OpenCloudOS-Kernel/include/soc/fsl/qman.h

1251 lines
42 KiB
C
Raw Normal View History

/* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __FSL_QMAN_H
#define __FSL_QMAN_H
#include <linux/bitops.h>
#include <linux/device.h>
/* Hardware constants */
#define QM_CHANNEL_SWPORTAL0 0
#define QMAN_CHANNEL_POOL1 0x21
#define QMAN_CHANNEL_CAAM 0x80
#define QMAN_CHANNEL_POOL1_REV3 0x401
#define QMAN_CHANNEL_CAAM_REV3 0x840
extern u16 qm_channel_pool1;
extern u16 qm_channel_caam;
/* Portal processing (interrupt) sources */
#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
/*
* This mask contains all the interrupt sources that need handling except DQRI,
* ie. that if present should trigger slow-path processing.
*/
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
QM_PIRQ_MRI)
/* For qman_static_dequeue_*** APIs */
#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
/* for n in [1,15] */
#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
/* for conversion from n of qm_channel */
static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
{
return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
}
/* --- QMan data structures (and associated constants) --- */
/* "Frame Descriptor (FD)" */
struct qm_fd {
union {
struct {
u8 cfg8b_w1;
u8 bpid; /* Buffer Pool ID */
u8 cfg8b_w3;
u8 addr_hi; /* high 8-bits of 40-bit address */
__be32 addr_lo; /* low 32-bits of 40-bit address */
} __packed;
__be64 data;
};
__be32 cfg; /* format, offset, length / congestion */
union {
__be32 cmd;
__be32 status;
};
} __aligned(8);
#define QM_FD_FORMAT_SG BIT(31)
#define QM_FD_FORMAT_LONG BIT(30)
#define QM_FD_FORMAT_COMPOUND BIT(29)
#define QM_FD_FORMAT_MASK GENMASK(31, 29)
#define QM_FD_OFF_SHIFT 20
#define QM_FD_OFF_MASK GENMASK(28, 20)
#define QM_FD_LEN_MASK GENMASK(19, 0)
#define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
enum qm_fd_format {
/*
* 'contig' implies a contiguous buffer, whereas 'sg' implies a
* scatter-gather table. 'big' implies a 29-bit length with no offset
* field, otherwise length is 20-bit and offset is 9-bit. 'compound'
* implies a s/g-like table, where each entry itself represents a frame
* (contiguous or scatter-gather) and the 29-bit "length" is
* interpreted purely for congestion calculations, ie. a "congestion
* weight".
*/
qm_fd_contig = 0,
qm_fd_contig_big = QM_FD_FORMAT_LONG,
qm_fd_sg = QM_FD_FORMAT_SG,
qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
qm_fd_compound = QM_FD_FORMAT_COMPOUND
};
static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
{
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
}
static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
{
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
}
static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
{
fd->addr_hi = upper_32_bits(addr);
fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
}
/*
* The 'format' field indicates the interpretation of the remaining
* 29 bits of the 32-bit word.
* If 'format' is _contig or _sg, 20b length and 9b offset.
* If 'format' is _contig_big or _sg_big, 29b length.
* If 'format' is _compound, 29b "congestion weight".
