OpenCloudOS-Kernel/arch/powerpc/kvm/e500_tlb.c

1378 lines
35 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include "e500.h"
#include "trace.h"
#include "timing.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
static inline unsigned int gtlb0_get_next_victim(
struct kvmppc_vcpu_e500 *vcpu_e500)
{
unsigned int victim;
victim = vcpu_e500->gtlb_nv[0]++;
if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
vcpu_e500->gtlb_nv[0] = 0;
return victim;
}
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
{
#ifdef CONFIG_SMP
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
#else
return mas2 & MAS2_ATTRIB_MASK;
#endif
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, stlbe->mas8);
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)));
}
}
#ifdef CONFIG_KVM_E500V2
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
preempt_enable();
}
#endif
static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
if (tlbsel == 1 &&
vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
local_irq_restore(flags);
return;
}
/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
}
static int tlb0_set_base(gva_t addr, int sets, int ways)
{
int set_base;
set_base = (addr >> PAGE_SHIFT) & (sets - 1);
set_base *= ways;
return set_base;
}
static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
{
return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
vcpu_e500->gtlb_params[0].ways);
}
static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel = get_tlb_esel_bit(vcpu);
if (tlbsel == 0) {
esel &= vcpu_e500->gtlb_params[0].ways - 1;
esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
} else {
esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
}
return esel;
}
/* Search the guest TLB for a matching entry. */
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
gva_t eaddr, int tlbsel, unsigned int pid, int as)
{
int size = vcpu_e500->gtlb_params[tlbsel].entries;
unsigned int set_base, offset;
int i;
if (tlbsel == 0) {
set_base = gtlb0_set_base(vcpu_e500, eaddr);
size = vcpu_e500->gtlb_params[0].ways;
} else {
if (eaddr < vcpu_e500->tlb1_min_eaddr ||
eaddr > vcpu_e500->tlb1_max_eaddr)
return -1;
set_base = 0;
}
offset = vcpu_e500->gtlb_offset[tlbsel];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + set_base + i];
unsigned int tid;
if (eaddr < get_tlb_eaddr(tlbe))
continue;
if (eaddr > get_tlb_end(tlbe))
continue;
tid = get_tlb_tid(tlbe);
if (tid && (tid != pid))
continue;
if (!get_tlb_v(tlbe))
continue;
if (get_tlb_ts(tlbe) != as && as != -1)
continue;
return set_base + i;
}
return -1;
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
pfn_t pfn)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
if (tlbe_is_writable(gtlbe))
ref->flags |= E500_TLB_DIRTY;
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
if (ref->flags & E500_TLB_DIRTY)
kvm_release_pfn_dirty(ref->pfn);
else
kvm_release_pfn_clean(ref->pfn);
ref->flags = 0;
}
}
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel = 0;
int i;
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int stlbsel = 1;
int i;
kvmppc_e500_tlbil_all(vcpu_e500);
for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->tlb_refs[stlbsel][i];
kvmppc_e500_ref_release(ref);
}
clear_tlb_privs(vcpu_e500);
}
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
unsigned int eaddr, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int victim, tsized;
int tlbsel;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
| MAS1_TID(get_tlbmiss_tid(vcpu))
| MAS1_TSIZE(tsized);
vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
| (get_cur_pid(vcpu) << 16)
| (as ? MAS6_SAS : 0);
}
/* TID must be supplied by the caller */
static inline void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) |
e500_shadow_mas2_attrib(gtlbe->mas2, pr);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
#ifdef CONFIG_KVM_BOOKE_HV
stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
#endif
}
static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn, hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end, tsize_pages;
tsize_pages = 1 << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
if (is_error_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
kvm_release_pfn_clean(pfn);
return;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
/* Drop old ref and setup new one. */
kvmppc_e500_ref_release(ref);
kvmppc_e500_ref_setup(ref, gtlbe, pfn);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
}
/* XXX only map the one-one case, for now use TLB0 */
static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* XXX for both one-one and one-to-many , for now use TLB1 */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref;
unsigned int victim;
victim = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
ref = &vcpu_e500->tlb_refs[1][victim];
kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
if (vcpu_e500->h2g_tlb1_rmap[victim]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
}
vcpu_e500->h2g_tlb1_rmap[victim] = esel;
return victim;
}
static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int size = vcpu_e500->gtlb_params[1].entries;
