OpenCloudOS-Kernel/drivers/gpu/drm/sun4i/sun4i_drv.c

441 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Free Electrons
* Copyright (C) 2015 NextThing Co
*
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/component.h>
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
#include <linux/kfifo.h>
#include <linux/of_graph.h>
#include <linux/of_reserved_mem.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_of.h>
#include "sun4i_drv.h"
#include "sun4i_frontend.h"
#include "sun4i_framebuffer.h"
#include "sun4i_tcon.h"
#include "sun8i_tcon_top.h"
DEFINE_DRM_GEM_CMA_FOPS(sun4i_drv_fops);
static struct drm_driver sun4i_drv_driver = {
.driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_PRIME | DRIVER_ATOMIC,
/* Generic Operations */
.lastclose = drm_fb_helper_lastclose,
.fops = &sun4i_drv_fops,
.name = "sun4i-drm",
.desc = "Allwinner sun4i Display Engine",
.date = "20150629",
.major = 1,
.minor = 0,
/* GEM Operations */
.dumb_create = drm_gem_cma_dumb_create,
.gem_free_object_unlocked = drm_gem_cma_free_object,
.gem_vm_ops = &drm_gem_cma_vm_ops,
/* PRIME Operations */
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_import = drm_gem_prime_import,
.gem_prime_export = drm_gem_prime_export,
.gem_prime_get_sg_table = drm_gem_cma_prime_get_sg_table,
.gem_prime_import_sg_table = drm_gem_cma_prime_import_sg_table,
.gem_prime_vmap = drm_gem_cma_prime_vmap,
.gem_prime_vunmap = drm_gem_cma_prime_vunmap,
.gem_prime_mmap = drm_gem_cma_prime_mmap,
/* Frame Buffer Operations */
};
static void sun4i_remove_framebuffers(void)
{
struct apertures_struct *ap;
ap = alloc_apertures(1);
if (!ap)
return;
/* The framebuffer can be located anywhere in RAM */
ap->ranges[0].base = 0;
ap->ranges[0].size = ~0;
drm_fb_helper_remove_conflicting_framebuffers(ap, "sun4i-drm-fb", false);
kfree(ap);
}
static int sun4i_drv_bind(struct device *dev)
{
struct drm_device *drm;
struct sun4i_drv *drv;
int ret;
drm = drm_dev_alloc(&sun4i_drv_driver, dev);
if (IS_ERR(drm))
return PTR_ERR(drm);
drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
if (!drv) {
ret = -ENOMEM;
goto free_drm;
}
drm->dev_private = drv;
INIT_LIST_HEAD(&drv->frontend_list);
INIT_LIST_HEAD(&drv->engine_list);
INIT_LIST_HEAD(&drv->tcon_list);
ret = of_reserved_mem_device_init(dev);
if (ret && ret != -ENODEV) {
dev_err(drm->dev, "Couldn't claim our memory region\n");
goto free_drm;
}
drm_mode_config_init(drm);
ret = component_bind_all(drm->dev, drm);
if (ret) {
dev_err(drm->dev, "Couldn't bind all pipelines components\n");
goto cleanup_mode_config;
}
/* drm_vblank_init calls kcalloc, which can fail */
ret = drm_vblank_init(drm, drm->mode_config.num_crtc);
if (ret)
goto cleanup_mode_config;
drm->irq_enabled = true;
/* Remove early framebuffers (ie. simplefb) */
sun4i_remove_framebuffers();
/* Create our framebuffer */
ret = sun4i_framebuffer_init(drm);
if (ret) {
dev_err(drm->dev, "Couldn't create our framebuffer\n");
goto cleanup_mode_config;
}
/* Enable connectors polling */
drm_kms_helper_poll_init(drm);
ret = drm_dev_register(drm, 0);
if (ret)
goto finish_poll;
return 0;
finish_poll:
drm_kms_helper_poll_fini(drm);
sun4i_framebuffer_free(drm);
cleanup_mode_config:
drm_mode_config_cleanup(drm);
of_reserved_mem_device_release(dev);
free_drm:
drm_dev_unref(drm);
return ret;
}
static void sun4i_drv_unbind(struct device *dev)
{
struct drm_device *drm = dev_get_drvdata(dev);
drm_dev_unregister(drm);
drm_kms_helper_poll_fini(drm);
sun4i_framebuffer_free(drm);
drm_mode_config_cleanup(drm);
of_reserved_mem_device_release(dev);
drm_dev_unref(drm);
}
static const struct component_master_ops sun4i_drv_master_ops = {
.bind = sun4i_drv_bind,
.unbind = sun4i_drv_unbind,
};
static bool sun4i_drv_node_is_connector(struct device_node *node)
{
return of_device_is_compatible(node, "hdmi-connector");
}
static bool sun4i_drv_node_is_frontend(struct device_node *node)
{
return of_device_is_compatible(node, "allwinner,sun4i-a10-display-frontend") ||
of_device_is_compatible(node, "allwinner,sun5i-a13-display-frontend") ||
of_device_is_compatible(node, "allwinner,sun6i-a31-display-frontend") ||