*/
static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
}
static inline int qm_fd_get_offset(const struct qm_fd *fd)
{
return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
}
static inline int qm_fd_get_length(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
}
static inline int qm_fd_get_len_big(const struct qm_fd *fd)
{
return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
}
static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
int off, int len)
{
fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
}
#define qm_fd_set_contig(fd, off, len) \
qm_fd_set_param(fd, qm_fd_contig, off, len)
#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
#define qm_fd_set_contig_big(fd, len) \
qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
#define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
static inline void qm_fd_clear_fd(struct qm_fd *fd)
{
fd->data = 0;
fd->cfg = 0;
fd->cmd = 0;
}
/* Scatter/Gather table entry */
struct qm_sg_entry {
union {
struct {
u8 __reserved1[3];
u8 addr_hi; /* high 8-bits of 40-bit address */
__be32 addr_lo; /* low 32-bits of 40-bit address */
};
__be64 data;
};
__be32 cfg; /* E bit, F bit, length */
u8 __reserved2;
u8 bpid;
__be16 offset; /* 13-bit, _res[13-15]*/
} __packed;
#define QM_SG_LEN_MASK GENMASK(29, 0)
#define QM_SG_OFF_MASK GENMASK(12, 0)
#define QM_SG_FIN BIT(30)
#define QM_SG_EXT BIT(31)
static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
{
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
}
static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
{
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
}
static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
{
sg->addr_hi = upper_32_bits(addr);
sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
}
static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_FIN;
}
static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_EXT;
}
static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
}
static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
{
sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
}
static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
{
sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
}
static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
{
return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
}
/* "Frame Dequeue Response" */
struct qm_dqrr_entry {
u8 verb;
u8 stat;
__be16 seqnum; /* 15-bit */
u8 tok;
u8 __reserved2[3];
__be32 fqid; /* 24-bit */
__be32 context_b;
struct qm_fd fd;
u8 __reserved4[32];
} __packed __aligned(64);
#define QM_DQRR_VERB_VBIT 0x80
#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
/* 'fqid' is a 24-bit field in every h/w descriptor */
#define QM_FQID_MASK GENMASK(23, 0)
#define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
#define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
/* "ERN Message Response" */
/* "FQ State Change Notification" */
union qm_mr_entry {
struct {
u8 verb;
u8 __reserved[63];
};
struct {
u8 verb;
u8 dca;
__be16 seqnum;
u8 rc; /* Rej Code: 8-bit */
u8 __reserved[3];
__be32 fqid; /* 24-bit */
__be32 tag;
struct qm_fd fd;
u8 __reserved1[32];
} __packed __aligned(64) ern;
struct {
u8 verb;
u8 fqs; /* Frame Queue Status */
u8 __reserved1[6];
__be32 fqid; /* 24-bit */
__be32 context_b;
u8 __reserved2[48];
} __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
};
#define QM_MR_VERB_VBIT 0x80
/*
* ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
* which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
* from the other MR types by noting if the 0x20 bit is unset.
*/
#define QM_MR_VERB_TYPE_MASK 0x27
#define QM_MR_VERB_DC_ERN 0x20
#define QM_MR_VERB_FQRN 0x21
#define QM_MR_VERB_FQRNI 0x22
#define QM_MR_VERB_FQRL 0x23
#define QM_MR_VERB_FQPN 0x24
#define QM_MR_RC_MASK 0xf0 /* contains one of; */
#define QM_MR_RC_CGR_TAILDROP 0x00
#define QM_MR_RC_WRED 0x10
#define QM_MR_RC_ERROR 0x20
#define QM_MR_RC_ORPWINDOW_EARLY 0x30
#define QM_MR_RC_ORPWINDOW_LATE 0x40
#define QM_MR_RC_FQ_TAILDROP 0x50
#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
#define QM_MR_RC_ORP_ZERO 0x70
#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
/*
* An identical structure of FQD fields is present in the "Init FQ" command and
* the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
* Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
* latter has two inlines to assist with converting to/from the mant+exp
* representation.
*/
struct qm_fqd_stashing {
/* See QM_STASHING_EXCL_<...> */
u8 exclusive;
/* Numbers of cachelines */
u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
};
struct qm_fqd_oac {
/* "Overhead Accounting Control", see QM_OAC_<...> */
u8 oac; /* oac[6-7], _res[0-5] */
/* Two's-complement value (-128 to +127) */
s8 oal; /* "Overhead Accounting Length" */
};
struct qm_fqd {
/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
u8 orpc;
u8 cgid;
__be16 fq_ctrl; /* See QM_FQCTRL_<...> */
__be16 dest_wq; /* channel[3-15], wq[0-2] */
__be16 ics_cred; /* 15-bit */
/*
* For "Initialize Frame Queue" commands, the write-enable mask
* determines whether 'td' or 'oac_init' is observed. For query
* commands, this field is always 'td', and 'oac_query' (below) reflects
* the Overhead ACcounting values.
