OpenCloudOS-Kernel/fs/ocfs2/super.c

2637 lines
69 KiB
C
Raw Normal View History

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* super.c
*
* load/unload driver, mount/dismount volumes
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/random.h>
#include <linux/statfs.h>
#include <linux/moduleparam.h>
#include <linux/blkdev.h>
#include <linux/socket.h>
#include <linux/inet.h>
#include <linux/parser.h>
#include <linux/crc32.h>
#include <linux/debugfs.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/quotaops.h>
#include <linux/cleancache.h>
#define CREATE_TRACE_POINTS
#include "ocfs2_trace.h"
#include <cluster/masklog.h>
#include "ocfs2.h"
/* this should be the only file to include a version 1 header */
#include "ocfs1_fs_compat.h"
#include "alloc.h"
#include "aops.h"
#include "blockcheck.h"
#include "dlmglue.h"
#include "export.h"
#include "extent_map.h"
#include "heartbeat.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "namei.h"
#include "slot_map.h"
#include "super.h"
#include "sysfile.h"
#include "uptodate.h"
#include "xattr.h"
#include "quota.h"
#include "refcounttree.h"
#include "suballoc.h"
#include "buffer_head_io.h"
static struct kmem_cache *ocfs2_inode_cachep = NULL;
struct kmem_cache *ocfs2_dquot_cachep;
struct kmem_cache *ocfs2_qf_chunk_cachep;
/* OCFS2 needs to schedule several different types of work which
* require cluster locking, disk I/O, recovery waits, etc. Since these
* types of work tend to be heavy we avoid using the kernel events
* workqueue and schedule on our own. */
struct workqueue_struct *ocfs2_wq = NULL;
static struct dentry *ocfs2_debugfs_root = NULL;
MODULE_AUTHOR("Oracle");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("OCFS2 cluster file system");
struct mount_options
{
unsigned long commit_interval;
unsigned long mount_opt;
unsigned int atime_quantum;
signed short slot;
int localalloc_opt;
unsigned int resv_level;
int dir_resv_level;
char cluster_stack[OCFS2_STACK_LABEL_LEN + 1];
};
static int ocfs2_parse_options(struct super_block *sb, char *options,
struct mount_options *mopt,
int is_remount);
static int ocfs2_check_set_options(struct super_block *sb,
struct mount_options *options);
static int ocfs2_show_options(struct seq_file *s, struct dentry *root);
static void ocfs2_put_super(struct super_block *sb);
static int ocfs2_mount_volume(struct super_block *sb);
static int ocfs2_remount(struct super_block *sb, int *flags, char *data);
static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err);
static int ocfs2_initialize_mem_caches(void);
static void ocfs2_free_mem_caches(void);
static void ocfs2_delete_osb(struct ocfs2_super *osb);
static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf);
static int ocfs2_sync_fs(struct super_block *sb, int wait);
static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb);
static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb);
static void ocfs2_release_system_inodes(struct ocfs2_super *osb);
static int ocfs2_check_volume(struct ocfs2_super *osb);
static int ocfs2_verify_volume(struct ocfs2_dinode *di,
struct buffer_head *bh,
u32 sectsize,
struct ocfs2_blockcheck_stats *stats);
static int ocfs2_initialize_super(struct super_block *sb,
struct buffer_head *bh,
int sector_size,
struct ocfs2_blockcheck_stats *stats);
static int ocfs2_get_sector(struct super_block *sb,
struct buffer_head **bh,
int block,
int sect_size);
static struct inode *ocfs2_alloc_inode(struct super_block *sb);
static void ocfs2_destroy_inode(struct inode *inode);
static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend);
static int ocfs2_enable_quotas(struct ocfs2_super *osb);
static void ocfs2_disable_quotas(struct ocfs2_super *osb);
static const struct super_operations ocfs2_sops = {
.statfs = ocfs2_statfs,
.alloc_inode = ocfs2_alloc_inode,
.destroy_inode = ocfs2_destroy_inode,
.drop_inode = ocfs2_drop_inode,
.evict_inode = ocfs2_evict_inode,
.sync_fs = ocfs2_sync_fs,
.put_super = ocfs2_put_super,
.remount_fs = ocfs2_remount,
.show_options = ocfs2_show_options,
.quota_read = ocfs2_quota_read,
.quota_write = ocfs2_quota_write,
};
enum {
Opt_barrier,
Opt_err_panic,
Opt_err_ro,
Opt_intr,
Opt_nointr,
Opt_hb_none,
Opt_hb_local,
Opt_hb_global,
Opt_data_ordered,
Opt_data_writeback,
Opt_atime_quantum,
Opt_slot,
Opt_commit,
Opt_localalloc,
Opt_localflocks,
Opt_stack,
Opt_user_xattr,
Opt_nouser_xattr,
Opt_inode64,
Opt_acl,
Opt_noacl,
Opt_usrquota,
Opt_grpquota,
Opt_coherency_buffered,
Opt_coherency_full,
Opt_resv_level,
Opt_dir_resv_level,
Opt_err,
};
static const match_table_t tokens = {
{Opt_barrier, "barrier=%u"},
{Opt_err_panic, "errors=panic"},
{Opt_err_ro, "errors=remount-ro"},
{Opt_intr, "intr"},
{Opt_nointr, "nointr"},
{Opt_hb_none, OCFS2_HB_NONE},
{Opt_hb_local, OCFS2_HB_LOCAL},
{Opt_hb_global, OCFS2_HB_GLOBAL},
{Opt_data_ordered, "data=ordered"},
{Opt_data_writeback, "data=writeback"},
{Opt_atime_quantum, "atime_quantum=%u"},
{Opt_slot, "preferred_slot=%u"},
{Opt_commit, "commit=%u"},
{Opt_localalloc, "localalloc=%d"},
{Opt_localflocks, "localflocks"},
{Opt_stack, "cluster_stack=%s"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_inode64, "inode64"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_usrquota, "usrquota"},
{Opt_grpquota, "grpquota"},
{Opt_coherency_buffered, "coherency=buffered"},
{Opt_coherency_full, "coherency=full"},
{Opt_resv_level, "resv_level=%u"},
{Opt_dir_resv_level, "dir_resv_level=%u"},
{Opt_err, NULL}
};
#ifdef CONFIG_DEBUG_FS
static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
{
struct ocfs2_cluster_connection *cconn = osb->cconn;
struct ocfs2_recovery_map *rm = osb->recovery_map;
struct ocfs2_orphan_scan *os = &osb->osb_orphan_scan;
int i, out = 0;
out += snprintf(buf + out, len - out,
"%10s => Id: %-s Uuid: %-s Gen: 0x%X Label: %-s\n",
"Device", osb->dev_str, osb->uuid_str,
osb->fs_generation, osb->vol_label);
out += snprintf(buf + out, len - out,
"%10s => State: %d Flags: 0x%lX\n", "Volume",
atomic_read(&osb->vol_state), osb->osb_flags);
out += snprintf(buf + out, len - out,
"%10s => Block: %lu Cluster: %d\n", "Sizes",
osb->sb->s_blocksize, osb->s_clustersize);
out += snprintf(buf + out, len - out,
"%10s => Compat: 0x%X Incompat: 0x%X "
"ROcompat: 0x%X\n",
"Features", osb->s_feature_compat,
osb->s_feature_incompat, osb->s_feature_ro_compat);
out += snprintf(buf + out, len - out,
"%10s => Opts: 0x%lX AtimeQuanta: %u\n", "Mount",
osb->s_mount_opt, osb->s_atime_quantum);
if (cconn) {
out += snprintf(buf + out, len - out,
"%10s => Stack: %s Name: %*s "
"Version: %d.%d\n", "Cluster",
(*osb->osb_cluster_stack == '\0' ?
"o2cb" : osb->osb_cluster_stack),
cconn->cc_namelen, cconn->cc_name,
cconn->cc_version.pv_major,
cconn->cc_version.pv_minor);
}
spin_lock(&osb->dc_task_lock);
out += snprintf(buf + out, len - out,
"%10s => Pid: %d Count: %lu WakeSeq: %lu "
"WorkSeq: %lu\n", "DownCnvt",
(osb->dc_task ? task_pid_nr(osb->dc_task) : -1),
osb->blocked_lock_count, osb->dc_wake_sequence,
osb->dc_work_sequence);
spin_unlock(&osb->dc_task_lock);
spin_lock(&osb->osb_lock);
out += snprintf(buf + out, len - out, "%10s => Pid: %d Nodes:",
"Recovery",
(osb->recovery_thread_task ?