of_device_is_compatible(node, "allwinner,sun7i-a20-display-frontend") ||
of_device_is_compatible(node, "allwinner,sun8i-a33-display-frontend") ||
of_device_is_compatible(node, "allwinner,sun9i-a80-display-frontend");
}
static bool sun4i_drv_node_is_deu(struct device_node *node)
{
return of_device_is_compatible(node, "allwinner,sun9i-a80-deu");
}
static bool sun4i_drv_node_is_supported_frontend(struct device_node *node)
{
if (IS_ENABLED(CONFIG_DRM_SUN4I_BACKEND))
return !!of_match_node(sun4i_frontend_of_table, node);
return false;
}
static bool sun4i_drv_node_is_tcon(struct device_node *node)
{
return !!of_match_node(sun4i_tcon_of_table, node);
}
static bool sun4i_drv_node_is_tcon_with_ch0(struct device_node *node)
{
const struct of_device_id *match;
match = of_match_node(sun4i_tcon_of_table, node);
if (match) {
struct sun4i_tcon_quirks *quirks;
quirks = (struct sun4i_tcon_quirks *)match->data;
return quirks->has_channel_0;
}
return false;
}
static bool sun4i_drv_node_is_tcon_top(struct device_node *node)
{
return !!of_match_node(sun8i_tcon_top_of_table, node);
}
static int compare_of(struct device *dev, void *data)
{
drm: Convert to using %pOF instead of full_name Now that we have a custom printf format specifier, convert users of full_name to use %pOF instead. This is preparation to remove storing of the full path string for each node. Signed-off-by: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Inki Dae <inki.dae@samsung.com> Cc: Joonyoung Shim <jy0922.shim@samsung.com> Cc: Seung-Woo Kim <sw0312.kim@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Kukjin Kim <kgene@kernel.org> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Javier Martinez Canillas <javier@osg.samsung.com> Cc: Xinliang Liu <z.liuxinliang@hisilicon.com> Cc: Rongrong Zou <zourongrong@gmail.com> Cc: Xinwei Kong <kong.kongxinwei@hisilicon.com> Cc: Chen Feng <puck.chen@hisilicon.com> Cc: CK Hu <ck.hu@mediatek.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Neil Armstrong <narmstrong@baylibre.com> Cc: Carlo Caione <carlo@caione.org> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Mark Yao <mark.yao@rock-chips.com> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Maxime Ripard <maxime.ripard@free-electrons.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Jyri Sarha <jsarha@ti.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: dri-devel@lists.freedesktop.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-samsung-soc@vger.kernel.org Cc: linux-mediatek@lists.infradead.org Cc: linux-amlogic@lists.infradead.org Cc: linux-renesas-soc@vger.kernel.org Cc: linux-rockchip@lists.infradead.org Partially-Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Maxime Ripard <maxime.ripard@free-electrons.com> [seanpaul changed subject prefix and fixed conflict in stm/ltdc.c] Signed-off-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2017-07-19 05:43:04 +08:00
DRM_DEBUG_DRIVER("Comparing of node %pOF with %pOF\n",
dev->of_node,
data);
return dev->of_node == data;
}
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
/*
* The encoder drivers use drm_of_find_possible_crtcs to get upstream
* crtcs from the device tree using of_graph. For the results to be
* correct, encoders must be probed/bound after _all_ crtcs have been
* created. The existing code uses a depth first recursive traversal
* of the of_graph, which means the encoders downstream of the TCON
* get add right after the first TCON. The second TCON or CRTC will
* never be properly associated with encoders connected to it.
*
* Also, in a dual display pipeline setup, both frontends can feed
* either backend, and both backends can feed either TCON, we want
* all components of the same type to be added before the next type
* in the pipeline. Fortunately, the pipelines are perfectly symmetric,
* i.e. components of the same type are at the same depth when counted
* from the frontend. The only exception is the third pipeline in
* the A80 SoC, which we do not support anyway.
*
* Hence we can use a breadth first search traversal order to add
* components. We do not need to check for duplicates. The component
* matching system handles this for us.
