OpenCloudOS-Kernel/drivers/firmware/qcom_scm.c

446 lines
10 KiB
C
Raw Normal View History

/*
* Qualcomm SCM driver
*
* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/qcom_scm.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/reset-controller.h>
#include "qcom_scm.h"
#define SCM_HAS_CORE_CLK BIT(0)
#define SCM_HAS_IFACE_CLK BIT(1)
#define SCM_HAS_BUS_CLK BIT(2)
struct qcom_scm {
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *bus_clk;
struct reset_controller_dev reset;
};
static struct qcom_scm *__scm;
static int qcom_scm_clk_enable(void)
{
int ret;
ret = clk_prepare_enable(__scm->core_clk);
if (ret)
goto bail;
ret = clk_prepare_enable(__scm->iface_clk);
if (ret)
goto disable_core;
ret = clk_prepare_enable(__scm->bus_clk);
if (ret)
goto disable_iface;
return 0;
disable_iface:
clk_disable_unprepare(__scm->iface_clk);
disable_core:
clk_disable_unprepare(__scm->core_clk);
bail:
return ret;
}
static void qcom_scm_clk_disable(void)
{
clk_disable_unprepare(__scm->core_clk);
clk_disable_unprepare(__scm->iface_clk);
clk_disable_unprepare(__scm->bus_clk);
}
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_cold_boot_addr(entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_warm_boot_addr(__scm->dev, entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void qcom_scm_cpu_power_down(u32 flags)
{
__qcom_scm_cpu_power_down(flags);
}
EXPORT_SYMBOL(qcom_scm_cpu_power_down);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_CMD_HDCP);
qcom_scm_clk_disable();
return ret > 0 ? true : false;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_hdcp_req(__scm->dev, req, req_cnt, resp);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
/**
* qcom_scm_pas_supported() - Check if the peripheral authentication service is
* available for the given peripherial
* @peripheral: peripheral id
*
* Returns true if PAS is supported for this peripheral, otherwise false.
*/
bool qcom_scm_pas_supported(u32 peripheral)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
QCOM_SCM_PAS_IS_SUPPORTED_CMD);
if (ret <= 0)
return false;
return __qcom_scm_pas_supported(__scm->dev, peripheral);
}
EXPORT_SYMBOL(qcom_scm_pas_supported);
/**
* qcom_scm_pas_init_image() - Initialize peripheral authentication service
* state machine for a given peripheral, using the
* metadata
* @peripheral: peripheral id
* @metadata: pointer to memory containing ELF header, program header table
* and optional blob of data used for authenticating the metadata
* and the rest of the firmware
* @size: size of the metadata
*
* Returns 0 on success.
*/
int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
{
dma_addr_t mdata_phys;
void *mdata_buf;
int ret;
/*
* During the scm call memory protection will be enabled for the meta
* data blob, so make sure it's physically contiguous, 4K aligned and
* non-cachable to avoid XPU violations.
*/
mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
GFP_KERNEL);
if (!mdata_buf) {
dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
return -ENOMEM;
}
memcpy(mdata_buf, metadata, size);
ret = qcom_scm_clk_enable();
if (ret)
goto free_metadata;
ret = __qcom_scm_pas_init_image(__scm->dev, peripheral, mdata_phys);
qcom_scm_clk_disable();
free_metadata:
dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_init_image);
/**
* qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
* for firmware loading
* @peripheral: peripheral id
* @addr: start address of memory area to prepare
* @size: size of the memory area to prepare
*
* Returns 0 on success.
*/
int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_mem_setup(__scm->dev, peripheral, addr, size);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
/**
* qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
* and reset the remote processor
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qcom_scm_pas_auth_and_reset(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_auth_and_reset(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
/**
* qcom_scm_pas_shutdown() - Shut down the remote processor
* @peripheral: peripheral id
*
* Returns 0 on success.
*/
int qcom_scm_pas_shutdown(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_shutdown(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown);
static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 1);
}
static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 0);
}
static const struct reset_control_ops qcom_scm_pas_reset_ops = {
.assert = qcom_scm_pas_reset_assert,
.deassert = qcom_scm_pas_reset_deassert,
};
/**
* qcom_scm_is_available() - Checks if SCM is available
*/
bool qcom_scm_is_available(void)
{
return !!__scm;
}
EXPORT_SYMBOL(qcom_scm_is_available);
static int qcom_scm_probe(struct platform_device *pdev)
{
struct qcom_scm *scm;
unsigned long clks;
int ret;
scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
if (!scm)
return -ENOMEM;
clks = (unsigned long)of_device_get_match_data(&pdev->dev);
if (clks & SCM_HAS_CORE_CLK) {
scm->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(scm->core_clk)) {
if (PTR_ERR(scm->core_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire core clk\n");
return PTR_ERR(scm->core_clk);
}
}
if (clks & SCM_HAS_IFACE_CLK) {
scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(scm->iface_clk)) {
if (PTR_ERR(scm->iface_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire iface clk\n");
return PTR_ERR(scm->iface_clk);
}
}
if (clks & SCM_HAS_BUS_CLK) {
scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scm->bus_clk)) {
if (PTR_ERR(scm->bus_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire bus clk\n");
return PTR_ERR(scm->bus_clk);
}
}
scm->reset.ops = &qcom_scm_pas_reset_ops;
scm->reset.nr_resets = 1;
scm->reset.of_node = pdev->dev.of_node;
ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
if (ret)
return ret;
/* vote for max clk rate for highest performance */
ret = clk_set_rate(scm->core_clk, INT_MAX);
if (ret)
return ret;
__scm = scm;
__scm->dev = &pdev->dev;
__qcom_scm_init();
return 0;
}
static const struct of_device_id qcom_scm_dt_match[] = {
{ .compatible = "qcom,scm-apq8064",
.data = (void *) SCM_HAS_CORE_CLK,
},
{ .compatible = "qcom,scm-msm8660",
.data = (void *) SCM_HAS_CORE_CLK,
},
{ .compatible = "qcom,scm-msm8960",
.data = (void *) SCM_HAS_CORE_CLK,
},
{ .compatible = "qcom,scm-msm8996",
.data = NULL, /* no clocks */
},
{ .compatible = "qcom,scm",
.data = (void *)(SCM_HAS_CORE_CLK
| SCM_HAS_IFACE_CLK
| SCM_HAS_BUS_CLK),
},
{}
};
static struct platform_driver qcom_scm_driver = {
.driver = {
.name = "qcom_scm",
.of_match_table = qcom_scm_dt_match,
},
.probe = qcom_scm_probe,
};
static int __init qcom_scm_init(void)
{
struct device_node *np, *fw_np;
int ret;
fw_np = of_find_node_by_name(NULL, "firmware");
if (!fw_np)
return -ENODEV;
np = of_find_matching_node(fw_np, qcom_scm_dt_match);
if (!np) {
of_node_put(fw_np);
return -ENODEV;
}
of_node_put(np);
ret = of_platform_populate(fw_np, qcom_scm_dt_match, NULL, NULL);
of_node_put(fw_np);
if (ret)
return ret;
return platform_driver_register(&qcom_scm_driver);
}
subsys_initcall(qcom_scm_init);