task_pid_nr(osb->recovery_thread_task) : -1));
if (rm->rm_used == 0)
out += snprintf(buf + out, len - out, " None\n");
else {
for (i = 0; i < rm->rm_used; i++)
out += snprintf(buf + out, len - out, " %d",
rm->rm_entries[i]);
out += snprintf(buf + out, len - out, "\n");
}
spin_unlock(&osb->osb_lock);
out += snprintf(buf + out, len - out,
"%10s => Pid: %d Interval: %lu\n", "Commit",
(osb->commit_task ? task_pid_nr(osb->commit_task) : -1),
osb->osb_commit_interval);
out += snprintf(buf + out, len - out,
"%10s => State: %d TxnId: %lu NumTxns: %d\n",
"Journal", osb->journal->j_state,
osb->journal->j_trans_id,
atomic_read(&osb->journal->j_num_trans));
out += snprintf(buf + out, len - out,
"%10s => GlobalAllocs: %d LocalAllocs: %d "
"SubAllocs: %d LAWinMoves: %d SAExtends: %d\n",
"Stats",
atomic_read(&osb->alloc_stats.bitmap_data),
atomic_read(&osb->alloc_stats.local_data),
atomic_read(&osb->alloc_stats.bg_allocs),
atomic_read(&osb->alloc_stats.moves),
atomic_read(&osb->alloc_stats.bg_extends));
out += snprintf(buf + out, len - out,
"%10s => State: %u Descriptor: %llu Size: %u bits "
"Default: %u bits\n",
"LocalAlloc", osb->local_alloc_state,
(unsigned long long)osb->la_last_gd,
osb->local_alloc_bits, osb->local_alloc_default_bits);
spin_lock(&osb->osb_lock);
out += snprintf(buf + out, len - out,
"%10s => InodeSlot: %d StolenInodes: %d, "
"MetaSlot: %d StolenMeta: %d\n", "Steal",
osb->s_inode_steal_slot,
atomic_read(&osb->s_num_inodes_stolen),
osb->s_meta_steal_slot,
atomic_read(&osb->s_num_meta_stolen));
spin_unlock(&osb->osb_lock);
out += snprintf(buf + out, len - out, "OrphanScan => ");
out += snprintf(buf + out, len - out, "Local: %u Global: %u ",
os->os_count, os->os_seqno);
out += snprintf(buf + out, len - out, " Last Scan: ");
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
out += snprintf(buf + out, len - out, "Disabled\n");
else
out += snprintf(buf + out, len - out, "%lu seconds ago\n",
(get_seconds() - os->os_scantime.tv_sec));
out += snprintf(buf + out, len - out, "%10s => %3s %10s\n",
"Slots", "Num", "RecoGen");
for (i = 0; i < osb->max_slots; ++i) {
out += snprintf(buf + out, len - out,
"%10s %c %3d %10d\n",
" ",
(i == osb->slot_num ? '*' : ' '),
i, osb->slot_recovery_generations[i]);
}
return out;
}
static int ocfs2_osb_debug_open(struct inode *inode, struct file *file)
{
struct ocfs2_super *osb = inode->i_private;
char *buf = NULL;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
goto bail;
i_size_write(inode, ocfs2_osb_dump(osb, buf, PAGE_SIZE));
file->private_data = buf;
return 0;
bail:
return -ENOMEM;
}
static int ocfs2_debug_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static ssize_t ocfs2_debug_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
i_size_read(file->f_mapping->host));
}
#else
static int ocfs2_osb_debug_open(struct inode *inode, struct file *file)
{
return 0;
}
static int ocfs2_debug_release(struct inode *inode, struct file *file)
{
return 0;
}
static ssize_t ocfs2_debug_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static const struct file_operations ocfs2_osb_debug_fops = {
.open = ocfs2_osb_debug_open,
.release = ocfs2_debug_release,
.read = ocfs2_debug_read,
.llseek = generic_file_llseek,
};
static int ocfs2_sync_fs(struct super_block *sb, int wait)
{
int status;
tid_t target;
struct ocfs2_super *osb = OCFS2_SB(sb);
if (ocfs2_is_hard_readonly(osb))
return -EROFS;
if (wait) {
status = ocfs2_flush_truncate_log(osb);
if (status < 0)
mlog_errno(status);
} else {
ocfs2_schedule_truncate_log_flush(osb, 0);
}
if (jbd2_journal_start_commit(OCFS2_SB(sb)->journal->j_journal,
&target)) {
if (wait)
jbd2_log_wait_commit(OCFS2_SB(sb)->journal->j_journal,
target);
}
return 0;
}
static int ocfs2_need_system_inode(struct ocfs2_super *osb, int ino)
{
if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
&& (ino == USER_QUOTA_SYSTEM_INODE
|| ino == LOCAL_USER_QUOTA_SYSTEM_INODE))
return 0;
if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)
&& (ino == GROUP_QUOTA_SYSTEM_INODE
|| ino == LOCAL_GROUP_QUOTA_SYSTEM_INODE))
return 0;
return 1;
}
static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb)
{
struct inode *new = NULL;
int status = 0;
int i;
new = ocfs2_iget(osb, osb->root_blkno, OCFS2_FI_FLAG_SYSFILE, 0);
if (IS_ERR(new)) {
status = PTR_ERR(new);
mlog_errno(status);
goto bail;
}
osb->root_inode = new;
new = ocfs2_iget(osb, osb->system_dir_blkno, OCFS2_FI_FLAG_SYSFILE, 0);
if (IS_ERR(new)) {
status = PTR_ERR(new);
mlog_errno(status);
goto bail;
}
osb->sys_root_inode = new;
for (i = OCFS2_FIRST_ONLINE_SYSTEM_INODE;
i <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; i++) {
if (!ocfs2_need_system_inode(osb, i))
continue;
new = ocfs2_get_system_file_inode(osb, i, osb->slot_num);
if (!new) {
ocfs2_release_system_inodes(osb);
status = -EINVAL;
mlog_errno(status);
/* FIXME: Should ERROR_RO_FS */
mlog(ML_ERROR, "Unable to load system inode %d, "
"possibly corrupt fs?", i);
goto bail;
}
// the array now has one ref, so drop this one
iput(new);
}
bail:
if (status)
mlog_errno(status);
return status;
}
static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb)
{
struct inode *new = NULL;
int status = 0;
int i;
for (i = OCFS2_LAST_GLOBAL_SYSTEM_INODE + 1;
i < NUM_SYSTEM_INODES;
i++) {
if (!ocfs2_need_system_inode(osb, i))
continue;
new = ocfs2_get_system_file_inode(osb, i, osb->slot_num);
if (!new) {
ocfs2_release_system_inodes(osb);
status = -EINVAL;
mlog(ML_ERROR, "status=%d, sysfile=%d, slot=%d\n",
status, i, osb->slot_num);
goto bail;
}
/* the array now has one ref, so drop this one */
iput(new);
}
bail:
if (status)
mlog_errno(status);
return status;
}
static void ocfs2_release_system_inodes(struct ocfs2_super *osb)
{
int i;
struct inode *inode;
for (i = 0; i < NUM_GLOBAL_SYSTEM_INODES; i++) {
inode = osb->global_system_inodes[i];
if (inode) {
iput(inode);
osb->global_system_inodes[i] = NULL;
}
}
inode = osb->sys_root_inode;
if (inode) {
iput(inode);
osb->sys_root_inode = NULL;
}
inode = osb->root_inode;
if (inode) {
iput(inode);
osb->root_inode = NULL;
}
if (!osb->local_system_inodes)
return;
for (i = 0; i < NUM_LOCAL_SYSTEM_INODES * osb->max_slots; i++) {
if (osb->local_system_inodes[i]) {
iput(osb->local_system_inodes[i]);
osb->local_system_inodes[i] = NULL;
}
}
kfree(osb->local_system_inodes);
osb->local_system_inodes = NULL;
}
/* We're allocating fs objects, use GFP_NOFS */
static struct inode *ocfs2_alloc_inode(struct super_block *sb)
{
struct ocfs2_inode_info *oi;
oi = kmem_cache_alloc(ocfs2_inode_cachep, GFP_NOFS);
if (!oi)
return NULL;
oi->i_sync_tid = 0;
oi->i_datasync_tid = 0;
jbd2_journal_init_jbd_inode(&oi->ip_jinode, &oi->vfs_inode);
return &oi->vfs_inode;
}
2011-01-07 14:49:49 +08:00
static void ocfs2_i_callback(struct rcu_head *head)
{
2011-01-07 14:49:49 +08:00
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(ocfs2_inode_cachep, OCFS2_I(inode));
}
2011-01-07 14:49:49 +08:00
static void ocfs2_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, ocfs2_i_callback);
}
static unsigned long long ocfs2_max_file_offset(unsigned int bbits,
unsigned int cbits)
{
unsigned int bytes = 1 << cbits;
unsigned int trim = bytes;
unsigned int bitshift = 32;
/*
* i_size and all block offsets in ocfs2 are always 64 bits
* wide. i_clusters is 32 bits, in cluster-sized units. So on
* 64 bit platforms, cluster size will be the limiting factor.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBDAF)
BUILD_BUG_ON(sizeof(sector_t) != 8);
/*
* We might be limited by page cache size.
*/
if (bytes > PAGE_CACHE_SIZE) {
bytes = PAGE_CACHE_SIZE;
trim = 1;
/*
* Shift by 31 here so that we don't get larger than
* MAX_LFS_FILESIZE
*/
bitshift = 31;
}
# else
/*
* We are limited by the size of sector_t. Use block size, as
* that's what we expose to the VFS.
*/
bytes = 1 << bbits;
trim = 1;
bitshift = 31;
# endif
#endif
/*
* Trim by a whole cluster when we can actually approach the
* on-disk limits. Otherwise we can overflow i_clusters when
* an extent start is at the max offset.
*/
return (((unsigned long long)bytes) << bitshift) - trim;
}
static int ocfs2_remount(struct super_block *sb, int *flags, char *data)
{
int incompat_features;
int ret = 0;
struct mount_options parsed_options;
struct ocfs2_super *osb = OCFS2_SB(sb);
u32 tmp;
if (!ocfs2_parse_options(sb, data, &parsed_options, 1) ||
!ocfs2_check_set_options(sb, &parsed_options)) {
ret = -EINVAL;
goto out;
}
tmp = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL |
OCFS2_MOUNT_HB_NONE;
if ((osb->s_mount_opt & tmp) != (parsed_options.mount_opt & tmp)) {
ret = -EINVAL;
mlog(ML_ERROR, "Cannot change heartbeat mode on remount\n");
goto out;
}
if ((osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK) !=
(parsed_options.mount_opt & OCFS2_MOUNT_DATA_WRITEBACK)) {
ret = -EINVAL;
mlog(ML_ERROR, "Cannot change data mode on remount\n");
goto out;
}
/* Probably don't want this on remount; it might
* mess with other nodes */
if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64) &&
(parsed_options.mount_opt & OCFS2_MOUNT_INODE64)) {
ret = -EINVAL;
mlog(ML_ERROR, "Cannot enable inode64 on remount\n");
goto out;
}
/* We're going to/from readonly mode. */
if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
/* Disable quota accounting before remounting RO */
if (*flags & MS_RDONLY) {
ret = ocfs2_susp_quotas(osb, 0);
if (ret < 0)
goto out;
}
/* Lock here so the check of HARD_RO and the potential
* setting of SOFT_RO is atomic. */
spin_lock(&osb->osb_lock);
if (osb->osb_flags & OCFS2_OSB_HARD_RO) {
mlog(ML_ERROR, "Remount on readonly device is forbidden.\n");
ret = -EROFS;
goto unlock_osb;
}
if (*flags & MS_RDONLY) {
sb->s_flags |= MS_RDONLY;
osb->osb_flags |= OCFS2_OSB_SOFT_RO;
} else {
if (osb->osb_flags & OCFS2_OSB_ERROR_FS) {
mlog(ML_ERROR, "Cannot remount RDWR "
"filesystem due to previous errors.\n");
ret = -EROFS;
goto unlock_osb;
}
incompat_features = OCFS2_HAS_RO_COMPAT_FEATURE(sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP);
if (incompat_features) {
mlog(ML_ERROR, "Cannot remount RDWR because "
"of unsupported optional features "
"(%x).\n", incompat_features);
ret = -EINVAL;
goto unlock_osb;
}
sb->s_flags &= ~MS_RDONLY;
osb->osb_flags &= ~OCFS2_OSB_SOFT_RO;
}
trace_ocfs2_remount(sb->s_flags, osb->osb_flags, *flags);
unlock_osb:
spin_unlock(&osb->osb_lock);
/* Enable quota accounting after remounting RW */
if (!ret && !(*flags & MS_RDONLY)) {
if (sb_any_quota_suspended(sb))
ret = ocfs2_susp_quotas(osb, 1);
else
ret = ocfs2_enable_quotas(osb);
if (ret < 0) {
/* Return back changes... */
spin_lock(&osb->osb_lock);
sb->s_flags |= MS_RDONLY;
osb->osb_flags |= OCFS2_OSB_SOFT_RO;
spin_unlock(&osb->osb_lock);
goto out;
}
}
}
if (!ret) {
/* Only save off the new mount options in case of a successful
* remount. */
osb->s_mount_opt = parsed_options.mount_opt;
osb->s_atime_quantum = parsed_options.atime_quantum;
osb->preferred_slot = parsed_options.slot;
if (parsed_options.commit_interval)
osb->osb_commit_interval = parsed_options.commit_interval;
if (!ocfs2_is_hard_readonly(osb))
ocfs2_set_journal_params(osb);
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ?