*/
struct endpoint_list {
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
DECLARE_KFIFO(fifo, struct device_node *, 16);
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
};
static void sun4i_drv_traverse_endpoints(struct endpoint_list *list,
struct device_node *node,
int port_id)
{
struct device_node *ep, *remote, *port;
port = of_graph_get_port_by_id(node, port_id);
if (!port) {
DRM_DEBUG_DRIVER("No output to bind on port %d\n", port_id);
return;
}
for_each_available_child_of_node(port, ep) {
remote = of_graph_get_remote_port_parent(ep);
if (!remote) {
DRM_DEBUG_DRIVER("Error retrieving the output node\n");
continue;
}
if (sun4i_drv_node_is_tcon(node)) {
/*
* TCON TOP is always probed before TCON. However, TCON
* points back to TCON TOP when it is source for HDMI.
* We have to skip it here to prevent infinite looping
* between TCON TOP and TCON.
*/
if (sun4i_drv_node_is_tcon_top(remote)) {
DRM_DEBUG_DRIVER("TCON output endpoint is TCON TOP... skipping\n");
of_node_put(remote);
continue;
}
/*
* If the node is our TCON with channel 0, the first
* port is used for panel or bridges, and will not be
* part of the component framework.
*/
if (sun4i_drv_node_is_tcon_with_ch0(node)) {
struct of_endpoint endpoint;
if (of_graph_parse_endpoint(ep, &endpoint)) {
DRM_DEBUG_DRIVER("Couldn't parse endpoint\n");
of_node_put(remote);
continue;
}
if (!endpoint.id) {
DRM_DEBUG_DRIVER("Endpoint is our panel... skipping\n");
of_node_put(remote);
continue;
}
}
}
kfifo_put(&list->fifo, remote);
}
}
static int sun4i_drv_add_endpoints(struct device *dev,
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
struct endpoint_list *list,
struct component_match **match,
struct device_node *node)
{
int count = 0;
/*
* The frontend has been disabled in some of our old device
* trees. If we find a node that is the frontend and is
* disabled, we should just follow through and parse its
* child, but without adding it to the component list.
* Otherwise, we obviously want to add it to the list.
*/
if (!sun4i_drv_node_is_frontend(node) &&
!of_device_is_available(node))
return 0;
/*
* The connectors will be the last nodes in our pipeline, we
* can just bail out.
*/
if (sun4i_drv_node_is_connector(node))
return 0;
/*
* If the device is either just a regular device, or an
* enabled frontend supported by the driver, we add it to our
* component list.
*/
if (!(sun4i_drv_node_is_frontend(node) ||
sun4i_drv_node_is_deu(node)) ||
(sun4i_drv_node_is_supported_frontend(node) &&
of_device_is_available(node))) {
/* Add current component */
drm: Convert to using %pOF instead of full_name Now that we have a custom printf format specifier, convert users of full_name to use %pOF instead. This is preparation to remove storing of the full path string for each node. Signed-off-by: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Inki Dae <inki.dae@samsung.com> Cc: Joonyoung Shim <jy0922.shim@samsung.com> Cc: Seung-Woo Kim <sw0312.kim@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Kukjin Kim <kgene@kernel.org> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Javier Martinez Canillas <javier@osg.samsung.com> Cc: Xinliang Liu <z.liuxinliang@hisilicon.com> Cc: Rongrong Zou <zourongrong@gmail.com> Cc: Xinwei Kong <kong.kongxinwei@hisilicon.com> Cc: Chen Feng <puck.chen@hisilicon.com> Cc: CK Hu <ck.hu@mediatek.com> Cc: Philipp Zabel <p.zabel@pengutronix.de> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Neil Armstrong <narmstrong@baylibre.com> Cc: Carlo Caione <carlo@caione.org> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Mark Yao <mark.yao@rock-chips.com> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Maxime Ripard <maxime.ripard@free-electrons.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Jyri Sarha <jsarha@ti.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: dri-devel@lists.freedesktop.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-samsung-soc@vger.kernel.org Cc: linux-mediatek@lists.infradead.org Cc: linux-amlogic@lists.infradead.org Cc: linux-renesas-soc@vger.kernel.org Cc: linux-rockchip@lists.infradead.org Partially-Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Maxime Ripard <maxime.ripard@free-electrons.com> [seanpaul changed subject prefix and fixed conflict in stm/ltdc.c] Signed-off-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2017-07-19 05:43:04 +08:00
DRM_DEBUG_DRIVER("Adding component %pOF\n", node);
drm_of_component_match_add(dev, match, compare_of, node);
count++;
}
/* each node has at least one output */
sun4i_drv_traverse_endpoints(list, node, 1);
/* TCON TOP has second and third output */
if (sun4i_drv_node_is_tcon_top(node)) {
sun4i_drv_traverse_endpoints(list, node, 3);
sun4i_drv_traverse_endpoints(list, node, 5);
}
return count;
}
static int sun4i_drv_probe(struct platform_device *pdev)
{
struct component_match *match = NULL;
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
struct device_node *np = pdev->dev.of_node, *endpoint;
struct endpoint_list list;
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
int i, ret, count = 0;
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
INIT_KFIFO(list.fifo);
for (i = 0;; i++) {
struct device_node *pipeline = of_parse_phandle(np,