*/
union {
__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
struct qm_fqd_oac oac_init;
};
__be32 context_b;
union {
/* Treat it as 64-bit opaque */
__be64 opaque;
struct {
__be32 hi;
__be32 lo;
};
/* Treat it as s/w portal stashing config */
/* see "FQD Context_A field used for [...]" */
struct {
struct qm_fqd_stashing stashing;
/*
* 48-bit address of FQ context to
* stash, must be cacheline-aligned
*/
__be16 context_hi;
__be32 context_lo;
} __packed;
} context_a;
struct qm_fqd_oac oac_query;
} __packed;
#define QM_FQD_CHAN_OFF 3
#define QM_FQD_WQ_MASK GENMASK(2, 0)
#define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
#define QM_FQD_TD_MANT_OFF 5
#define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
#define QM_FQD_TD_MAX 0xe0000000
#define QM_FQD_TD_MANT_MAX 0xff
#define QM_FQD_OAC_OFF 6
#define QM_FQD_AS_OFF 4
#define QM_FQD_DS_OFF 2
#define QM_FQD_XS_MASK 0x3
/* 64-bit converters for context_hi/lo */
static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
{
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
}
static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
{
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
}
static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
{
return qm_fqd_stashing_get64(fqd);
}
static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
}
static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
}
/* convert a threshold value into mant+exp representation */
static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
int roundup)
{
u32 e = 0;
int td, oddbit = 0;
if (val > QM_FQD_TD_MAX)
return -ERANGE;
while (val > QM_FQD_TD_MANT_MAX) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
td |= (e & QM_FQD_TD_EXP_MASK);
fqd->td = cpu_to_be16(td);
return 0;
}
/* and the other direction */
static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
{
int td = be16_to_cpu(fqd->td);
return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
<< (td & QM_FQD_TD_EXP_MASK);
}
static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
{
struct qm_fqd_stashing *st = &fqd->context_a.stashing;
st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
(cs & QM_FQD_XS_MASK);
}
static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
{
return fqd->context_a.stashing.cl;
}
static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
{
fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
}
static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
{
fqd->oac_init.oal = val;
}
static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
{
fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
(wq & QM_FQD_WQ_MASK));
}
static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
{
return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
}
static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
{
return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
}
/* See "Frame Queue Descriptor (FQD)" */
/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
/* See "FQD Context_A field used for [...] */
/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
#define QM_STASHING_EXCL_ANNOTATION 0x04
#define QM_STASHING_EXCL_DATA 0x02
#define QM_STASHING_EXCL_CTX 0x01
/* See "Intra Class Scheduling" */
/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
/*
* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
* and associated commands/responses. The WRED parameters are calculated from
* these fields as follows;
* MaxTH = MA * (2 ^ Mn)
* Slope = SA / (2 ^ Sn)
* MaxP = 4 * (Pn + 1)
*/
struct qm_cgr_wr_parm {
/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
__be32 word;
};
/*
* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
* management commands, this is padded to a 16-bit structure field, so that's
* how we represent it here. The congestion state threshold is calculated from
* these fields as follows;
* CS threshold = TA * (2 ^ Tn)
*/
struct qm_cgr_cs_thres {
/* _res[13-15], TA[5-12], Tn[0-4] */
__be16 word;
};
/*
* This identical structure of CGR fields is present in the "Init/Modify CGR"
* commands and the "Query CGR" result. It's suctioned out here into its own
* struct.