MS_POSIXACL : 0);
}
out:
return ret;
}
static int ocfs2_sb_probe(struct super_block *sb,
struct buffer_head **bh,
int *sector_size,
struct ocfs2_blockcheck_stats *stats)
{
int status, tmpstat;
struct ocfs1_vol_disk_hdr *hdr;
struct ocfs2_dinode *di;
int blksize;
*bh = NULL;
/* may be > 512 */
*sector_size = bdev_logical_block_size(sb->s_bdev);
if (*sector_size > OCFS2_MAX_BLOCKSIZE) {
mlog(ML_ERROR, "Hardware sector size too large: %d (max=%d)\n",
*sector_size, OCFS2_MAX_BLOCKSIZE);
status = -EINVAL;
goto bail;
}
/* Can this really happen? */
if (*sector_size < OCFS2_MIN_BLOCKSIZE)
*sector_size = OCFS2_MIN_BLOCKSIZE;
/* check block zero for old format */
status = ocfs2_get_sector(sb, bh, 0, *sector_size);
if (status < 0) {
mlog_errno(status);
goto bail;
}
hdr = (struct ocfs1_vol_disk_hdr *) (*bh)->b_data;
if (hdr->major_version == OCFS1_MAJOR_VERSION) {
mlog(ML_ERROR, "incompatible version: %u.%u\n",
hdr->major_version, hdr->minor_version);
status = -EINVAL;
}
if (memcmp(hdr->signature, OCFS1_VOLUME_SIGNATURE,
strlen(OCFS1_VOLUME_SIGNATURE)) == 0) {
mlog(ML_ERROR, "incompatible volume signature: %8s\n",
hdr->signature);
status = -EINVAL;
}
brelse(*bh);
*bh = NULL;
if (status < 0) {
mlog(ML_ERROR, "This is an ocfs v1 filesystem which must be "
"upgraded before mounting with ocfs v2\n");
goto bail;
}
/*
* Now check at magic offset for 512, 1024, 2048, 4096
* blocksizes. 4096 is the maximum blocksize because it is
* the minimum clustersize.
*/
status = -EINVAL;
for (blksize = *sector_size;
blksize <= OCFS2_MAX_BLOCKSIZE;
blksize <<= 1) {
tmpstat = ocfs2_get_sector(sb, bh,
OCFS2_SUPER_BLOCK_BLKNO,
blksize);
if (tmpstat < 0) {
status = tmpstat;
mlog_errno(status);
break;
}
di = (struct ocfs2_dinode *) (*bh)->b_data;
memset(stats, 0, sizeof(struct ocfs2_blockcheck_stats));
spin_lock_init(&stats->b_lock);
tmpstat = ocfs2_verify_volume(di, *bh, blksize, stats);
if (tmpstat < 0) {
brelse(*bh);
*bh = NULL;
}
if (tmpstat != -EAGAIN) {
status = tmpstat;
break;
}
}
bail:
return status;
}
static int ocfs2_verify_heartbeat(struct ocfs2_super *osb)
{
u32 hb_enabled = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL;
if (osb->s_mount_opt & hb_enabled) {
if (ocfs2_mount_local(osb)) {
mlog(ML_ERROR, "Cannot heartbeat on a locally "
"mounted device.\n");
return -EINVAL;
}
if (ocfs2_userspace_stack(osb)) {
mlog(ML_ERROR, "Userspace stack expected, but "
"o2cb heartbeat arguments passed to mount\n");
return -EINVAL;
}
if (((osb->s_mount_opt & OCFS2_MOUNT_HB_GLOBAL) &&
!ocfs2_cluster_o2cb_global_heartbeat(osb)) ||
((osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) &&
ocfs2_cluster_o2cb_global_heartbeat(osb))) {
mlog(ML_ERROR, "Mismatching o2cb heartbeat modes\n");
return -EINVAL;
}
}
if (!(osb->s_mount_opt & hb_enabled)) {
if (!ocfs2_mount_local(osb) && !ocfs2_is_hard_readonly(osb) &&
!ocfs2_userspace_stack(osb)) {
mlog(ML_ERROR, "Heartbeat has to be started to mount "
"a read-write clustered device.\n");
return -EINVAL;
}
}
return 0;
}
/*
* If we're using a userspace stack, mount should have passed
* a name that matches the disk. If not, mount should not
* have passed a stack.
*/
static int ocfs2_verify_userspace_stack(struct ocfs2_super *osb,
struct mount_options *mopt)
{
if (!ocfs2_userspace_stack(osb) && mopt->cluster_stack[0]) {
mlog(ML_ERROR,
"cluster stack passed to mount, but this filesystem "
"does not support it\n");
return -EINVAL;
}
if (ocfs2_userspace_stack(osb) &&
strncmp(osb->osb_cluster_stack, mopt->cluster_stack,
OCFS2_STACK_LABEL_LEN)) {
mlog(ML_ERROR,
"cluster stack passed to mount (\"%s\") does not "
"match the filesystem (\"%s\")\n",
mopt->cluster_stack,
osb->osb_cluster_stack);
return -EINVAL;
}
return 0;
}
static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend)
{
int type;
struct super_block *sb = osb->sb;
unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
int status = 0;
for (type = 0; type < MAXQUOTAS; type++) {
if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
continue;
if (unsuspend)
status = dquot_resume(sb, type);
else {
struct ocfs2_mem_dqinfo *oinfo;
/* Cancel periodic syncing before suspending */
oinfo = sb_dqinfo(sb, type)->dqi_priv;
cancel_delayed_work_sync(&oinfo->dqi_sync_work);
status = dquot_suspend(sb, type);
}
if (status < 0)
break;
}
if (status < 0)
mlog(ML_ERROR, "Failed to suspend/unsuspend quotas on "
"remount (error = %d).\n", status);
return status;
}
static int ocfs2_enable_quotas(struct ocfs2_super *osb)
{
struct inode *inode[MAXQUOTAS] = { NULL, NULL };
struct super_block *sb = osb->sb;
unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
unsigned int ino[MAXQUOTAS] = { LOCAL_USER_QUOTA_SYSTEM_INODE,
LOCAL_GROUP_QUOTA_SYSTEM_INODE };
int status;
int type;
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NEGATIVE_USAGE;
for (type = 0; type < MAXQUOTAS; type++) {
if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
continue;
inode[type] = ocfs2_get_system_file_inode(osb, ino[type],
osb->slot_num);
if (!inode[type]) {
status = -ENOENT;
goto out_quota_off;
}
status = dquot_enable(inode[type], type, QFMT_OCFS2,
DQUOT_USAGE_ENABLED);
if (status < 0)
goto out_quota_off;
}
for (type = 0; type < MAXQUOTAS; type++)
iput(inode[type]);
return 0;
out_quota_off:
ocfs2_disable_quotas(osb);
for (type = 0; type < MAXQUOTAS; type++)
iput(inode[type]);
mlog_errno(status);
return status;
}
static void ocfs2_disable_quotas(struct ocfs2_super *osb)
{
int type;
struct inode *inode;
struct super_block *sb = osb->sb;
struct ocfs2_mem_dqinfo *oinfo;
/* We mostly ignore errors in this function because there's not much
* we can do when we see them */
for (type = 0; type < MAXQUOTAS; type++) {
if (!sb_has_quota_loaded(sb, type))
continue;
/* Cancel periodic syncing before we grab dqonoff_mutex */
oinfo = sb_dqinfo(sb, type)->dqi_priv;
cancel_delayed_work_sync(&oinfo->dqi_sync_work);
inode = igrab(sb->s_dquot.files[type]);
/* Turn off quotas. This will remove all dquot structures from
* memory and so they will be automatically synced to global
* quota files */
dquot_disable(sb, type, DQUOT_USAGE_ENABLED |
DQUOT_LIMITS_ENABLED);
if (!inode)
continue;
iput(inode);
}
}
/* Handle quota on quotactl */
static int ocfs2_quota_on(struct super_block *sb, int type, int format_id)
{
unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
return -EINVAL;
return dquot_enable(sb_dqopt(sb)->files[type], type,
format_id, DQUOT_LIMITS_ENABLED);
}
/* Handle quota off quotactl */
static int ocfs2_quota_off(struct super_block *sb, int type)
{
return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
}
static const struct quotactl_ops ocfs2_quotactl_ops = {
.quota_on_meta = ocfs2_quota_on,
.quota_off = ocfs2_quota_off,
.quota_sync = dquot_quota_sync,
.get_info = dquot_get_dqinfo,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk,
};
static int ocfs2_fill_super(struct super_block *sb, void *data, int silent)
{
struct dentry *root;
int status, sector_size;
struct mount_options parsed_options;
struct inode *inode = NULL;
struct ocfs2_super *osb = NULL;
struct buffer_head *bh = NULL;
char nodestr[12];
struct ocfs2_blockcheck_stats stats;
trace_ocfs2_fill_super(sb, data, silent);
if (!ocfs2_parse_options(sb, data, &parsed_options, 0)) {
status = -EINVAL;
goto read_super_error;
}
/* probe for superblock */
status = ocfs2_sb_probe(sb, &bh, &sector_size, &stats);
if (status < 0) {
mlog(ML_ERROR, "superblock probe failed!\n");
goto read_super_error;
}
status = ocfs2_initialize_super(sb, bh, sector_size, &stats);
osb = OCFS2_SB(sb);
if (status < 0) {
mlog_errno(status);
goto read_super_error;
}
brelse(bh);
bh = NULL;
if (!ocfs2_check_set_options(sb, &parsed_options)) {
status = -EINVAL;
goto read_super_error;
}
osb->s_mount_opt = parsed_options.mount_opt;
osb->s_atime_quantum = parsed_options.atime_quantum;
osb->preferred_slot = parsed_options.slot;
osb->osb_commit_interval = parsed_options.commit_interval;
ocfs2_la_set_sizes(osb, parsed_options.localalloc_opt);
osb->osb_resv_level = parsed_options.resv_level;
osb->osb_dir_resv_level = parsed_options.resv_level;
if (parsed_options.dir_resv_level == -1)
osb->osb_dir_resv_level = parsed_options.resv_level;
else
osb->osb_dir_resv_level = parsed_options.dir_resv_level;
status = ocfs2_verify_userspace_stack(osb, &parsed_options);
if (status)
goto read_super_error;
sb->s_magic = OCFS2_SUPER_MAGIC;
sb->s_flags = (sb->s_flags & ~(MS_POSIXACL | MS_NOSEC)) |
((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
/* Hard readonly mode only if: bdev_read_only, MS_RDONLY,
* heartbeat=none */
if (bdev_read_only(sb->s_bdev)) {
if (!(sb->s_flags & MS_RDONLY)) {
status = -EACCES;
mlog(ML_ERROR, "Readonly device detected but readonly "
"mount was not specified.\n");
goto read_super_error;
}
/* You should not be able to start a local heartbeat
* on a readonly device. */
if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) {
status = -EROFS;
mlog(ML_ERROR, "Local heartbeat specified on readonly "
"device.\n");
goto read_super_error;
}
status = ocfs2_check_journals_nolocks(osb);
if (status < 0) {
if (status == -EROFS)
mlog(ML_ERROR, "Recovery required on readonly "
"file system, but write access is "
"unavailable.\n");
else
mlog_errno(status);
goto read_super_error;
}
ocfs2_set_ro_flag(osb, 1);
