up reading from the file automatically completes. Unlike in real suspend, only disable interrupts and don't reset the TX/RX hardware while in the test mode. This is a workaround for some interrupt problems that happen only when the PCIe link isn't fully reset (presumably by changing the PCI config space registers which the core PCI code does.) Note that while regular operations are blocked from sending commands to the firmware, they could still be made and cause strange mac80211 issues. Therefore, while using this testing feature you need to be careful to not try to disconnect, roam or similar, and will see warnings for such attempts. Als note that this requires an upcoming firmware change to tell the driver the location of the PME status flag in SRAM. D3 test will fail if the firmware doesn't report the pointer. Reviewed-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-05-14 19:53:45 +08:00
enum iwl_d3_status *status,
bool test)
{
u32 val;
int ret;
iwlwifi: mvm: implement D3 testing For testing the D3 (WoWLAN) firmware, it is useful to be able to run the firmware with instrumentation while the host isn't sleeping and can poke at the firmware debug logging etc. Implement this by a debugfs file. When the file is opened the D3 firmware is loaded and all regular commands are blocked. While the file is being read, poll the firmware's PME status flag and report EOF once it changes to non-zero. When it is closed, do (most of) the resume processing. This lets a user just "cat" the file. Pressing Ctrl-C to kill the cat process will resume the firwmare as though the platform resumed for non-wireless reason and when the firmware wants to wake up reading from the file automatically completes. Unlike in real suspend, only disable interrupts and don't reset the TX/RX hardware while in the test mode. This is a workaround for some interrupt problems that happen only when the PCIe link isn't fully reset (presumably by changing the PCI config space registers which the core PCI code does.) Note that while regular operations are blocked from sending commands to the firmware, they could still be made and cause strange mac80211 issues. Therefore, while using this testing feature you need to be careful to not try to disconnect, roam or similar, and will see warnings for such attempts. Als note that this requires an upcoming firmware change to tell the driver the location of the PME status flag in SRAM. D3 test will fail if the firmware doesn't report the pointer. Reviewed-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-05-14 19:53:45 +08:00
if (test) {
iwl_enable_interrupts(trans);
*status = IWL_D3_STATUS_ALIVE;
return 0;
}
iwl_pcie_set_pwr(trans, false);
val = iwl_read32(trans, CSR_RESET);
if (val & CSR_RESET_REG_FLAG_NEVO_RESET) {
*status = IWL_D3_STATUS_RESET;
return 0;
}
/*
* Also enables interrupts - none will happen as the device doesn't
* know we're waking it up, only when the opmode actually tells it
* after this call.
*/
iwl_pcie_reset_ict(trans);
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
25000);
if (ret) {
IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
return ret;
}
iwl_trans_pcie_tx_reset(trans);
ret = iwl_pcie_rx_init(trans);
if (ret) {
IWL_ERR(trans, "Failed to resume the device (RX reset)\n");
return ret;
}
*status = IWL_D3_STATUS_ALIVE;
return 0;
}
static int iwl_trans_pcie_start_hw(struct iwl_trans *trans)
{
bool hw_rfkill;
int err;
err = iwl_pcie_prepare_card_hw(trans);
if (err) {
IWL_ERR(trans, "Error while preparing HW: %d\n", err);
return err;
}
/* Reset the entire device */
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
usleep_range(10, 15);
iwl_pcie_apm_init(trans);
/* From now on, the op_mode will be kept updated about RF kill state */
iwl_enable_rfkill_int(trans);
hw_rfkill = iwl_is_rfkill_set(trans);
if (hw_rfkill)
set_bit(STATUS_RFKILL, &trans->status);
else
clear_bit(STATUS_RFKILL, &trans->status);
iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
return 0;
}
static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/* disable interrupts - don't enable HW RF kill interrupt */
spin_lock(&trans_pcie->irq_lock);
iwl_disable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
iwl_pcie_apm_stop(trans);
spin_lock(&trans_pcie->irq_lock);
iwl_disable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
iwl_pcie_disable_ict(trans);
}
static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
{
writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