*/
struct __qm_mc_cgr {
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
u8 wr_en_g; /* boolean, use QM_CGR_EN */
u8 wr_en_y; /* boolean, use QM_CGR_EN */
u8 wr_en_r; /* boolean, use QM_CGR_EN */
u8 cscn_en; /* boolean, use QM_CGR_EN */
union {
struct {
__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
__be16 cscn_targ_dcp_low;
};
__be32 cscn_targ; /* use QM_CGR_TARG_* */
};
u8 cstd_en; /* boolean, use QM_CGR_EN */
u8 cs; /* boolean, only used in query response */
struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
} __packed;
#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
/* Convert CGR thresholds to/from "cs_thres" format */
static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
{
int thres = be16_to_cpu(th->word);
return ((thres >> 5) & 0xff) << (thres & 0x1f);
}
static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
return 0;
}
/* "Initialize FQ" */
struct qm_mcc_initfq {
u8 __reserved1[2];
__be16 we_mask; /* Write Enable Mask */
__be32 fqid; /* 24-bit */
__be16 count; /* Initialises 'count+1' FQDs */
struct qm_fqd fqd; /* the FQD fields go here */
u8 __reserved2[30];
} __packed;
/* "Initialize/Modify CGR" */
struct qm_mcc_initcgr {
u8 __reserve1[2];
__be16 we_mask; /* Write Enable Mask */
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[2];
u8 cgid;
u8 __reserved3[32];
} __packed;
/* INITFQ-specific flags */
#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
#define QM_INITFQ_WE_OAC 0x0100
#define QM_INITFQ_WE_ORPC 0x0080
#define QM_INITFQ_WE_CGID 0x0040
#define QM_INITFQ_WE_FQCTRL 0x0020
#define QM_INITFQ_WE_DESTWQ 0x0010
#define QM_INITFQ_WE_ICSCRED 0x0008
#define QM_INITFQ_WE_TDTHRESH 0x0004
#define QM_INITFQ_WE_CONTEXTB 0x0002
#define QM_INITFQ_WE_CONTEXTA 0x0001
/* INITCGR/MODIFYCGR-specific flags */
#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
#define QM_CGR_WE_WR_PARM_G 0x0400
#define QM_CGR_WE_WR_PARM_Y 0x0200
#define QM_CGR_WE_WR_PARM_R 0x0100
#define QM_CGR_WE_WR_EN_G 0x0080
#define QM_CGR_WE_WR_EN_Y 0x0040
#define QM_CGR_WE_WR_EN_R 0x0020
#define QM_CGR_WE_CSCN_EN 0x0010
#define QM_CGR_WE_CSCN_TARG 0x0008
#define QM_CGR_WE_CSTD_EN 0x0004
#define QM_CGR_WE_CS_THRES 0x0002
#define QM_CGR_WE_MODE 0x0001
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
#define QMAN_CGR_MODE_FRAME 0x00000001
/* Portal and Frame Queues */
/* Represents a managed portal */
struct qman_portal;
/*
* This object type represents QMan frame queue descriptors (FQD), it is
* cacheline-aligned, and initialised by qman_create_fq(). The structure is
* defined further down.
*/
struct qman_fq;
/*
* This object type represents a QMan congestion group, it is defined further
* down.
*/
struct qman_cgr;
/*
* This enum, and the callback type that returns it, are used when handling
* dequeued frames via DQRR. Note that for "null" callbacks registered with the
* portal object (for handling dequeues that do not demux because context_b is
* NULL), the return value *MUST* be qman_cb_dqrr_consume.
*/
enum qman_cb_dqrr_result {
/* DQRR entry can be consumed */
qman_cb_dqrr_consume,
/* Like _consume, but requests parking - FQ must be held-active */
qman_cb_dqrr_park,
/* Does not consume, for DCA mode only. */
qman_cb_dqrr_defer,
/*
* Stop processing without consuming this ring entry. Exits the current
* qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
* an interrupt handler, the callback would typically call
* qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
* otherwise the interrupt will reassert immediately.