printk(KERN_NOTICE "ocfs2: Readonly device (%s) detected. "
"Cluster services will not be used for this mount. "
"Recovery will be skipped.\n", osb->dev_str);
}
if (!ocfs2_is_hard_readonly(osb)) {
if (sb->s_flags & MS_RDONLY)
ocfs2_set_ro_flag(osb, 0);
}
status = ocfs2_verify_heartbeat(osb);
if (status < 0) {
mlog_errno(status);
goto read_super_error;
}
osb->osb_debug_root = debugfs_create_dir(osb->uuid_str,
ocfs2_debugfs_root);
if (!osb->osb_debug_root) {
status = -EINVAL;
mlog(ML_ERROR, "Unable to create per-mount debugfs root.\n");
goto read_super_error;
}
osb->osb_ctxt = debugfs_create_file("fs_state", S_IFREG|S_IRUSR,
osb->osb_debug_root,
osb,
&ocfs2_osb_debug_fops);
if (!osb->osb_ctxt) {
status = -EINVAL;
mlog_errno(status);
goto read_super_error;
}
if (ocfs2_meta_ecc(osb)) {
status = ocfs2_blockcheck_stats_debugfs_install(
&osb->osb_ecc_stats,
osb->osb_debug_root);
if (status) {
mlog(ML_ERROR,
"Unable to create blockcheck statistics "
"files\n");
goto read_super_error;
}
}
status = ocfs2_mount_volume(sb);
if (status < 0)
goto read_super_error;
if (osb->root_inode)
inode = igrab(osb->root_inode);
if (!inode) {
status = -EIO;
mlog_errno(status);
goto read_super_error;
}
root = d_make_root(inode);
if (!root) {
status = -ENOMEM;
mlog_errno(status);
goto read_super_error;
}
sb->s_root = root;
ocfs2_complete_mount_recovery(osb);
if (ocfs2_mount_local(osb))
snprintf(nodestr, sizeof(nodestr), "local");
else
snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num);
printk(KERN_INFO "ocfs2: Mounting device (%s) on (node %s, slot %d) "
"with %s data mode.\n",
osb->dev_str, nodestr, osb->slot_num,
osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK ? "writeback" :
"ordered");
atomic_set(&osb->vol_state, VOLUME_MOUNTED);
wake_up(&osb->osb_mount_event);
/* Now we can initialize quotas because we can afford to wait
* for cluster locks recovery now. That also means that truncation
* log recovery can happen but that waits for proper quota setup */
if (!(sb->s_flags & MS_RDONLY)) {
status = ocfs2_enable_quotas(osb);
if (status < 0) {
/* We have to err-out specially here because
* s_root is already set */
mlog_errno(status);
atomic_set(&osb->vol_state, VOLUME_DISABLED);
wake_up(&osb->osb_mount_event);
return status;
}
}
ocfs2_complete_quota_recovery(osb);
/* Now we wake up again for processes waiting for quotas */
atomic_set(&osb->vol_state, VOLUME_MOUNTED_QUOTAS);
wake_up(&osb->osb_mount_event);
/* Start this when the mount is almost sure of being successful */
ocfs2_orphan_scan_start(osb);
return status;
read_super_error:
brelse(bh);
if (osb) {
atomic_set(&osb->vol_state, VOLUME_DISABLED);
wake_up(&osb->osb_mount_event);
ocfs2_dismount_volume(sb, 1);
}
if (status)
mlog_errno(status);
return status;
}
static struct dentry *ocfs2_mount(struct file_system_type *fs_type,
[PATCH] VFS: Permit filesystem to override root dentry on mount Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:02:57 +08:00
int flags,
const char *dev_name,
void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, ocfs2_fill_super);
}
static struct file_system_type ocfs2_fs_type = {
.owner = THIS_MODULE,
.name = "ocfs2",
.mount = ocfs2_mount,
ocfs2: revert iput deferring code in ocfs2_drop_dentry_lock The following patches are reverted in this patch because these patches caused performance regression in the remote unlink() calls. ea455f8ab683 - ocfs2: Push out dropping of dentry lock to ocfs2_wq f7b1aa69be13 - ocfs2: Fix deadlock on umount 5fd131893793 - ocfs2: Don't oops in ocfs2_kill_sb on a failed mount Previous patches in this series removed the possible deadlocks from downconvert thread so the above patches shouldn't be needed anymore. The regression is caused because these patches delay the iput() in case of dentry unlocks. This also delays the unlocking of the open lockres. The open lockresource is required to test if the inode can be wiped from disk or not. When the deleting node does not get the open lock, it marks it as orphan (even though it is not in use by another node/process) and causes a journal checkpoint. This delays operations following the inode eviction. This also moves the inode to the orphaned inode which further causes more I/O and a lot of unneccessary orphans. The following script can be used to generate the load causing issues: declare -a create declare -a remove declare -a iterations=(1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384) unique="`mktemp -u XXXXX`" script="/tmp/idontknow-${unique}.sh" cat <<EOF > "${script}" for n in {1..8}; do mkdir -p test/dir\${n} eval touch test/dir\${n}/foo{1.."\$1"} done EOF chmod 700 "${script}" function fcreate () { exec 2>&1 /usr/bin/time --format=%E "${script}" "$1" } function fremove () { exec 2>&1 /usr/bin/time --format=%E ssh node2 "cd `pwd`; rm -Rf test*" } function fcp () { exec 2>&1 /usr/bin/time --format=%E ssh node3 "cd `pwd`; cp -R test test.new" } echo ------------------------------------------------- echo "| # files | create #s | copy #s | remove #s |" echo ------------------------------------------------- for ((x=0; x < ${#iterations[*]} ; x++)) do create[$x]="`fcreate ${iterations[$x]}`" copy[$x]="`fcp ${iterations[$x]}`" remove[$x]="`fremove`" printf "| %8d | %9s | %9s | %9s |\n" ${iterations[$x]} ${create[$x]} ${copy[$x]} ${remove[$x]} done rm "${script}" echo "------------------------" Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:46:59 +08:00
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV|FS_RENAME_DOES_D_MOVE,
.next = NULL
};
MODULE_ALIAS_FS("ocfs2");
static int ocfs2_check_set_options(struct super_block *sb,
struct mount_options *options)
{
if (options->mount_opt & OCFS2_MOUNT_USRQUOTA &&
!OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
mlog(ML_ERROR, "User quotas were requested, but this "
"filesystem does not have the feature enabled.\n");
return 0;
}
if (options->mount_opt & OCFS2_MOUNT_GRPQUOTA &&
!OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
mlog(ML_ERROR, "Group quotas were requested, but this "
"filesystem does not have the feature enabled.\n");
return 0;
}
if (options->mount_opt & OCFS2_MOUNT_POSIX_ACL &&
!OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR)) {
mlog(ML_ERROR, "ACL support requested but extended attributes "
"feature is not enabled\n");
return 0;
}
/* No ACL setting specified? Use XATTR feature... */
if (!(options->mount_opt & (OCFS2_MOUNT_POSIX_ACL |
OCFS2_MOUNT_NO_POSIX_ACL))) {
if (OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR))
options->mount_opt |= OCFS2_MOUNT_POSIX_ACL;
else
options->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL;
}
return 1;
}
static int ocfs2_parse_options(struct super_block *sb,
char *options,
struct mount_options *mopt,
int is_remount)
{
int status, user_stack = 0;
char *p;
u32 tmp;
trace_ocfs2_parse_options(is_remount, options ? options : "(none)");
mopt->commit_interval = 0;
mopt->mount_opt = OCFS2_MOUNT_NOINTR;
mopt->atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM;
mopt->slot = OCFS2_INVALID_SLOT;
mopt->localalloc_opt = -1;
mopt->cluster_stack[0] = '\0';
mopt->resv_level = OCFS2_DEFAULT_RESV_LEVEL;
mopt->dir_resv_level = -1;
if (!options) {
status = 1;
goto bail;
}
while ((p = strsep(&options, ",")) != NULL) {
int token, option;
substring_t args[MAX_OPT_ARGS];
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_hb_local:
mopt->mount_opt |= OCFS2_MOUNT_HB_LOCAL;
break;
case Opt_hb_none:
mopt->mount_opt |= OCFS2_MOUNT_HB_NONE;
break;
case Opt_hb_global:
mopt->mount_opt |= OCFS2_MOUNT_HB_GLOBAL;
break;
case Opt_barrier:
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option)
mopt->mount_opt |= OCFS2_MOUNT_BARRIER;
else
mopt->mount_opt &= ~OCFS2_MOUNT_BARRIER;
break;
case Opt_intr:
mopt->mount_opt &= ~OCFS2_MOUNT_NOINTR;
break;
case Opt_nointr:
mopt->mount_opt |= OCFS2_MOUNT_NOINTR;
break;
case Opt_err_panic:
mopt->mount_opt |= OCFS2_MOUNT_ERRORS_PANIC;
break;
case Opt_err_ro:
mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC;
break;
case Opt_data_ordered:
mopt->mount_opt &= ~OCFS2_MOUNT_DATA_WRITEBACK;
break;
case Opt_data_writeback:
mopt->mount_opt |= OCFS2_MOUNT_DATA_WRITEBACK;
break;
case Opt_user_xattr:
mopt->mount_opt &= ~OCFS2_MOUNT_NOUSERXATTR;
break;
case Opt_nouser_xattr:
mopt->mount_opt |= OCFS2_MOUNT_NOUSERXATTR;
break;
case Opt_atime_quantum:
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option >= 0)
mopt->atime_quantum = option;
break;
case Opt_slot:
option = 0;
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option)
mopt->slot = (s16)option;
break;
case Opt_commit:
option = 0;
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option < 0)
return 0;
if (option == 0)
option = JBD2_DEFAULT_MAX_COMMIT_AGE;
mopt->commit_interval = HZ * option;
break;
case Opt_localalloc:
option = 0;
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option >= 0)
mopt->localalloc_opt = option;
break;
case Opt_localflocks:
/*
* Changing this during remount could race
* flock() requests, or "unbalance" existing
* ones (e.g., a lock is taken in one mode but
* dropped in the other). If users care enough
* to flip locking modes during remount, we
* could add a "local" flag to individual
* flock structures for proper tracking of
* state.
