OpenCloudOS-Kernel/drivers/dma/Makefile

59 lines
2.2 KiB
Makefile
Raw Normal View History

subdir-ccflags-$(CONFIG_DMADEVICES_DEBUG) := -DDEBUG
subdir-ccflags-$(CONFIG_DMADEVICES_VDEBUG) += -DVERBOSE_DEBUG
obj-$(CONFIG_DMA_ENGINE) += dmaengine.o
obj-$(CONFIG_DMA_VIRTUAL_CHANNELS) += virt-dma.o
dma: acpi-dma: introduce ACPI DMA helpers There is a new generic API to get a DMA channel for a slave device (commit 9a6cecc8 "dmaengine: add helper function to request a slave DMA channel"). In similar fashion to the DT case (commit aa3da644 "of: Add generic device tree DMA helpers") we introduce helpers to the DMAC drivers which are enumerated by ACPI. The proposed extension provides the following API calls: acpi_dma_controller_register(), devm_acpi_dma_controller_register() acpi_dma_controller_free(), devm_acpi_dma_controller_free() acpi_dma_simple_xlate() acpi_dma_request_slave_chan_by_index() acpi_dma_request_slave_chan_by_name() The first two should be used, for example, at probe() and remove() of the corresponding DMAC driver. At the register stage the DMAC driver supplies a custom xlate() function to translate a struct dma_spec into struct dma_chan. Accordingly to the ACPI Fixed DMA resource specification the only two pieces of information the slave device has are the channel id and the request line (slave id). Those two are represented by struct dma_spec. The acpi_dma_request_slave_chan_by_index() provides access to the specifix FixedDMA resource by its index. Whereas dma_request_slave_channel() takes a string parameter to identify the DMA resources required by the slave device. To make a slave device driver work with both DeviceTree and ACPI enumeration a simple convention is established: "tx" corresponds to the index 0 and "rx" to the index 1. In case of robust configuration the slave device driver unfortunately needs to call acpi_dma_request_slave_chan_by_index() directly. Additionally the patch provides "managed" version of the register/free pair i.e. devm_acpi_dma_controller_register() and devm_acpi_dma_controller_free(). Usually, the driver uses only devm_acpi_dma_controller_register(). Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-04-09 19:05:43 +08:00
obj-$(CONFIG_DMA_ACPI) += acpi-dma.o
obj-$(CONFIG_DMA_OF) += of-dma.o
obj-$(CONFIG_DMATEST) += dmatest.o
obj-$(CONFIG_INTEL_IOATDMA) += ioat/
dmaengine: driver for the iop32x, iop33x, and iop13xx raid engines The Intel(R) IOP series of i/o processors integrate an Xscale core with raid acceleration engines. The capabilities per platform are: iop219: (2) copy engines iop321: (2) copy engines (1) xor and block fill engine iop33x: (2) copy and crc32c engines (1) xor, xor zero sum, pq, pq zero sum, and block fill engine iop34x (iop13xx): (2) copy, crc32c, xor, xor zero sum, and block fill engines (1) copy, crc32c, xor, xor zero sum, pq, pq zero sum, and block fill engine The driver supports the features of the async_tx api: * asynchronous notification of operation completion * implicit (interupt triggered) handling of inter-channel transaction dependencies The driver adapts to the platform it is running by two methods. 1/ #include <asm/arch/adma.h> which defines the hardware specific iop_chan_* and iop_desc_* routines as a series of static inline functions 2/ The private platform data attached to the platform_device defines the capabilities of the channels 20070626: Callbacks are run in a tasklet. Given the recent discussion on LKML about killing tasklets in favor of workqueues I did a quick conversion of the driver. Raid5 resync performance dropped from 50MB/s to 30MB/s, so the tasklet implementation remains until a generic softirq interface is available. Changelog: * fixed a slot allocation bug in do_iop13xx_adma_xor that caused too few slots to be requested eventually leading to data corruption * enabled the slot allocation routine to attempt to free slots before returning -ENOMEM * switched the cleanup routine to solely use the software chain and the status register to determine if a descriptor is complete. This is necessary to support other IOP engines that do not have status writeback capability * make the driver iop generic * modified the allocation routines to understand allocating a group of slots for a single operation * added a null xor initialization operation for the xor only channel on iop3xx * support xor operations on buffers larger than the hardware maximum * split the do_* routines into separate prep, src/dest set, submit stages * added async_tx support (dependent operations initiation at cleanup time) * simplified group handling * added interrupt support (callbacks via tasklets) * brought the pending depth inline with ioat (i.e. 4 descriptors) * drop dma mapping methods, suggested by Chris Leech * don't use inline in C files, Adrian Bunk * remove static tasklet declarations * make iop_adma_alloc_slots easier to read and remove chances for a corrupted descriptor chain * fix locking bug in iop_adma_alloc_chan_resources, Benjamin Herrenschmidt * convert capabilities over to dma_cap_mask_t * fixup sparse warnings * add descriptor flush before iop_chan_enable * checkpatch.pl fixes * gpl v2 only correction * move set_src, set_dest, submit to async_tx methods * move group_list and phys to async_tx Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2007-01-03 04:52:26 +08:00
obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_HSU_DMA) += hsu/
obj-$(CONFIG_MPC512X_DMA) += mpc512x_dma.o
obj-$(CONFIG_PPC_BESTCOMM) += bestcomm/
obj-$(CONFIG_MV_XOR) += mv_xor.o
obj-$(CONFIG_DW_DMAC_CORE) += dw/
obj-$(CONFIG_AT_HDMAC) += at_hdmac.o
obj-$(CONFIG_AT_XDMAC) += at_xdmac.o
obj-$(CONFIG_MX3_IPU) += ipu/
obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o
obj-$(CONFIG_RENESAS_DMA) += sh/
obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_IMX_SDMA) += imx-sdma.o
obj-$(CONFIG_IMX_DMA) += imx-dma.o
obj-$(CONFIG_MXS_DMA) += mxs-dma.o
dmaengine: pxa: add pxa dmaengine driver This is a new driver for pxa SoCs, which is also compatible with the former mmp_pdma. The rationale behind a new driver (as opposed to incremental patching) was : - the new driver relies on virt-dma, which obsoletes all the internal structures of mmp_pdma (sw_desc, hw_desc, ...), and by consequence all the functions - mmp_pdma allocates dma coherent descriptors containing not only hardware descriptors but linked list information The new driver only puts the dma hardware descriptors (ie. 4 u32) into the dma pool allocated memory. This changes completely the way descriptors are handled - the architecture behind the interrupt/tasklet management was rewritten to be more conforming to virt-dma - the buffers alignment is handled differently The former driver assumed that the DMA channel stopped between each descriptor. The new one chains descriptors to let the channel running. This is a necessary guarantee for real-time high bandwidth usecases such as video capture on "old" architectures such as pxa. - hot chaining / cold chaining / no chaining Whenever possible, submitting a descriptor "hot chains" it to a running channel. There is still no guarantee that the descriptor will be issued, as the channel might be stopped just before the descriptor is submitted. Yet this allows to submit several video buffers, and resubmit a buffer while another is under handling. As before, dma_async_issue_pending() is the only guarantee to have all the buffers issued. When an alignment issue is detected (ie. one address in a descriptor is not a multiple of 8), if the already running channel is in "aligned mode", the channel will stop, and restarted in "misaligned mode" to finished the issued list. - descriptors reusing A submitted, issued and completed descriptor can be reused, ie resubmitted if it was prepared with the proper flag (DMA_PREP_ACK). Only a channel resources release will in this case release that buffer. This allows a rolling ring of buffers to be reused, where there are several thousands of hardware descriptors used (video buffer for example). Additionally, a set of more casual features is introduced : - debugging traces - lockless way to know if a descriptor is terminated or not The driver was tested on zylonite board (pxa3xx) and mioa701 (pxa27x), with dmatest, pxa_camera and pxamci. Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2015-05-26 05:29:20 +08:00
obj-$(CONFIG_PXA_DMA) += pxa_dma.o
obj-$(CONFIG_TIMB_DMA) += timb_dma.o
obj-$(CONFIG_SIRF_DMA) += sirf-dma.o
obj-$(CONFIG_TI_EDMA) += edma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
obj-$(CONFIG_TEGRA20_APB_DMA) += tegra20-apb-dma.o
obj-$(CONFIG_S3C24XX_DMAC) += s3c24xx-dma.o
obj-$(CONFIG_PL330_DMA) += pl330.o
obj-$(CONFIG_PCH_DMA) += pch_dma.o
obj-$(CONFIG_AMBA_PL08X) += amba-pl08x.o
obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
obj-$(CONFIG_DMA_SA11X0) += sa11x0-dma.o
obj-$(CONFIG_MMP_TDMA) += mmp_tdma.o
obj-$(CONFIG_DMA_OMAP) += omap-dma.o
obj-$(CONFIG_TI_DMA_CROSSBAR) += ti-dma-crossbar.o
obj-$(CONFIG_DMA_BCM2835) += bcm2835-dma.o
obj-$(CONFIG_MMP_PDMA) += mmp_pdma.o
obj-$(CONFIG_DMA_JZ4740) += dma-jz4740.o
obj-$(CONFIG_DMA_JZ4780) += dma-jz4780.o
obj-$(CONFIG_TI_CPPI41) += cppi41.o
obj-$(CONFIG_K3_DMA) += k3dma.o
obj-$(CONFIG_MOXART_DMA) += moxart-dma.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o
obj-$(CONFIG_QCOM_BAM_DMA) += qcom_bam_dma.o
obj-y += xilinx/
obj-$(CONFIG_INTEL_MIC_X100_DMA) += mic_x100_dma.o
obj-$(CONFIG_NBPFAXI_DMA) += nbpfaxi.o
obj-$(CONFIG_DMA_SUN6I) += sun6i-dma.o
obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o
obj-$(CONFIG_XGENE_DMA) += xgene-dma.o