*/
qman_cb_dqrr_stop,
/* Like qman_cb_dqrr_stop, but consumes the current entry. */
qman_cb_dqrr_consume_stop
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
struct qman_fq *fq,
soc/fsl/qbman: Add an argument to signal if NAPI processing is required. dpaa_eth_napi_schedule() and caam_qi_napi_schedule() schedule NAPI if invoked from: - Hard interrupt context - Any context which is not serving soft interrupts Any context which is not serving soft interrupts includes hard interrupts so the in_irq() check is redundant. caam_qi_napi_schedule() has a comment about this: /* * In case of threaded ISR, for RT kernels in_irq() does not return * appropriate value, so use in_serving_softirq to distinguish between * softirq and irq contexts. */ if (in_irq() || !in_serving_softirq()) This has nothing to do with RT. Even on a non RT kernel force threaded interrupts run obviously in thread context and therefore in_irq() returns false when invoked from the handler. The extension of the in_irq() check with !in_serving_softirq() was there when the drivers were added, but in the out of tree FSL BSP the original condition was in_irq() which got extended due to failures on RT. The usage of in_xxx() in drivers is phased out and Linus clearly requested that code which changes behaviour depending on context should either be separated or the context be conveyed in an argument passed by the caller, which usually knows the context. Right he is, the above construct is clearly showing why. The following callchains have been analyzed to end up in dpaa_eth_napi_schedule(): qman_p_poll_dqrr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() portal_isr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() Both need to schedule NAPI. The crypto part has another code path leading up to this: kill_fq() empty_retired_fq() qman_p_poll_dqrr() __poll_portal_fast() fq->cb.dqrr() dpaa_eth_napi_schedule() kill_fq() is called from task context and ends up scheduling NAPI, but that's pointless and an unintended side effect of the !in_serving_softirq() check. The code path: caam_qi_poll() -> qman_p_poll_dqrr() is invoked from NAPI and I *assume* from crypto's NAPI device and not from qbman's NAPI device. I *guess* it is okay to skip scheduling NAPI (because this is what happens now) but could be changed if it is wrong due to `budget' handling. Add an argument to __poll_portal_fast() which is true if NAPI needs to be scheduled. This requires propagating the value to the caller including `qman_cb_dqrr' typedef which is used by the dpaa and the crypto driver. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Aymen Sghaier <aymen.sghaier@nxp.com> Cc: Herbert XS <herbert@gondor.apana.org.au> Cc: Li Yang <leoyang.li@nxp.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Madalin Bucur <madalin.bucur@oss.nxp.com> Tested-by: Camelia Groza <camelia.groza@nxp.com>
2020-11-02 07:22:55 +08:00
const struct qm_dqrr_entry *dqrr,
bool sched_napi);
/*
* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
* are always consumed after the callback returns.
*/
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
const union qm_mr_entry *msg);
/*
* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
* held-active + held-suspended are just "sched". Things like "retired" will not
* be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
* then, to indicate it's completing and to gate attempts to retry the retire
* command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
* technically impossible in the case of enqueue DCAs (which refer to DQRR ring
* index rather than the FQ that ring entry corresponds to), so repeated park
* commands are allowed (if you're silly enough to try) but won't change FQ
* state, and the resulting park notifications move FQs from "sched" to
* "parked".
*/
enum qman_fq_state {
qman_fq_state_oos,
qman_fq_state_parked,
qman_fq_state_sched,
qman_fq_state_retired
};
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
/*
* Frame queue objects (struct qman_fq) are stored within memory passed to
* qman_create_fq(), as this allows stashing of caller-provided demux callback
* pointers at no extra cost to stashing of (driver-internal) FQ state. If the
* caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
* they should;
*
* (a) extend the qman_fq structure with their state; eg.
*
* // myfq is allocated and driver_fq callbacks filled in;
* struct my_fq {
* struct qman_fq base;
* int an_extra_field;
* [ ... add other fields to be associated with each FQ ...]
* } *myfq = some_my_fq_allocator();
* struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
*
* // in a dequeue callback, access extra fields from 'fq' via a cast;
* struct my_fq *myfq = (struct my_fq *)fq;
* do_something_with(myfq->an_extra_field);
* [...]
*
* (b) when and if configuring the FQ for context stashing, specify how ever
* many cachelines are required to stash 'struct my_fq', to accelerate not
* only the QMan driver but the callback as well.
*/
struct qman_fq_cb {
qman_cb_dqrr dqrr; /* for dequeued frames */
qman_cb_mr ern; /* for s/w ERNs */
qman_cb_mr fqs; /* frame-queue state changes*/
};
struct qman_fq {
/* Caller of qman_create_fq() provides these demux callbacks */
struct qman_fq_cb cb;
/*
* These are internal to the driver, don't touch. In particular, they
* may change, be removed, or extended (so you shouldn't rely on
* sizeof(qman_fq) being a constant).
*/
u32 fqid, idx;
unsigned long flags;
enum qman_fq_state state;
int cgr_groupid;
};
/*
* This callback type is used when handling congestion group entry/exit.
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
*/
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
struct qman_cgr *cgr, int congested);
struct qman_cgr {
/* Set these prior to qman_create_cgr() */
u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
qman_cb_cgr cb;
/* These are private to the driver */
u16 chan; /* portal channel this object is created on */
struct list_head node;
};
/* Flags to qman_create_fq() */
#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
/* Flags to qman_init_fq() */
#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/*
* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
* NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
* FQID(n) to fill in the frame queue ID.