*/
if (!is_remount)
mopt->mount_opt |= OCFS2_MOUNT_LOCALFLOCKS;
break;
case Opt_stack:
/* Check both that the option we were passed
* is of the right length and that it is a proper
* string of the right length.
*/
if (((args[0].to - args[0].from) !=
OCFS2_STACK_LABEL_LEN) ||
(strnlen(args[0].from,
OCFS2_STACK_LABEL_LEN) !=
OCFS2_STACK_LABEL_LEN)) {
mlog(ML_ERROR,
"Invalid cluster_stack option\n");
status = 0;
goto bail;
}
memcpy(mopt->cluster_stack, args[0].from,
OCFS2_STACK_LABEL_LEN);
mopt->cluster_stack[OCFS2_STACK_LABEL_LEN] = '\0';
/*
* Open code the memcmp here as we don't have
* an osb to pass to
* ocfs2_userspace_stack().
*/
if (memcmp(mopt->cluster_stack,
OCFS2_CLASSIC_CLUSTER_STACK,
OCFS2_STACK_LABEL_LEN))
user_stack = 1;
break;
case Opt_inode64:
mopt->mount_opt |= OCFS2_MOUNT_INODE64;
break;
case Opt_usrquota:
mopt->mount_opt |= OCFS2_MOUNT_USRQUOTA;
break;
case Opt_grpquota:
mopt->mount_opt |= OCFS2_MOUNT_GRPQUOTA;
break;
case Opt_coherency_buffered:
mopt->mount_opt |= OCFS2_MOUNT_COHERENCY_BUFFERED;
break;
case Opt_coherency_full:
mopt->mount_opt &= ~OCFS2_MOUNT_COHERENCY_BUFFERED;
break;
case Opt_acl:
mopt->mount_opt |= OCFS2_MOUNT_POSIX_ACL;
mopt->mount_opt &= ~OCFS2_MOUNT_NO_POSIX_ACL;
break;
case Opt_noacl:
mopt->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL;
mopt->mount_opt &= ~OCFS2_MOUNT_POSIX_ACL;
break;
case Opt_resv_level:
if (is_remount)
break;
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option >= OCFS2_MIN_RESV_LEVEL &&
option < OCFS2_MAX_RESV_LEVEL)
mopt->resv_level = option;
break;
case Opt_dir_resv_level:
if (is_remount)
break;
if (match_int(&args[0], &option)) {
status = 0;
goto bail;
}
if (option >= OCFS2_MIN_RESV_LEVEL &&
option < OCFS2_MAX_RESV_LEVEL)
mopt->dir_resv_level = option;
break;
default:
mlog(ML_ERROR,
"Unrecognized mount option \"%s\" "
"or missing value\n", p);
status = 0;
goto bail;
}
}
if (user_stack == 0) {
/* Ensure only one heartbeat mode */
tmp = mopt->mount_opt & (OCFS2_MOUNT_HB_LOCAL |
OCFS2_MOUNT_HB_GLOBAL |
OCFS2_MOUNT_HB_NONE);
if (hweight32(tmp) != 1) {
mlog(ML_ERROR, "Invalid heartbeat mount options\n");
status = 0;
goto bail;
}
}
status = 1;
bail:
return status;
}
static int ocfs2_show_options(struct seq_file *s, struct dentry *root)
{
struct ocfs2_super *osb = OCFS2_SB(root->d_sb);
unsigned long opts = osb->s_mount_opt;
unsigned int local_alloc_megs;
if (opts & (OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL)) {
seq_printf(s, ",_netdev");
if (opts & OCFS2_MOUNT_HB_LOCAL)
seq_printf(s, ",%s", OCFS2_HB_LOCAL);
else
seq_printf(s, ",%s", OCFS2_HB_GLOBAL);
} else
seq_printf(s, ",%s", OCFS2_HB_NONE);
if (opts & OCFS2_MOUNT_NOINTR)
seq_printf(s, ",nointr");
if (opts & OCFS2_MOUNT_DATA_WRITEBACK)
seq_printf(s, ",data=writeback");
else
seq_printf(s, ",data=ordered");
if (opts & OCFS2_MOUNT_BARRIER)
seq_printf(s, ",barrier=1");
if (opts & OCFS2_MOUNT_ERRORS_PANIC)
seq_printf(s, ",errors=panic");
else
seq_printf(s, ",errors=remount-ro");
if (osb->preferred_slot != OCFS2_INVALID_SLOT)
seq_printf(s, ",preferred_slot=%d", osb->preferred_slot);
seq_printf(s, ",atime_quantum=%u", osb->s_atime_quantum);
if (osb->osb_commit_interval)
seq_printf(s, ",commit=%u",
(unsigned) (osb->osb_commit_interval / HZ));
local_alloc_megs = osb->local_alloc_bits >> (20 - osb->s_clustersize_bits);
if (local_alloc_megs != ocfs2_la_default_mb(osb))
seq_printf(s, ",localalloc=%d", local_alloc_megs);
if (opts & OCFS2_MOUNT_LOCALFLOCKS)
seq_printf(s, ",localflocks,");
if (osb->osb_cluster_stack[0])
seq_printf(s, ",cluster_stack=%.*s", OCFS2_STACK_LABEL_LEN,
osb->osb_cluster_stack);
if (opts & OCFS2_MOUNT_USRQUOTA)
seq_printf(s, ",usrquota");
if (opts & OCFS2_MOUNT_GRPQUOTA)
seq_printf(s, ",grpquota");
if (opts & OCFS2_MOUNT_COHERENCY_BUFFERED)
seq_printf(s, ",coherency=buffered");
else
seq_printf(s, ",coherency=full");
if (opts & OCFS2_MOUNT_NOUSERXATTR)
seq_printf(s, ",nouser_xattr");
else
seq_printf(s, ",user_xattr");
if (opts & OCFS2_MOUNT_INODE64)
seq_printf(s, ",inode64");
if (opts & OCFS2_MOUNT_POSIX_ACL)
seq_printf(s, ",acl");
else
seq_printf(s, ",noacl");
if (osb->osb_resv_level != OCFS2_DEFAULT_RESV_LEVEL)
seq_printf(s, ",resv_level=%d", osb->osb_resv_level);
if (osb->osb_dir_resv_level != osb->osb_resv_level)
seq_printf(s, ",dir_resv_level=%d", osb->osb_resv_level);
return 0;
}
static int __init ocfs2_init(void)
{
int status;
status = init_ocfs2_uptodate_cache();
if (status < 0)
goto out1;
status = ocfs2_initialize_mem_caches();
if (status < 0)
goto out2;
ocfs2_wq = create_singlethread_workqueue("ocfs2_wq");
if (!ocfs2_wq) {
status = -ENOMEM;
goto out3;
}
ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL);
if (!ocfs2_debugfs_root) {
status = -EFAULT;
mlog(ML_ERROR, "Unable to create ocfs2 debugfs root.\n");
}
ocfs2_set_locking_protocol();
status = register_quota_format(&ocfs2_quota_format);
if (status < 0)
goto out4;
status = register_filesystem(&ocfs2_fs_type);
if (!status)
return 0;
unregister_quota_format(&ocfs2_quota_format);
out4:
destroy_workqueue(ocfs2_wq);
debugfs_remove(ocfs2_debugfs_root);
out3:
ocfs2_free_mem_caches();
out2:
exit_ocfs2_uptodate_cache();
out1:
mlog_errno(status);
return status;
}
static void __exit ocfs2_exit(void)
{
if (ocfs2_wq) {
flush_workqueue(ocfs2_wq);
destroy_workqueue(ocfs2_wq);
}
unregister_quota_format(&ocfs2_quota_format);
debugfs_remove(ocfs2_debugfs_root);
ocfs2_free_mem_caches();
unregister_filesystem(&ocfs2_fs_type);
exit_ocfs2_uptodate_cache();
}
static void ocfs2_put_super(struct super_block *sb)
{
trace_ocfs2_put_super(sb);
ocfs2_sync_blockdev(sb);
ocfs2_dismount_volume(sb, 0);
}
static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct ocfs2_super *osb;
u32 numbits, freebits;
int status;
struct ocfs2_dinode *bm_lock;
struct buffer_head *bh = NULL;
struct inode *inode = NULL;
trace_ocfs2_statfs(dentry->d_sb, buf);
osb = OCFS2_SB(dentry->d_sb);
inode = ocfs2_get_system_file_inode(osb,
GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT);
if (!inode) {
mlog(ML_ERROR, "failed to get bitmap inode\n");
status = -EIO;
goto bail;
}
status = ocfs2_inode_lock(inode, &bh, 0);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bm_lock = (struct ocfs2_dinode *) bh->b_data;
numbits = le32_to_cpu(bm_lock->id1.bitmap1.i_total);
freebits = numbits - le32_to_cpu(bm_lock->id1.bitmap1.i_used);
buf->f_type = OCFS2_SUPER_MAGIC;
buf->f_bsize = dentry->d_sb->s_blocksize;
buf->f_namelen = OCFS2_MAX_FILENAME_LEN;
buf->f_blocks = ((sector_t) numbits) *
(osb->s_clustersize >> osb->sb->s_blocksize_bits);
buf->f_bfree = ((sector_t) freebits) *
(osb->s_clustersize >> osb->sb->s_blocksize_bits);
buf->f_bavail = buf->f_bfree;
buf->f_files = numbits;
buf->f_ffree = freebits;
buf->f_fsid.val[0] = crc32_le(0, osb->uuid_str, OCFS2_VOL_UUID_LEN)
& 0xFFFFFFFFUL;
buf->f_fsid.val[1] = crc32_le(0, osb->uuid_str + OCFS2_VOL_UUID_LEN,
OCFS2_VOL_UUID_LEN) & 0xFFFFFFFFUL;
brelse(bh);
ocfs2_inode_unlock(inode, 0);
status = 0;
bail:
if (inode)
iput(inode);
if (status)
mlog_errno(status);
return status;
}
static void ocfs2_inode_init_once(void *data)
{
struct ocfs2_inode_info *oi = data;
oi->ip_flags = 0;
oi->ip_open_count = 0;
spin_lock_init(&oi->ip_lock);
ocfs2_extent_map_init(&oi->vfs_inode);
INIT_LIST_HEAD(&oi->ip_io_markers);
oi->ip_dir_start_lookup = 0;
mutex_init(&oi->ip_unaligned_aio);
init_rwsem(&oi->ip_alloc_sem);
init_rwsem(&oi->ip_xattr_sem);
mutex_init(&oi->ip_io_mutex);
oi->ip_blkno = 0ULL;
oi->ip_clusters = 0;
ocfs2_resv_init_once(&oi->ip_la_data_resv);
ocfs2_lock_res_init_once(&oi->ip_rw_lockres);
ocfs2_lock_res_init_once(&oi->ip_inode_lockres);
ocfs2_lock_res_init_once(&oi->ip_open_lockres);
ocfs2_metadata_cache_init(INODE_CACHE(&oi->vfs_inode),
&ocfs2_inode_caching_ops);