unsigned int offset;
gva_t eaddr;
int i;
vcpu_e500->tlb1_min_eaddr = ~0UL;
vcpu_e500->tlb1_max_eaddr = 0;
offset = vcpu_e500->gtlb_offset[1];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + i];
if (!get_tlb_v(tlbe))
continue;
eaddr = get_tlb_eaddr(tlbe);
vcpu_e500->tlb1_min_eaddr =
min(vcpu_e500->tlb1_min_eaddr, eaddr);
eaddr = get_tlb_end(tlbe);
vcpu_e500->tlb1_max_eaddr =
max(vcpu_e500->tlb1_max_eaddr, eaddr);
}
}
static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
return vcpu_e500->tlb1_min_eaddr == start ||
vcpu_e500->tlb1_max_eaddr == end;
}
/* This function is supposed to be called for a adding a new valid tlb entry */
static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (!get_tlb_v(gtlbe))
return;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
}
static inline int kvmppc_e500_gtlbe_invalidate(
struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
if (unlikely(get_tlb_iprot(gtlbe)))
return -1;
if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
kvmppc_recalc_tlb1map_range(vcpu_e500);
gtlbe->mas1 = 0;
return 0;
}
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
{
int esel;
if (value & MMUCSR0_TLB0FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
if (value & MMUCSR0_TLB1FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
/* Invalidate all vcpu id mappings */
kvmppc_e500_tlbil_all(vcpu_e500);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int ia;
int esel, tlbsel;
gva_t ea;
ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
ia = (ea >> 2) & 0x1;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (ea >> 3) & 0x1;
if (ia) {
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
} else {
ea &= 0xfffff000;
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
get_cur_pid(vcpu), -1);
if (esel >= 0)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
/* Invalidate all vcpu id mappings */
kvmppc_e500_tlbil_all(vcpu_e500);
return EMULATE_DONE;
}
static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int pid, int rt)
{
struct kvm_book3e_206_tlb_entry *tlbe;
int tid, esel;
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
tlbe = get_entry(vcpu_e500, tlbsel, esel);
tid = get_tlb_tid(tlbe);
if (rt == 0 || tid == pid) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
}
}
static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
int ra, int rb)
{
int tlbsel, esel;
gva_t ea;
ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb);
if (ra)
ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra);
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
if (esel >= 0) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
break;
}
}
}
int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int pid = get_cur_spid(vcpu);
if (rt == 0 || rt == 1) {
tlbilx_all(vcpu_e500, 0, pid, rt);
tlbilx_all(vcpu_e500, 1, pid, rt);
} else if (rt == 3) {
tlbilx_one(vcpu_e500, pid, ra, rb);
}
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int tlbsel, esel;
struct kvm_book3e_206_tlb_entry *gtlbe;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int as = !!get_cur_sas(vcpu);
unsigned int pid = get_cur_spid(vcpu);
int esel, tlbsel;
struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
gva_t ea;
ea = kvmppc_get_gpr(vcpu, rb);
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
if (esel >= 0) {
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
break;
}
}
if (gtlbe) {
esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
} else {
int victim;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
| MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 =
(vcpu->arch.shared->mas6 & MAS6_SPID0)
| (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
vcpu->arch.shared->mas2 &= MAS2_EPN;
vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
MAS2_ATTRIB_MASK;
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
MAS3_U2 | MAS3_U3;
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
return EMULATE_DONE;
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel, esel, stlbsel, sesel;
int recal = 0;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
if (get_tlb_v(gtlbe)) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
if ((tlbsel == 1) &&
kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
recal = 1;
}
gtlbe->mas1 = vcpu->arch.shared->mas1;
gtlbe->mas2 = vcpu->arch.shared->mas2;
gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
gtlbe->mas2, gtlbe->mas7_3);
if (tlbsel == 1) {
/*
* If a valid tlb1 entry is overwritten then recalculate the
* min/max TLB1 map address range otherwise no need to look
* in tlb1 array.
*/
if (recal)
kvmppc_recalc_tlb1map_range(vcpu_e500);
else
kvmppc_set_tlb1map_range(vcpu, gtlbe);
}
/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
if (tlbe_is_host_safe(vcpu, gtlbe)) {
u64 eaddr;
u64 raddr;
switch (tlbsel) {
case 0:
/* TLB0 */
gtlbe->mas1 &= ~MAS1_TSIZE(~0);
gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
stlbsel = 0;
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
sesel = 0; /* unused */
break;
case 1:
/* TLB1 */
eaddr = get_tlb_eaddr(gtlbe);
raddr = get_tlb_raddr(gtlbe);
/* Create a 4KB mapping on the host.