}
static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
{
writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
}
static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
{
return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
}
static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
{
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
((reg & 0x000FFFFF) | (3 << 24)));
return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
}
static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
u32 val)
{
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
((addr & 0x000FFFFF) | (3 << 24)));
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
}
static void iwl_trans_pcie_configure(struct iwl_trans *trans,
const struct iwl_trans_config *trans_cfg)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
trans_pcie->cmd_queue = trans_cfg->cmd_queue;
trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
trans_pcie->n_no_reclaim_cmds = 0;
else
trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
if (trans_pcie->n_no_reclaim_cmds)
memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
trans_pcie->n_no_reclaim_cmds * sizeof(u8));
trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k;
if (trans_pcie->rx_buf_size_8k)
trans_pcie->rx_page_order = get_order(8 * 1024);
else
trans_pcie->rx_page_order = get_order(4 * 1024);
trans_pcie->wd_timeout =
msecs_to_jiffies(trans_cfg->queue_watchdog_timeout);
trans_pcie->command_names = trans_cfg->command_names;
trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
}
void iwl_trans_pcie_free(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
synchronize_irq(trans_pcie->pci_dev->irq);
iwl_pcie_tx_free(trans);
iwl_pcie_rx_free(trans);
free_irq(trans_pcie->pci_dev->irq, trans);
iwl_pcie_free_ict(trans);
pci_disable_msi(trans_pcie->pci_dev);
iounmap(trans_pcie->hw_base);
pci_release_regions(trans_pcie->pci_dev);
pci_disable_device(trans_pcie->pci_dev);
kmem_cache_destroy(trans->dev_cmd_pool);
kfree(trans);
}
static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
{
if (state)
set_bit(STATUS_TPOWER_PMI, &trans->status);
else
clear_bit(STATUS_TPOWER_PMI, &trans->status);
}
static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent,
unsigned long *flags)
{
int ret;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
if (trans_pcie->cmd_in_flight)
goto out;
/* this bit wakes up the NIC */
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* These bits say the device is running, and should keep running for
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
* but they do not indicate that embedded SRAM is restored yet;
* 3945 and 4965 have volatile SRAM, and must save/restore contents
* to/from host DRAM when sleeping/waking for power-saving.
* Each direction takes approximately 1/4 millisecond; with this
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
* series of register accesses are expected (e.g. reading Event Log),
* to keep device from sleeping.
*
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
* SRAM is okay/restored. We don't check that here because this call
* is just for hardware register access; but GP1 MAC_SLEEP check is a
* good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
*
* 5000 series and later (including 1000 series) have non-volatile SRAM,
* and do not save/restore SRAM when power cycling.
*/
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
if (unlikely(ret < 0)) {
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
if (!silent) {
u32 val = iwl_read32(trans, CSR_GP_CNTRL);
WARN_ONCE(1,
"Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
val);
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
return false;
}
}
out:
/*
* Fool sparse by faking we release the lock - sparse will
* track nic_access anyway.
*/
__release(&trans_pcie->reg_lock);
return true;
}
static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
unsigned long *flags)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
lockdep_assert_held(&trans_pcie->reg_lock);
/*
* Fool sparse by faking we acquiring the lock - sparse will
* track nic_access anyway.
*/
__acquire(&trans_pcie->reg_lock);
if (trans_pcie->cmd_in_flight)
goto out;
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* Above we read the CSR_GP_CNTRL register, which will flush
* any previous writes, but we need the write that clears the
* MAC_ACCESS_REQ bit to be performed before any other writes
* scheduled on different CPUs (after we drop reg_lock).