inode_init_once(&oi->vfs_inode);
}
static int ocfs2_initialize_mem_caches(void)
{
ocfs2_inode_cachep = kmem_cache_create("ocfs2_inode_cache",
sizeof(struct ocfs2_inode_info),
0,
(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
ocfs2_inode_init_once);
ocfs2_dquot_cachep = kmem_cache_create("ocfs2_dquot_cache",
sizeof(struct ocfs2_dquot),
0,
(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
NULL);
ocfs2_qf_chunk_cachep = kmem_cache_create("ocfs2_qf_chunk_cache",
sizeof(struct ocfs2_quota_chunk),
0,
(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
NULL);
if (!ocfs2_inode_cachep || !ocfs2_dquot_cachep ||
!ocfs2_qf_chunk_cachep) {
if (ocfs2_inode_cachep)
kmem_cache_destroy(ocfs2_inode_cachep);
if (ocfs2_dquot_cachep)
kmem_cache_destroy(ocfs2_dquot_cachep);
if (ocfs2_qf_chunk_cachep)
kmem_cache_destroy(ocfs2_qf_chunk_cachep);
return -ENOMEM;
}
return 0;
}
static void ocfs2_free_mem_caches(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
if (ocfs2_inode_cachep)
kmem_cache_destroy(ocfs2_inode_cachep);
ocfs2_inode_cachep = NULL;
if (ocfs2_dquot_cachep)
kmem_cache_destroy(ocfs2_dquot_cachep);
ocfs2_dquot_cachep = NULL;
if (ocfs2_qf_chunk_cachep)
kmem_cache_destroy(ocfs2_qf_chunk_cachep);
ocfs2_qf_chunk_cachep = NULL;
}
static int ocfs2_get_sector(struct super_block *sb,
struct buffer_head **bh,
int block,
int sect_size)
{
if (!sb_set_blocksize(sb, sect_size)) {
mlog(ML_ERROR, "unable to set blocksize\n");
return -EIO;
}
*bh = sb_getblk(sb, block);
if (!*bh) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
lock_buffer(*bh);
if (!buffer_dirty(*bh))
clear_buffer_uptodate(*bh);
unlock_buffer(*bh);
ll_rw_block(READ, 1, bh);
wait_on_buffer(*bh);
if (!buffer_uptodate(*bh)) {
mlog_errno(-EIO);
brelse(*bh);
*bh = NULL;
return -EIO;
}
return 0;
}
static int ocfs2_mount_volume(struct super_block *sb)
{
int status = 0;
int unlock_super = 0;
struct ocfs2_super *osb = OCFS2_SB(sb);
if (ocfs2_is_hard_readonly(osb))
goto leave;
status = ocfs2_dlm_init(osb);
if (status < 0) {
mlog_errno(status);
goto leave;
}
status = ocfs2_super_lock(osb, 1);
if (status < 0) {
mlog_errno(status);
goto leave;
}
unlock_super = 1;
/* This will load up the node map and add ourselves to it. */
status = ocfs2_find_slot(osb);
if (status < 0) {
mlog_errno(status);
goto leave;
}
/* load all node-local system inodes */
status = ocfs2_init_local_system_inodes(osb);
if (status < 0) {
mlog_errno(status);
goto leave;
}
status = ocfs2_check_volume(osb);
if (status < 0) {
mlog_errno(status);
goto leave;
}
status = ocfs2_truncate_log_init(osb);
if (status < 0)
mlog_errno(status);
leave:
if (unlock_super)
ocfs2_super_unlock(osb, 1);
return status;
}
static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err)
{
int tmp, hangup_needed = 0;
struct ocfs2_super *osb = NULL;
char nodestr[12];
trace_ocfs2_dismount_volume(sb);
BUG_ON(!sb);
osb = OCFS2_SB(sb);
BUG_ON(!osb);
debugfs_remove(osb->osb_ctxt);
/* Orphan scan should be stopped as early as possible */
ocfs2_orphan_scan_stop(osb);
ocfs2_disable_quotas(osb);
/* All dquots should be freed by now */
WARN_ON(!llist_empty(&osb->dquot_drop_list));
/* Wait for worker to be done with the work structure in osb */
cancel_work_sync(&osb->dquot_drop_work);
ocfs2_shutdown_local_alloc(osb);
/* This will disable recovery and flush any recovery work. */
ocfs2_recovery_exit(osb);
/*
* During dismount, when it recovers another node it will call
* ocfs2_recover_orphans and queue delayed work osb_truncate_log_wq.
*/
ocfs2_truncate_log_shutdown(osb);
ocfs2_journal_shutdown(osb);
ocfs2_sync_blockdev(sb);
ocfs2_purge_refcount_trees(osb);
/* No cluster connection means we've failed during mount, so skip
* all the steps which depended on that to complete. */
if (osb->cconn) {
tmp = ocfs2_super_lock(osb, 1);
if (tmp < 0) {
mlog_errno(tmp);
return;
}
}
if (osb->slot_num != OCFS2_INVALID_SLOT)
ocfs2_put_slot(osb);
if (osb->cconn)
ocfs2_super_unlock(osb, 1);
ocfs2_release_system_inodes(osb);
/*
* If we're dismounting due to mount error, mount.ocfs2 will clean
* up heartbeat. If we're a local mount, there is no heartbeat.
* If we failed before we got a uuid_str yet, we can't stop
* heartbeat. Otherwise, do it.
*/
if (!mnt_err && !ocfs2_mount_local(osb) && osb->uuid_str &&
!ocfs2_is_hard_readonly(osb))
hangup_needed = 1;
if (osb->cconn)
ocfs2_dlm_shutdown(osb, hangup_needed);
ocfs2_blockcheck_stats_debugfs_remove(&osb->osb_ecc_stats);
debugfs_remove(osb->osb_debug_root);
if (hangup_needed)
ocfs2_cluster_hangup(osb->uuid_str, strlen(osb->uuid_str));
atomic_set(&osb->vol_state, VOLUME_DISMOUNTED);
if (ocfs2_mount_local(osb))
snprintf(nodestr, sizeof(nodestr), "local");
else
snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num);
printk(KERN_INFO "ocfs2: Unmounting device (%s) on (node %s)\n",
osb->dev_str, nodestr);
ocfs2_delete_osb(osb);
kfree(osb);
sb->s_dev = 0;
sb->s_fs_info = NULL;
}
static int ocfs2_setup_osb_uuid(struct ocfs2_super *osb, const unsigned char *uuid,
unsigned uuid_bytes)
{
int i, ret;
char *ptr;
BUG_ON(uuid_bytes != OCFS2_VOL_UUID_LEN);
osb->uuid_str = kzalloc(OCFS2_VOL_UUID_LEN * 2 + 1, GFP_KERNEL);
if (osb->uuid_str == NULL)
return -ENOMEM;
for (i = 0, ptr = osb->uuid_str; i < OCFS2_VOL_UUID_LEN; i++) {
/* print with null */
ret = snprintf(ptr, 3, "%02X", uuid[i]);
if (ret != 2) /* drop super cleans up */
return -EINVAL;
/* then only advance past the last char */
ptr += 2;
}
return 0;
}
/* Make sure entire volume is addressable by our journal. Requires
osb_clusters_at_boot to be valid and for the journal to have been
initialized by ocfs2_journal_init(). */
static int ocfs2_journal_addressable(struct ocfs2_super *osb)
{
int status = 0;
u64 max_block =
ocfs2_clusters_to_blocks(osb->sb,
osb->osb_clusters_at_boot) - 1;
/* 32-bit block number is always OK. */
if (max_block <= (u32)~0ULL)
goto out;
/* Volume is "huge", so see if our journal is new enough to
support it. */
if (!(OCFS2_HAS_COMPAT_FEATURE(osb->sb,
OCFS2_FEATURE_COMPAT_JBD2_SB) &&
jbd2_journal_check_used_features(osb->journal->j_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_64BIT))) {
mlog(ML_ERROR, "The journal cannot address the entire volume. "
"Enable the 'block64' journal option with tunefs.ocfs2");
status = -EFBIG;
goto out;
}
out:
return status;
}
static int ocfs2_initialize_super(struct super_block *sb,
struct buffer_head *bh,
int sector_size,
struct ocfs2_blockcheck_stats *stats)
{
int status;
int i, cbits, bbits;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data;
struct inode *inode = NULL;
struct ocfs2_journal *journal;
struct ocfs2_super *osb;
u64 total_blocks;
osb = kzalloc(sizeof(struct ocfs2_super), GFP_KERNEL);
if (!osb) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
sb->s_fs_info = osb;
sb->s_op = &ocfs2_sops;
sb->s_d_op = &ocfs2_dentry_ops;
sb->s_export_op = &ocfs2_export_ops;
sb->s_qcop = &ocfs2_quotactl_ops;
sb->dq_op = &ocfs2_quota_operations;
sb->s_xattr = ocfs2_xattr_handlers;
sb->s_time_gran = 1;
sb->s_flags |= MS_NOATIME;
/* this is needed to support O_LARGEFILE */
cbits = le32_to_cpu(di->id2.i_super.s_clustersize_bits);
bbits = le32_to_cpu(di->id2.i_super.s_blocksize_bits);
sb->s_maxbytes = ocfs2_max_file_offset(bbits, cbits);
osb->osb_dx_mask = (1 << (cbits - bbits)) - 1;
for (i = 0; i < 3; i++)
osb->osb_dx_seed[i] = le32_to_cpu(di->id2.i_super.s_dx_seed[i]);
osb->osb_dx_seed[3] = le32_to_cpu(di->id2.i_super.s_uuid_hash);
osb->sb = sb;
/* Save off for ocfs2_rw_direct */
osb->s_sectsize_bits = blksize_bits(sector_size);
BUG_ON(!osb->s_sectsize_bits);
spin_lock_init(&osb->dc_task_lock);
init_waitqueue_head(&osb->dc_event);
osb->dc_work_sequence = 0;
osb->dc_wake_sequence = 0;
INIT_LIST_HEAD(&osb->blocked_lock_list);
osb->blocked_lock_count = 0;