* If the guest wanted a large page,
* only the first 4KB is mapped here and the rest
* are mapped on the fly. */
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
break;
default:
BUG();
}
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
return EMULATE_DONE;
}
static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
gva_t eaddr, unsigned int pid, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel, tlbsel;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
if (esel >= 0)
return index_of(tlbsel, esel);
}
return -1;
}
/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int index;
gva_t eaddr;
u8 pid;
u8 as;
eaddr = tr->linear_address;
pid = (tr->linear_address >> 32) & 0xff;
as = (tr->linear_address >> 40) & 0x1;
index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
if (index < 0) {
tr->valid = 0;
return 0;
}
tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
/* XXX what does "writeable" and "usermode" even mean? */
tr->valid = 1;
return 0;
}
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
}
void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
}
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
gva_t eaddr)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe;
u64 pgmask;
gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
pgmask = get_tlb_bytes(gtlbe) - 1;
return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
int stlbsel, sesel;
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
stlbsel = 0;
sesel = 0; /* unused */
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
gtlbe, &stlbe, esel);
break;
}
default:
BUG();
break;
}
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
}
static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int i;
clear_tlb1_bitmap(vcpu_e500);
kfree(vcpu_e500->g2h_tlb1_map);
clear_tlb_refs(vcpu_e500);
kfree(vcpu_e500->gtlb_priv[0]);
kfree(vcpu_e500->gtlb_priv[1]);
if (vcpu_e500->shared_tlb_pages) {
vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
PAGE_SIZE)));
for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
put_page(vcpu_e500->shared_tlb_pages[i]);
}
vcpu_e500->num_shared_tlb_pages = 0;
vcpu_e500->shared_tlb_pages = NULL;
} else {
kfree(vcpu_e500->gtlb_arch);
}
vcpu_e500->gtlb_arch = NULL;
}
void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = vcpu->arch.mmucfg;
sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
sregs->u.e.tlbcfg[2] = 0;
sregs->u.e.tlbcfg[3] = 0;
}
int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
vcpu->arch.shared->mas0 = sregs->u.e.mas0;
vcpu->arch.shared->mas1 = sregs->u.e.mas1;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
return 0;
}
int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
struct kvm_config_tlb *cfg)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_params params;
char *virt;
struct page **pages;
struct tlbe_priv *privs[2] = {};
u64 *g2h_bitmap = NULL;
size_t array_len;
u32 sets;
int num_pages, ret, i;
if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
return -EINVAL;
if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
sizeof(params)))
return -EFAULT;
if (params.tlb_sizes[1] > 64)
return -EINVAL;
if (params.tlb_ways[1] != params.tlb_sizes[1])
return -EINVAL;
if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
return -EINVAL;
if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
return -EINVAL;
if (!is_power_of_2(params.tlb_ways[0]))
return -EINVAL;
sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
if (!is_power_of_2(sets))
return -EINVAL;
array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
if (cfg->array_len < array_len)
return -EINVAL;
num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
cfg->array / PAGE_SIZE;
pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
if (!pages)
return -ENOMEM;
ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
if (ret < 0)
goto err_pages;
if (ret != num_pages) {
num_pages = ret;
ret = -EFAULT;
goto err_put_page;
}
virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
if (!virt)
goto err_put_page;
privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
GFP_KERNEL);
privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
GFP_KERNEL);
if (!privs[0] || !privs[1])
goto err_put_page;
g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
GFP_KERNEL);
if (!g2h_bitmap)
goto err_put_page;
free_gtlb(vcpu_e500);
vcpu_e500->gtlb_priv[0] = privs[0];
vcpu_e500->gtlb_priv[1] = privs[1];
vcpu_e500->g2h_tlb1_map = g2h_bitmap;
vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
(virt + (cfg->array & (PAGE_SIZE - 1)));
vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
if (params.tlb_sizes[0] <= 2048)
vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
vcpu_e500->shared_tlb_pages = pages;
vcpu_e500->num_shared_tlb_pages = num_pages;
vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
vcpu_e500->gtlb_params[0].sets = sets;
vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
vcpu_e500->gtlb_params[1].sets = 1;
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err_put_page:
kfree(privs[0]);
kfree(privs[1]);
for (i = 0; i < num_pages; i++)
put_page(pages[i]);
err_pages:
kfree(pages);
return ret;
}
int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
struct kvm_dirty_tlb *dirty)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_recalc_tlb1map_range(vcpu_e500);
clear_tlb_refs(vcpu_e500);
return 0;
}
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[0].sets =
KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[1].sets = 1;
vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
if (!vcpu_e500->gtlb_arch)
return -ENOMEM;
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
vcpu_e500->tlb_refs[0] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[0])
goto err;
vcpu_e500->tlb_refs[1] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[1])
goto err;
vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[0])
goto err;
vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[1])
goto err;
vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->g2h_tlb1_map)
goto err;
vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
goto err;
/* Init TLB configuration register */
vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
vcpu->arch.tlbcfg[0] |=
vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
vcpu->arch.tlbcfg[1] |=
vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err:
free_gtlb(vcpu_e500);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
return -1;
}
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
free_gtlb(vcpu_e500);
kfree(vcpu_e500->h2g_tlb1_rmap);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
}