*/
mmiowb();
out:
spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
}
static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
void *buf, int dwords)
{
unsigned long flags;
int offs, ret = 0;
u32 *vals = buf;
if (iwl_trans_grab_nic_access(trans, false, &flags)) {
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
for (offs = 0; offs < dwords; offs++)
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
iwl_trans_release_nic_access(trans, &flags);
} else {
ret = -EBUSY;
}
return ret;
}
static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
const void *buf, int dwords)
{
unsigned long flags;
int offs, ret = 0;
const u32 *vals = buf;
if (iwl_trans_grab_nic_access(trans, false, &flags)) {
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
for (offs = 0; offs < dwords; offs++)
iwl_write32(trans, HBUS_TARG_MEM_WDAT,
vals ? vals[offs] : 0);
iwl_trans_release_nic_access(trans, &flags);
} else {
ret = -EBUSY;
}
return ret;
}
#define IWL_FLUSH_WAIT_MS 2000
static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_txq *txq;
struct iwl_queue *q;
int cnt;
unsigned long now = jiffies;
u32 scd_sram_addr;
u8 buf[16];
int ret = 0;
/* waiting for all the tx frames complete might take a while */
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
if (cnt == trans_pcie->cmd_queue)
continue;
txq = &trans_pcie->txq[cnt];
q = &txq->q;
while (q->read_ptr != q->write_ptr && !time_after(jiffies,
now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS)))
msleep(1);
if (q->read_ptr != q->write_ptr) {
IWL_ERR(trans,
"fail to flush all tx fifo queues Q %d\n", cnt);
ret = -ETIMEDOUT;
break;
}
}
if (!ret)
return 0;
IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n",
txq->q.read_ptr, txq->q.write_ptr);
scd_sram_addr = trans_pcie->scd_base_addr +
SCD_TX_STTS_QUEUE_OFFSET(txq->q.id);
iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf));
iwl_print_hex_error(trans, buf, sizeof(buf));
for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++)
IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt,
iwl_read_direct32(trans, FH_TX_TRB_REG(cnt)));
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt));
u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
u32 tbl_dw =
iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr +
SCD_TRANS_TBL_OFFSET_QUEUE(cnt));
if (cnt & 0x1)
tbl_dw = (tbl_dw & 0xFFFF0000) >> 16;
else
tbl_dw = tbl_dw & 0x0000FFFF;
IWL_ERR(trans,
"Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n",
cnt, active ? "" : "in", fifo, tbl_dw,
iwl_read_prph(trans,
SCD_QUEUE_RDPTR(cnt)) & (txq->q.n_bd - 1),
iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt)));
}
return ret;
}
static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
u32 mask, u32 value)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
unsigned long flags;
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
}
static const char *get_csr_string(int cmd)
{
#define IWL_CMD(x) case x: return #x
switch (cmd) {
IWL_CMD(CSR_HW_IF_CONFIG_REG);
IWL_CMD(CSR_INT_COALESCING);
IWL_CMD(CSR_INT);
IWL_CMD(CSR_INT_MASK);
IWL_CMD(CSR_FH_INT_STATUS);
IWL_CMD(CSR_GPIO_IN);
IWL_CMD(CSR_RESET);
IWL_CMD(CSR_GP_CNTRL);
IWL_CMD(CSR_HW_REV);
IWL_CMD(CSR_EEPROM_REG);
IWL_CMD(CSR_EEPROM_GP);
IWL_CMD(CSR_OTP_GP_REG);
IWL_CMD(CSR_GIO_REG);
IWL_CMD(CSR_GP_UCODE_REG);
IWL_CMD(CSR_GP_DRIVER_REG);
IWL_CMD(CSR_UCODE_DRV_GP1);
IWL_CMD(CSR_UCODE_DRV_GP2);
IWL_CMD(CSR_LED_REG);
IWL_CMD(CSR_DRAM_INT_TBL_REG);
IWL_CMD(CSR_GIO_CHICKEN_BITS);
IWL_CMD(CSR_ANA_PLL_CFG);
IWL_CMD(CSR_HW_REV_WA_REG);
IWL_CMD(CSR_DBG_HPET_MEM_REG);
default:
return "UNKNOWN";
}
#undef IWL_CMD
}
void iwl_pcie_dump_csr(struct iwl_trans *trans)
{
int i;
static const u32 csr_tbl[] = {
CSR_HW_IF_CONFIG_REG,
CSR_INT_COALESCING,
CSR_INT,
CSR_INT_MASK,
CSR_FH_INT_STATUS,
CSR_GPIO_IN,
CSR_RESET,
CSR_GP_CNTRL,
CSR_HW_REV,
CSR_EEPROM_REG,
CSR_EEPROM_GP,
CSR_OTP_GP_REG,
CSR_GIO_REG,
CSR_GP_UCODE_REG,
CSR_GP_DRIVER_REG,
CSR_UCODE_DRV_GP1,
CSR_UCODE_DRV_GP2,
CSR_LED_REG,
CSR_DRAM_INT_TBL_REG,
CSR_GIO_CHICKEN_BITS,
CSR_ANA_PLL_CFG,
CSR_HW_REV_WA_REG,
CSR_DBG_HPET_MEM_REG
};
IWL_ERR(trans, "CSR values:\n");
IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
"CSR_INT_PERIODIC_REG)\n");
for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
IWL_ERR(trans, " %25s: 0X%08x\n",
get_csr_string(csr_tbl[i]),
iwl_read32(trans, csr_tbl[i]));
}
}
#ifdef CONFIG_IWLWIFI_DEBUGFS
/* create and remove of files */
#define DEBUGFS_ADD_FILE(name, parent, mode) do { \