spin_lock_init(&osb->osb_lock);
spin_lock_init(&osb->osb_xattr_lock);
ocfs2_init_steal_slots(osb);
atomic_set(&osb->alloc_stats.moves, 0);
atomic_set(&osb->alloc_stats.local_data, 0);
atomic_set(&osb->alloc_stats.bitmap_data, 0);
atomic_set(&osb->alloc_stats.bg_allocs, 0);
atomic_set(&osb->alloc_stats.bg_extends, 0);
/* Copy the blockcheck stats from the superblock probe */
osb->osb_ecc_stats = *stats;
ocfs2_init_node_maps(osb);
snprintf(osb->dev_str, sizeof(osb->dev_str), "%u,%u",
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
osb->max_slots = le16_to_cpu(di->id2.i_super.s_max_slots);
if (osb->max_slots > OCFS2_MAX_SLOTS || osb->max_slots == 0) {
mlog(ML_ERROR, "Invalid number of node slots (%u)\n",
osb->max_slots);
status = -EINVAL;
goto bail;
}
ocfs2_orphan_scan_init(osb);
status = ocfs2_recovery_init(osb);
if (status) {
mlog(ML_ERROR, "Unable to initialize recovery state\n");
mlog_errno(status);
goto bail;
}
init_waitqueue_head(&osb->checkpoint_event);
osb->s_atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM;
osb->slot_num = OCFS2_INVALID_SLOT;
osb->s_xattr_inline_size = le16_to_cpu(
di->id2.i_super.s_xattr_inline_size);
osb->local_alloc_state = OCFS2_LA_UNUSED;
osb->local_alloc_bh = NULL;
INIT_DELAYED_WORK(&osb->la_enable_wq, ocfs2_la_enable_worker);
init_waitqueue_head(&osb->osb_mount_event);
status = ocfs2_resmap_init(osb, &osb->osb_la_resmap);
if (status) {
mlog_errno(status);
goto bail;
}
osb->vol_label = kmalloc(OCFS2_MAX_VOL_LABEL_LEN, GFP_KERNEL);
if (!osb->vol_label) {
mlog(ML_ERROR, "unable to alloc vol label\n");
status = -ENOMEM;
goto bail;
}
osb->slot_recovery_generations =
kcalloc(osb->max_slots, sizeof(*osb->slot_recovery_generations),
GFP_KERNEL);
if (!osb->slot_recovery_generations) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
init_waitqueue_head(&osb->osb_wipe_event);
osb->osb_orphan_wipes = kcalloc(osb->max_slots,
sizeof(*osb->osb_orphan_wipes),
GFP_KERNEL);
if (!osb->osb_orphan_wipes) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
osb->osb_rf_lock_tree = RB_ROOT;
osb->s_feature_compat =
le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_compat);
osb->s_feature_ro_compat =
le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_ro_compat);
osb->s_feature_incompat =
le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_incompat);
if ((i = OCFS2_HAS_INCOMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_INCOMPAT_SUPP))) {
mlog(ML_ERROR, "couldn't mount because of unsupported "
"optional features (%x).\n", i);
status = -EINVAL;
goto bail;
}
if (!(osb->sb->s_flags & MS_RDONLY) &&
(i = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP))) {
mlog(ML_ERROR, "couldn't mount RDWR because of "
"unsupported optional features (%x).\n", i);
status = -EINVAL;
goto bail;
}
if (ocfs2_clusterinfo_valid(osb)) {
osb->osb_stackflags =
OCFS2_RAW_SB(di)->s_cluster_info.ci_stackflags;
ocfs2: add clustername to cluster connection This is an effort of removing ocfs2_controld.pcmk and getting ocfs2 DLM handling up to the times with respect to DLM (>=4.0.1) and corosync (2.3.x). AFAIK, cman also is being phased out for a unified corosync cluster stack. fs/dlm performs all the functions with respect to fencing and node management and provides the API's to do so for ocfs2. For all future references, DLM stands for fs/dlm code. The advantages are: + No need to run an additional userspace daemon (ocfs2_controld) + No controld device handling and controld protocol + Shifting responsibilities of node management to DLM layer For backward compatibility, we are keeping the controld handling code. Once enough time has passed we can remove a significant portion of the code. This was tested by using the kernel with changes on older unmodified tools. The kernel used ocfs2_controld as expected, and displayed the appropriate warning message. This feature requires modification in the userspace ocfs2-tools. The changes can be found at: https://github.com/goldwynr/ocfs2-tools branch: nocontrold Currently, not many checks are present in the userspace code, but that would change soon. This patch (of 6): Add clustername to cluster connection. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:21 +08:00
strlcpy(osb->osb_cluster_stack,
OCFS2_RAW_SB(di)->s_cluster_info.ci_stack,
ocfs2: add clustername to cluster connection This is an effort of removing ocfs2_controld.pcmk and getting ocfs2 DLM handling up to the times with respect to DLM (>=4.0.1) and corosync (2.3.x). AFAIK, cman also is being phased out for a unified corosync cluster stack. fs/dlm performs all the functions with respect to fencing and node management and provides the API's to do so for ocfs2. For all future references, DLM stands for fs/dlm code. The advantages are: + No need to run an additional userspace daemon (ocfs2_controld) + No controld device handling and controld protocol + Shifting responsibilities of node management to DLM layer For backward compatibility, we are keeping the controld handling code. Once enough time has passed we can remove a significant portion of the code. This was tested by using the kernel with changes on older unmodified tools. The kernel used ocfs2_controld as expected, and displayed the appropriate warning message. This feature requires modification in the userspace ocfs2-tools. The changes can be found at: https://github.com/goldwynr/ocfs2-tools branch: nocontrold Currently, not many checks are present in the userspace code, but that would change soon. This patch (of 6): Add clustername to cluster connection. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:21 +08:00
OCFS2_STACK_LABEL_LEN + 1);
if (strlen(osb->osb_cluster_stack) != OCFS2_STACK_LABEL_LEN) {
mlog(ML_ERROR,
"couldn't mount because of an invalid "
"cluster stack label (%s) \n",
osb->osb_cluster_stack);
status = -EINVAL;
goto bail;
}
ocfs2: add clustername to cluster connection This is an effort of removing ocfs2_controld.pcmk and getting ocfs2 DLM handling up to the times with respect to DLM (>=4.0.1) and corosync (2.3.x). AFAIK, cman also is being phased out for a unified corosync cluster stack. fs/dlm performs all the functions with respect to fencing and node management and provides the API's to do so for ocfs2. For all future references, DLM stands for fs/dlm code. The advantages are: + No need to run an additional userspace daemon (ocfs2_controld) + No controld device handling and controld protocol + Shifting responsibilities of node management to DLM layer For backward compatibility, we are keeping the controld handling code. Once enough time has passed we can remove a significant portion of the code. This was tested by using the kernel with changes on older unmodified tools. The kernel used ocfs2_controld as expected, and displayed the appropriate warning message. This feature requires modification in the userspace ocfs2-tools. The changes can be found at: https://github.com/goldwynr/ocfs2-tools branch: nocontrold Currently, not many checks are present in the userspace code, but that would change soon. This patch (of 6): Add clustername to cluster connection. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:21 +08:00
strlcpy(osb->osb_cluster_name,
OCFS2_RAW_SB(di)->s_cluster_info.ci_cluster,
OCFS2_CLUSTER_NAME_LEN + 1);
} else {
/* The empty string is identical with classic tools that
* don't know about s_cluster_info. */
osb->osb_cluster_stack[0] = '\0';
}
get_random_bytes(&osb->s_next_generation, sizeof(u32));
/* FIXME
* This should be done in ocfs2_journal_init(), but unknown
* ordering issues will cause the filesystem to crash.
* If anyone wants to figure out what part of the code
* refers to osb->journal before ocfs2_journal_init() is run,
* be my guest.