*/
#define QM_VDQCR_PRECEDENCE_VDQCR 0x0
#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
#define QM_VDQCR_EXACT 0x40000000
#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
/* "Query FQ Non-Programmable Fields" */
struct qm_mcr_queryfq_np {
u8 verb;
u8 result;
u8 __reserved1;
u8 state; /* QM_MCR_NP_STATE_*** */
u32 fqd_link; /* 24-bit, _res2[24-31] */
u16 odp_seq; /* 14-bit, _res3[14-15] */
u16 orp_nesn; /* 14-bit, _res4[14-15] */
u16 orp_ea_hseq; /* 15-bit, _res5[15] */
u16 orp_ea_tseq; /* 15-bit, _res6[15] */
u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */
u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */
u32 pfdr_hptr; /* 24-bit, _res9[24-31] */
u32 pfdr_tptr; /* 24-bit, _res10[24-31] */
u8 __reserved2[5];
u8 is; /* 1-bit, _res12[1-7] */
u16 ics_surp;
u32 byte_cnt;
u32 frm_cnt; /* 24-bit, _res13[24-31] */
u32 __reserved3;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved4;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
} __packed;
#define QM_MCR_NP_STATE_FE 0x10
#define QM_MCR_NP_STATE_R 0x08
#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
#define QM_MCR_NP_STATE_OOS 0x00
#define QM_MCR_NP_STATE_RETIRED 0x01
#define QM_MCR_NP_STATE_TEN_SCHED 0x02
#define QM_MCR_NP_STATE_TRU_SCHED 0x03
#define QM_MCR_NP_STATE_PARKED 0x04
#define QM_MCR_NP_STATE_ACTIVE 0x05
#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
enum qm_mcr_queryfq_np_masks {
qm_mcr_fqd_link_mask = BIT(24) - 1,
qm_mcr_odp_seq_mask = BIT(14) - 1,
qm_mcr_orp_nesn_mask = BIT(14) - 1,
qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
qm_mcr_is_mask = BIT(1) - 1,
qm_mcr_frm_cnt_mask = BIT(24) - 1,
};
#define qm_mcr_np_get(np, field) \
((np)->field & (qm_mcr_##field##_mask))
/* Portal Management */
/**
* qman_p_irqsource_add - add processing sources to be interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions).
*/
void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
/**
* qman_p_irqsource_remove - remove processing sources from being int-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions.
*/
void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
/**
* qman_affine_cpus - return a mask of cpus that have affine portals
*/
const cpumask_t *qman_affine_cpus(void);
/**
* qman_affine_channel - return the channel ID of an portal
* @cpu: the cpu whose affine portal is the subject of the query
*
* If @cpu is -1, the affine portal for the current CPU will be used. It is a
* bug to call this function for any value of @cpu (other than -1) that is not a
* member of the mask returned from qman_affine_cpus().
*/
u16 qman_affine_channel(int cpu);
/**
* qman_get_affine_portal - return the portal pointer affine to cpu
* @cpu: the cpu whose affine portal is the subject of the query
*/
struct qman_portal *qman_get_affine_portal(int cpu);
/**
* qman_start_using_portal - register a device link for the portal user
* @p: the portal that will be in use
* @dev: the device that will use the portal
*
* Makes sure that the devices that use the portal are unbound when the
* portal is unbound
*/
int qman_start_using_portal(struct qman_portal *p, struct device *dev);
/**
* qman_p_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* The return value represents the number of DQRR entries processed.
*/
int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
/**
* qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Adds a set of pool channels to the portal's static dequeue command register
* (SDQCR). The requested pools are limited to those the portal has dequeue
* access to.