if (!debugfs_create_file(#name, mode, parent, trans, \
&iwl_dbgfs_##name##_ops)) \
goto err; \
} while (0)
/* file operation */
#define DEBUGFS_READ_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.read = iwl_dbgfs_##name##_read, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
#define DEBUGFS_WRITE_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.write = iwl_dbgfs_##name##_write, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
#define DEBUGFS_READ_WRITE_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.write = iwl_dbgfs_##name##_write, \
.read = iwl_dbgfs_##name##_read, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_txq *txq;
struct iwl_queue *q;
char *buf;
int pos = 0;
int cnt;
int ret;
size_t bufsz;
bufsz = sizeof(char) * 64 * trans->cfg->base_params->num_of_queues;
if (!trans_pcie->txq)
return -EAGAIN;
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
txq = &trans_pcie->txq[cnt];
q = &txq->q;
pos += scnprintf(buf + pos, bufsz - pos,
"hwq %.2d: read=%u write=%u use=%d stop=%d\n",
cnt, q->read_ptr, q->write_ptr,
!!test_bit(cnt, trans_pcie->queue_used),
!!test_bit(cnt, trans_pcie->queue_stopped));
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
char buf[256];
int pos = 0;
const size_t bufsz = sizeof(buf);
pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n",
rxq->read);
pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n",
rxq->write);
pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n",
rxq->free_count);
if (rxq->rb_stts) {
pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n",
le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF);
} else {
pos += scnprintf(buf + pos, bufsz - pos,
"closed_rb_num: Not Allocated\n");
}
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
}
static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
int pos = 0;
char *buf;
int bufsz = 24 * 64; /* 24 items * 64 char per item */
ssize_t ret;
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
pos += scnprintf(buf + pos, bufsz - pos,
"Interrupt Statistics Report:\n");
pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
isr_stats->hw);
pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
isr_stats->sw);
if (isr_stats->sw || isr_stats->hw) {
pos += scnprintf(buf + pos, bufsz - pos,
"\tLast Restarting Code: 0x%X\n",
isr_stats->err_code);
}
#ifdef CONFIG_IWLWIFI_DEBUG
pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
isr_stats->sch);
pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
isr_stats->alive);
#endif
pos += scnprintf(buf + pos, bufsz - pos,
"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
isr_stats->ctkill);
pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
isr_stats->wakeup);
pos += scnprintf(buf + pos, bufsz - pos,
"Rx command responses:\t\t %u\n", isr_stats->rx);
pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
isr_stats->tx);
pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
isr_stats->unhandled);
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
char buf[8];
int buf_size;
u32 reset_flag;
memset(buf, 0, sizeof(buf));
buf_size = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
if (sscanf(buf, "%x", &reset_flag) != 1)
return -EFAULT;
if (reset_flag == 0)
memset(isr_stats, 0, sizeof(*isr_stats));
return count;
}
static ssize_t iwl_dbgfs_csr_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
char buf[8];
int buf_size;
int csr;
memset(buf, 0, sizeof(buf));
buf_size = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
if (sscanf(buf, "%d", &csr) != 1)
return -EFAULT;
iwl_pcie_dump_csr(trans);
return count;
}
static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct iwl_trans *trans = file->private_data;
char *buf = NULL;
int pos = 0;
ssize_t ret = -EFAULT;
ret = pos = iwl_dump_fh(trans, &buf);
if (buf) {
ret = simple_read_from_buffer(user_buf,
count, ppos, buf, pos);
kfree(buf);
}
return ret;
}
DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
DEBUGFS_READ_FILE_OPS(fh_reg);
DEBUGFS_READ_FILE_OPS(rx_queue);
DEBUGFS_READ_FILE_OPS(tx_queue);
DEBUGFS_WRITE_FILE_OPS(csr);
/*
* Create the debugfs files and directories
*
*/
static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
struct dentry *dir)
{
DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR);
DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR);
DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR);
DEBUGFS_ADD_FILE(csr, dir, S_IWUSR);
DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR);
return 0;
err:
IWL_ERR(trans, "failed to create the trans debugfs entry\n");
return -ENOMEM;
}
#else
static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
struct dentry *dir)
{
return 0;
}
#endif /*CONFIG_IWLWIFI_DEBUGFS */
static const struct iwl_trans_ops trans_ops_pcie = {
.start_hw = iwl_trans_pcie_start_hw,
.op_mode_leave = iwl_trans_pcie_op_mode_leave,
.fw_alive = iwl_trans_pcie_fw_alive,
.start_fw = iwl_trans_pcie_start_fw,
.stop_device = iwl_trans_pcie_stop_device,
.d3_suspend = iwl_trans_pcie_d3_suspend,
.d3_resume = iwl_trans_pcie_d3_resume,
.send_cmd = iwl_trans_pcie_send_hcmd,
.tx = iwl_trans_pcie_tx,
.reclaim = iwl_trans_pcie_reclaim,
.txq_disable = iwl_trans_pcie_txq_disable,
.txq_enable = iwl_trans_pcie_txq_enable,
.dbgfs_register = iwl_trans_pcie_dbgfs_register,
.wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty,
.write8 = iwl_trans_pcie_write8,
.write32 = iwl_trans_pcie_write32,
.read32 = iwl_trans_pcie_read32,
.read_prph = iwl_trans_pcie_read_prph,
.write_prph = iwl_trans_pcie_write_prph,
.read_mem = iwl_trans_pcie_read_mem,
.write_mem = iwl_trans_pcie_write_mem,
.configure = iwl_trans_pcie_configure,
.set_pmi = iwl_trans_pcie_set_pmi,
.grab_nic_access = iwl_trans_pcie_grab_nic_access,
.release_nic_access = iwl_trans_pcie_release_nic_access,
.set_bits_mask = iwl_trans_pcie_set_bits_mask,
};
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent,
const struct iwl_cfg *cfg)
{
struct iwl_trans_pcie *trans_pcie;
struct iwl_trans *trans;
u16 pci_cmd;
int err;
trans = kzalloc(sizeof(struct iwl_trans) +
sizeof(struct iwl_trans_pcie), GFP_KERNEL);
if (!trans) {
err = -ENOMEM;
goto out;
}
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
trans->ops = &trans_ops_pcie;
trans->cfg = cfg;
trans_lockdep_init(trans);
trans_pcie->trans = trans;
spin_lock_init(&trans_pcie->irq_lock);
spin_lock_init(&trans_pcie->reg_lock);
init_waitqueue_head(&trans_pcie->ucode_write_waitq);
err = pci_enable_device(pdev);
if (err)
goto out_no_pci;
if (!cfg->base_params->pcie_l1_allowed) {
/*
* W/A - seems to solve weird behavior. We need to remove this
* if we don't want to stay in L1 all the time. This wastes a
* lot of power.
*/
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1 |
PCIE_LINK_STATE_CLKPM);
}
pci_set_master(pdev);
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(36));
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36));
if (err) {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (!err)
err = pci_set_consistent_dma_mask(pdev,
DMA_BIT_MASK(32));
/* both attempts failed: */
if (err) {
dev_err(&pdev->dev, "No suitable DMA available\n");
goto out_pci_disable_device;
}
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "pci_request_regions failed\n");
goto out_pci_disable_device;
}
trans_pcie->hw_base = pci_ioremap_bar(pdev, 0);
if (!trans_pcie->hw_base) {
dev_err(&pdev->dev, "pci_ioremap_bar failed\n");
err = -ENODEV;
goto out_pci_release_regions;
}
/* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state */
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
err = pci_enable_msi(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", err);
/* enable rfkill interrupt: hw bug w/a */
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
}
}
trans->dev = &pdev->dev;
trans_pcie->pci_dev = pdev;
trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
"PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
/* Initialize the wait queue for commands */
init_waitqueue_head(&trans_pcie->wait_command_queue);
snprintf(trans->dev_cmd_pool_name, sizeof(trans->dev_cmd_pool_name),
"iwl_cmd_pool:%s", dev_name(trans->dev));
trans->dev_cmd_headroom = 0;
trans->dev_cmd_pool =
kmem_cache_create(trans->dev_cmd_pool_name,
sizeof(struct iwl_device_cmd)
+ trans->dev_cmd_headroom,
sizeof(void *),
SLAB_HWCACHE_ALIGN,
NULL);
if (!trans->dev_cmd_pool) {
err = -ENOMEM;
goto out_pci_disable_msi;
}
trans_pcie->inta_mask = CSR_INI_SET_MASK;
if (iwl_pcie_alloc_ict(trans))
goto out_free_cmd_pool;
err = request_threaded_irq(pdev->irq, iwl_pcie_isr,
iwl_pcie_irq_handler,
IRQF_SHARED, DRV_NAME, trans);
if (err) {
IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
goto out_free_ict;
}
return trans;
out_free_ict:
iwl_pcie_free_ict(trans);
out_free_cmd_pool:
kmem_cache_destroy(trans->dev_cmd_pool);
out_pci_disable_msi:
pci_disable_msi(pdev);
out_pci_release_regions:
pci_release_regions(pdev);
out_pci_disable_device:
pci_disable_device(pdev);
out_no_pci:
kfree(trans);
out:
return ERR_PTR(err);
}