*/
/* initialize our journal structure */
journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
if (!journal) {
mlog(ML_ERROR, "unable to alloc journal\n");
status = -ENOMEM;
goto bail;
}
osb->journal = journal;
journal->j_osb = osb;
atomic_set(&journal->j_num_trans, 0);
init_rwsem(&journal->j_trans_barrier);
init_waitqueue_head(&journal->j_checkpointed);
spin_lock_init(&journal->j_lock);
journal->j_trans_id = (unsigned long) 1;
INIT_LIST_HEAD(&journal->j_la_cleanups);
INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
journal->j_state = OCFS2_JOURNAL_FREE;
INIT_WORK(&osb->dquot_drop_work, ocfs2_drop_dquot_refs);
init_llist_head(&osb->dquot_drop_list);
/* get some pseudo constants for clustersize bits */
osb->s_clustersize_bits =
le32_to_cpu(di->id2.i_super.s_clustersize_bits);
osb->s_clustersize = 1 << osb->s_clustersize_bits;
if (osb->s_clustersize < OCFS2_MIN_CLUSTERSIZE ||
osb->s_clustersize > OCFS2_MAX_CLUSTERSIZE) {
mlog(ML_ERROR, "Volume has invalid cluster size (%d)\n",
osb->s_clustersize);
status = -EINVAL;
goto bail;
}
total_blocks = ocfs2_clusters_to_blocks(osb->sb,
le32_to_cpu(di->i_clusters));
status = generic_check_addressable(osb->sb->s_blocksize_bits,
total_blocks);
if (status) {
mlog(ML_ERROR, "Volume too large "
"to mount safely on this system");
status = -EFBIG;
goto bail;
}
if (ocfs2_setup_osb_uuid(osb, di->id2.i_super.s_uuid,
sizeof(di->id2.i_super.s_uuid))) {
mlog(ML_ERROR, "Out of memory trying to setup our uuid.\n");
status = -ENOMEM;
goto bail;
}
strncpy(osb->vol_label, di->id2.i_super.s_label, 63);
osb->vol_label[63] = '\0';
osb->root_blkno = le64_to_cpu(di->id2.i_super.s_root_blkno);
osb->system_dir_blkno = le64_to_cpu(di->id2.i_super.s_system_dir_blkno);
osb->first_cluster_group_blkno =
le64_to_cpu(di->id2.i_super.s_first_cluster_group);
osb->fs_generation = le32_to_cpu(di->i_fs_generation);
osb->uuid_hash = le32_to_cpu(di->id2.i_super.s_uuid_hash);
trace_ocfs2_initialize_super(osb->vol_label, osb->uuid_str,
(unsigned long long)osb->root_blkno,
(unsigned long long)osb->system_dir_blkno,
osb->s_clustersize_bits);
osb->osb_dlm_debug = ocfs2_new_dlm_debug();
if (!osb->osb_dlm_debug) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
atomic_set(&osb->vol_state, VOLUME_INIT);
/* load root, system_dir, and all global system inodes */
status = ocfs2_init_global_system_inodes(osb);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/*
* global bitmap
*/
inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT);
if (!inode) {
status = -EINVAL;
mlog_errno(status);
goto bail;
}
osb->bitmap_blkno = OCFS2_I(inode)->ip_blkno;
osb->osb_clusters_at_boot = OCFS2_I(inode)->ip_clusters;
iput(inode);
osb->bitmap_cpg = ocfs2_group_bitmap_size(sb, 0,
osb->s_feature_incompat) * 8;
status = ocfs2_init_slot_info(osb);
if (status < 0) {
mlog_errno(status);
goto bail;
}
cleancache_init_shared_fs((char *)&di->id2.i_super.s_uuid, sb);
bail:
return status;
}
/*
* will return: -EAGAIN if it is ok to keep searching for superblocks
* -EINVAL if there is a bad superblock
* 0 on success
*/
static int ocfs2_verify_volume(struct ocfs2_dinode *di,
struct buffer_head *bh,
u32 blksz,
struct ocfs2_blockcheck_stats *stats)
{
int status = -EAGAIN;
if (memcmp(di->i_signature, OCFS2_SUPER_BLOCK_SIGNATURE,
strlen(OCFS2_SUPER_BLOCK_SIGNATURE)) == 0) {
/* We have to do a raw check of the feature here */
if (le32_to_cpu(di->id2.i_super.s_feature_incompat) &
OCFS2_FEATURE_INCOMPAT_META_ECC) {
status = ocfs2_block_check_validate(bh->b_data,
bh->b_size,
&di->i_check,
stats);
if (status)
goto out;
}
status = -EINVAL;
if ((1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits)) != blksz) {
mlog(ML_ERROR, "found superblock with incorrect block "
"size: found %u, should be %u\n",
1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits),
blksz);
} else if (le16_to_cpu(di->id2.i_super.s_major_rev_level) !=
OCFS2_MAJOR_REV_LEVEL ||
le16_to_cpu(di->id2.i_super.s_minor_rev_level) !=
OCFS2_MINOR_REV_LEVEL) {
mlog(ML_ERROR, "found superblock with bad version: "
"found %u.%u, should be %u.%u\n",
le16_to_cpu(di->id2.i_super.s_major_rev_level),
le16_to_cpu(di->id2.i_super.s_minor_rev_level),
OCFS2_MAJOR_REV_LEVEL,
OCFS2_MINOR_REV_LEVEL);
} else if (bh->b_blocknr != le64_to_cpu(di->i_blkno)) {
mlog(ML_ERROR, "bad block number on superblock: "
"found %llu, should be %llu\n",
(unsigned long long)le64_to_cpu(di->i_blkno),
(unsigned long long)bh->b_blocknr);
} else if (le32_to_cpu(di->id2.i_super.s_clustersize_bits) < 12 ||
le32_to_cpu(di->id2.i_super.s_clustersize_bits) > 20) {
mlog(ML_ERROR, "bad cluster size found: %u\n",
1 << le32_to_cpu(di->id2.i_super.s_clustersize_bits));
} else if (!le64_to_cpu(di->id2.i_super.s_root_blkno)) {
mlog(ML_ERROR, "bad root_blkno: 0\n");
} else if (!le64_to_cpu(di->id2.i_super.s_system_dir_blkno)) {
mlog(ML_ERROR, "bad system_dir_blkno: 0\n");
} else if (le16_to_cpu(di->id2.i_super.s_max_slots) > OCFS2_MAX_SLOTS) {
mlog(ML_ERROR,
"Superblock slots found greater than file system "
"maximum: found %u, max %u\n",
le16_to_cpu(di->id2.i_super.s_max_slots),
OCFS2_MAX_SLOTS);
} else {
/* found it! */
status = 0;
}
}
out:
if (status && status != -EAGAIN)
mlog_errno(status);
return status;
}
static int ocfs2_check_volume(struct ocfs2_super *osb)
{
int status;
int dirty;
int local;
struct ocfs2_dinode *local_alloc = NULL; /* only used if we
* recover
* ourselves. */
/* Init our journal object. */
status = ocfs2_journal_init(osb->journal, &dirty);
if (status < 0) {
mlog(ML_ERROR, "Could not initialize journal!\n");
goto finally;
}
/* Now that journal has been initialized, check to make sure
entire volume is addressable. */
status = ocfs2_journal_addressable(osb);
if (status)
goto finally;
/* If the journal was unmounted cleanly then we don't want to
* recover anything. Otherwise, journal_load will do that
* dirty work for us :) */
if (!dirty) {
status = ocfs2_journal_wipe(osb->journal, 0);
if (status < 0) {
mlog_errno(status);
goto finally;
}
} else {
printk(KERN_NOTICE "ocfs2: File system on device (%s) was not "
"unmounted cleanly, recovering it.\n", osb->dev_str);
}
local = ocfs2_mount_local(osb);
/* will play back anything left in the journal. */
status = ocfs2_journal_load(osb->journal, local, dirty);
if (status < 0) {
mlog(ML_ERROR, "ocfs2 journal load failed! %d\n", status);
goto finally;
}
if (dirty) {
/* recover my local alloc if we didn't unmount cleanly. */
status = ocfs2_begin_local_alloc_recovery(osb,
osb->slot_num,
&local_alloc);
if (status < 0) {
mlog_errno(status);
goto finally;
}
/* we complete the recovery process after we've marked
* ourselves as mounted. */
}
status = ocfs2_load_local_alloc(osb);
if (status < 0) {
mlog_errno(status);
goto finally;
}
if (dirty) {
/* Recovery will be completed after we've mounted the
* rest of the volume. */
osb->dirty = 1;
osb->local_alloc_copy = local_alloc;
local_alloc = NULL;
}
/* go through each journal, trylock it and if you get the
* lock, and it's marked as dirty, set the bit in the recover
* map and launch a recovery thread for it. */
status = ocfs2_mark_dead_nodes(osb);
if (status < 0) {
mlog_errno(status);
goto finally;
}
status = ocfs2_compute_replay_slots(osb);
if (status < 0)
mlog_errno(status);
finally:
kfree(local_alloc);
if (status)
mlog_errno(status);
return status;
}
/*
* The routine gets called from dismount or close whenever a dismount on
* volume is requested and the osb open count becomes 1.
* It will remove the osb from the global list and also free up all the
* initialized resources and fileobject.
*/
static void ocfs2_delete_osb(struct ocfs2_super *osb)
{
/* This function assumes that the caller has the main osb resource */
ocfs2_free_slot_info(osb);
kfree(osb->osb_orphan_wipes);
kfree(osb->slot_recovery_generations);
/* FIXME
* This belongs in journal shutdown, but because we have to
* allocate osb->journal at the start of ocfs2_initialize_osb(),
* we free it here.
*/
kfree(osb->journal);
kfree(osb->local_alloc_copy);
kfree(osb->uuid_str);
ocfs2_put_dlm_debug(osb->osb_dlm_debug);
memset(osb, 0, sizeof(struct ocfs2_super));
}
/* Put OCFS2 into a readonly state, or (if the user specifies it),
* panic(). We do not support continue-on-error operation. */
static void ocfs2_handle_error(struct super_block *sb)
{
struct ocfs2_super *osb = OCFS2_SB(sb);
if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_PANIC)
panic("OCFS2: (device %s): panic forced after error\n",
sb->s_id);
ocfs2_set_osb_flag(osb, OCFS2_OSB_ERROR_FS);
if (sb->s_flags & MS_RDONLY &&
(ocfs2_is_soft_readonly(osb) ||
ocfs2_is_hard_readonly(osb)))
return;
printk(KERN_CRIT "File system is now read-only due to the potential "
"of on-disk corruption. Please run fsck.ocfs2 once the file "
"system is unmounted.\n");
sb->s_flags |= MS_RDONLY;
ocfs2_set_ro_flag(osb, 0);
}
static char error_buf[1024];
void __ocfs2_error(struct super_block *sb,
const char *function,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vsnprintf(error_buf, sizeof(error_buf), fmt, args);
va_end(args);
/* Not using mlog here because we want to show the actual
* function the error came from. */
printk(KERN_CRIT "OCFS2: ERROR (device %s): %s: %s\n",
sb->s_id, function, error_buf);
ocfs2_handle_error(sb);
}
/* Handle critical errors. This is intentionally more drastic than
* ocfs2_handle_error, so we only use for things like journal errors,
* etc. */
void __ocfs2_abort(struct super_block* sb,
const char *function,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vsnprintf(error_buf, sizeof(error_buf), fmt, args);
va_end(args);
printk(KERN_CRIT "OCFS2: abort (device %s): %s: %s\n",
sb->s_id, function, error_buf);
/* We don't have the cluster support yet to go straight to
* hard readonly in here. Until then, we want to keep
* ocfs2_abort() so that we can at least mark critical
* errors.
*
* TODO: This should abort the journal and alert other nodes
* that our slot needs recovery. */
/* Force a panic(). This stinks, but it's better than letting
* things continue without having a proper hard readonly
* here. */
if (!ocfs2_mount_local(OCFS2_SB(sb)))
OCFS2_SB(sb)->s_mount_opt |= OCFS2_MOUNT_ERRORS_PANIC;
ocfs2_handle_error(sb);
}
/*
* Void signal blockers, because in-kernel sigprocmask() only fails
* when SIG_* is wrong.
*/
void ocfs2_block_signals(sigset_t *oldset)
{
int rc;
sigset_t blocked;
sigfillset(&blocked);
rc = sigprocmask(SIG_BLOCK, &blocked, oldset);
BUG_ON(rc);
}
void ocfs2_unblock_signals(sigset_t *oldset)
{
int rc = sigprocmask(SIG_SETMASK, oldset, NULL);
BUG_ON(rc);
}
module_init(ocfs2_init);
module_exit(ocfs2_exit);