*/
void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
/* FQ management */
/**
* qman_create_fq - Allocates a FQ
* @fqid: the index of the FQD to encapsulate, must be "Out of Service"
* @flags: bit-mask of QMAN_FQ_FLAG_*** options
* @fq: memory for storing the 'fq', with callbacks filled in
*
* Creates a frame queue object for the given @fqid, unless the
* QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
* dynamically allocated (or the function fails if none are available). Once
* created, the caller should not touch the memory at 'fq' except as extended to
* adjacent memory for user-defined fields (see the definition of "struct
* qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
* pre-existing frame-queues that aren't to be otherwise interfered with, it
* prevents all other modifications to the frame queue. The TO_DCPORTAL flag
* causes the driver to honour any context_b modifications requested in the
* qm_init_fq() API, as this indicates the frame queue will be consumed by a
* direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
* software portals, the context_b field is controlled by the driver and can't
* be modified by the caller.
*/
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
/**
* qman_destroy_fq - Deallocates a FQ
* @fq: the frame queue object to release
*
* The memory for this frame queue object ('fq' provided in qman_create_fq()) is
* not deallocated but the caller regains ownership, to do with as desired. The
* FQ must be in the 'out-of-service' or in the 'parked' state.
*/
void qman_destroy_fq(struct qman_fq *fq);
/**
* qman_fq_fqid - Queries the frame queue ID of a FQ object
* @fq: the frame queue object to query
*/
u32 qman_fq_fqid(struct qman_fq *fq);
/**
* qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
* @fq: the frame queue object to modify, must be 'parked' or new.
* @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
* @opts: the FQ-modification settings, as defined in the low-level API
*
* The @opts parameter comes from the low-level portal API. Select
* QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
* rather than parked. NB, @opts can be NULL.
*
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver;
* 1. the 'count' and 'fqid' fields are always ignored (this operation only
* affects one frame queue: @fq).
* 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
* 'fqd' structure's 'context_b' field are sometimes overwritten;
* - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
* initialised to a value used by the driver for demux.
* - if context_b is initialised for demux, so is context_a in case stashing
* is requested (see item 4).
* (So caller control of context_b is only possible for TO_DCPORTAL frame queue
* objects.)
* 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
* 'dest::channel' field will be overwritten to match the portal used to issue
* the command. If the WE_DESTWQ write-enable bit had already been set by the
* caller, the channel workqueue will be left as-is, otherwise the write-enable
* bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
* isn't set, the destination channel/workqueue fields and the write-enable bit
* are left as-is.
* 4. if the driver overwrites context_a/b for demux, then if
* QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
* context_a.address fields and will leave the stashing fields provided by the
* user alone, otherwise it will zero out the context_a.stashing fields.
*/
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
/**
* qman_schedule_fq - Schedules a FQ
* @fq: the frame queue object to schedule, must be 'parked'
*
* Schedules the frame queue, which must be Parked, which takes it to
* Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
*/
int qman_schedule_fq(struct qman_fq *fq);
/**
* qman_retire_fq - Retires a FQ
* @fq: the frame queue object to retire
* @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
*
* Retires the frame queue. This returns zero if it succeeds immediately, +1 if
* the retirement was started asynchronously, otherwise it returns negative for
* failure. When this function returns zero, @flags is set to indicate whether
* the retired FQ is empty and/or whether it has any ORL fragments (to show up
* as ERNs). Otherwise the corresponding flags will be known when a subsequent
* FQRN message shows up on the portal's message ring.
*
* NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
* Active state), the completion will be via the message ring as a FQRN - but
* the corresponding callback may occur before this function returns!! Ie. the
* caller should be prepared to accept the callback as the function is called,
* not only once it has returned.
*/
int qman_retire_fq(struct qman_fq *fq, u32 *flags);
/**
* qman_oos_fq - Puts a FQ "out of service"
* @fq: the frame queue object to be put out-of-service, must be 'retired'
*
* The frame queue must be retired and empty, and if any order restoration list
* was released as ERNs at the time of retirement, they must all be consumed.
*/
int qman_oos_fq(struct qman_fq *fq);
/*
* qman_volatile_dequeue - Issue a volatile dequeue command
* @fq: the frame queue object to dequeue from
* @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
* @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
*
* Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
* The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
* the VDQCR is already in use, otherwise returns non-zero for failure. If
* QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
* the VDQCR command has finished executing (ie. once the callback for the last
* DQRR entry resulting from the VDQCR command has been called). If not using
* the FINISH flag, completion can be determined either by detecting the
* presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
* in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
* for the QMAN_FQ_STATE_VDQCR bit to disappear.
*/
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
/**
* qman_enqueue - Enqueue a frame to a frame queue
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
*
* Fills an entry in the EQCR of portal @qm to enqueue the frame described by
* @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
* field is ignored. The return value is non-zero on error, such as ring full.
*/
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
/**
* qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
* @result: is set by the API to the base FQID of the allocated range
* @count: the number of FQIDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_fqid_range(u32 *result, u32 count);
#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
/**
* qman_release_fqid - Release the specified frame queue ID
* @fqid: the FQID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* FQID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_fqid(u32 fqid);
/**
* qman_query_fq_np - Queries non-programmable FQD fields
* @fq: the frame queue object to be queried
* @np: storage for the queried FQD fields
*/
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
/* Pool-channel management */
/**
* qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
* @result: is set by the API to the base pool-channel ID of the allocated range
* @count: the number of pool-channel IDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_pool_range(u32 *result, u32 count);
#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
/**
* qman_release_pool - Release the specified pool-channel ID
* @id: the pool-chan ID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* pool-channel ID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_pool(u32 id);
/* CGR management */
/**
* qman_create_cgr - Register a congestion group object
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @opts: optional state of CGR settings
*
* Registers this object to receiving congestion entry/exit callbacks on the
* portal affine to the cpu portal on which this API is executed. If opts is
* NULL then only the callback (cgr->cb) function is registered. If @flags
* contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
* any unspecified parameters) will be used rather than a modify hw hardware
* (which only modifies the specified parameters).
*/
int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_delete_cgr - Deregisters a congestion group object
* @cgr: the 'cgr' object to deregister
*
* "Unplugs" this CGR object from the portal affine to the cpu on which this API
* is executed. This must be excuted on the same affine portal on which it was
* created.
*/
int qman_delete_cgr(struct qman_cgr *cgr);
/**
* qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
* @cgr: the 'cgr' object to deregister
*
* This will select the proper CPU and run there qman_delete_cgr().
*/
void qman_delete_cgr_safe(struct qman_cgr *cgr);
/**
* qman_query_cgr_congested - Queries CGR's congestion status
* @cgr: the 'cgr' object to query
* @result: returns 'cgr's congestion status, 1 (true) if congested
*/
int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
/**
* qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
* @result: is set by the API to the base CGR ID of the allocated range
* @count: the number of CGR IDs required
*
* Returns 0 on success, or a negative error code.
*/
int qman_alloc_cgrid_range(u32 *result, u32 count);
#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
/**
* qman_release_cgrid - Release the specified CGR ID
* @id: the CGR ID to be released back to the resource pool
*
* This function can also be used to seed the allocator with
* CGR ID ranges that it can subsequently allocate from.
* Returns 0 on success, or a negative error code.
*/
int qman_release_cgrid(u32 id);
/**
* qman_is_probed - Check if qman is probed
*
* Returns 1 if the qman driver successfully probed, -1 if the qman driver
* failed to probe or 0 if the qman driver did not probed yet.
*/
int qman_is_probed(void);
/**
* qman_portals_probed - Check if all cpu bound qman portals are probed
*
* Returns 1 if all the required cpu bound qman portals successfully probed,
* -1 if probe errors appeared or 0 if the qman portals did not yet finished
* probing.
*/
int qman_portals_probed(void);
/**
* qman_dqrr_get_ithresh - Get coalesce interrupt threshold
* @portal: portal to get the value for
* @ithresh: threshold pointer
*/
void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
/**
* qman_dqrr_set_ithresh - Set coalesce interrupt threshold
* @portal: portal to set the new value on
* @ithresh: new threshold value
*
* Returns 0 on success, or a negative error code.
*/
int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
/**
* qman_dqrr_get_iperiod - Get coalesce interrupt period
* @portal: portal to get the value for
* @iperiod: period pointer
*/
void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
/**
* qman_dqrr_set_iperiod - Set coalesce interrupt period
* @portal: portal to set the new value on
* @ithresh: new period value
*
* Returns 0 on success, or a negative error code.
*/
int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
#endif /* __FSL_QMAN_H */