"allwinner,pipelines",
i);
if (!pipeline)
break;
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
kfifo_put(&list.fifo, pipeline);
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
}
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
while (kfifo_get(&list.fifo, &endpoint)) {
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
/* process this endpoint */
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
ret = sun4i_drv_add_endpoints(&pdev->dev, &list, &match,
endpoint);
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
/* sun4i_drv_add_endpoints can fail to allocate memory */
if (ret < 0)
drm/sun4i: Implement endpoint parsing using kfifo The commit da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") implemented a breadth first traversal of our device tree nodes graph. However, it was relying on the kernel linked lists, and those are not really safe for addition. Indeed, in a single pipeline stage, your first stage (ie, the mixer or fronted) will be queued, and it will be the final iteration of that list as far as list_for_each_entry_safe is concerned. Then, during that final iteration, we'll queue another element (the TCON or the backend) that list_for_each_entry_safe will not account for, and we will leave the loop without having iterated over all the elements. And since we won't have built our components list properly, the DRM driver will be left non-functional. We can instead use a kfifo to queue and enqueue components in-order, as was the original intention. This also has the benefit of removing any dynamic allocation, making the error handling path simpler too. The only thing we're losing is the ability to tell whether an element has already been queued, but that was only needed to remove spurious logs, and therefore purely cosmetic. This means that this commit effectively reverses e8afb7b67fba ("drm/sun4i: don't add components that are already in the queue"). Fixes: da82b8785eeb ("drm/sun4i: add components in breadth first traversal order") Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/4ecb323e787918208f6a5d9f0ebba12c62583c98.1508231063.git-series.maxime.ripard@free-electrons.com
2017-10-17 17:06:08 +08:00
return ret;
drm/sun4i: add components in breadth first traversal order The encoder drivers use drm_of_find_possible_crtcs to get upstream crtcs from the device tree using of_graph. For the results to be correct, encoders must be probed/bound after _all_ crtcs have been created. The existing code uses a depth first recursive traversal of the of_graph, which means the encoders downstream of the TCON get add right after the first TCON. The second TCON or CRTC will never be properly associated with encoders connected to it. Other platforms, such as Rockchip, deal with this by probing all CRTCs first, then all subsequent components. This is easy to do since the CRTCs correspond to just one device node, and are the first nodes in the pipeline. However with Allwinner SoCs, the function of the CRTC is split between the display backend (DE 1.0) or mixer (DE 2.0), which does scan-out and compositing, and the TCON, which generates the display timing signals. Further complicating the process, there may be a Dynamic Range Controller between the backend and the TCON. Also, the backend is preceded by the frontend, with a Display Enhancement Unit possibly in between. In a dual display pipeline setup, both frontends can feed either backend, and both backends can feed either TCON. We want all components of the same type to be added before the next type in the pipeline. Fortunately, the pipelines are perfectly symmetric, i.e. components of the same type are at the same depth when counted from the frontend. The only exception is the third pipeline in the A80 SoC, which we do not support anyway. Hence we can use a breadth first search traversal order to add components. We do not need to check for duplicates. The component matching system handles this for us. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170908075016.18657-3-wens@csie.org
2017-09-08 15:50:10 +08:00
count += ret;
}
if (count)
return component_master_add_with_match(&pdev->dev,
&sun4i_drv_master_ops,
match);
else
return 0;
}
static int sun4i_drv_remove(struct platform_device *pdev)
{
return 0;
}
static const struct of_device_id sun4i_drv_of_table[] = {
{ .compatible = "allwinner,sun4i-a10-display-engine" },
{ .compatible = "allwinner,sun5i-a10s-display-engine" },
{ .compatible = "allwinner,sun5i-a13-display-engine" },
{ .compatible = "allwinner,sun6i-a31-display-engine" },
{ .compatible = "allwinner,sun6i-a31s-display-engine" },
{ .compatible = "allwinner,sun7i-a20-display-engine" },
{ .compatible = "allwinner,sun8i-a33-display-engine" },
{ .compatible = "allwinner,sun8i-a83t-display-engine" },
{ .compatible = "allwinner,sun8i-h3-display-engine" },
{ .compatible = "allwinner,sun8i-r40-display-engine" },
{ .compatible = "allwinner,sun8i-v3s-display-engine" },
{ .compatible = "allwinner,sun9i-a80-display-engine" },
{ }
};
MODULE_DEVICE_TABLE(of, sun4i_drv_of_table);
static struct platform_driver sun4i_drv_platform_driver = {
.probe = sun4i_drv_probe,
.remove = sun4i_drv_remove,
.driver = {
.name = "sun4i-drm",
.of_match_table = sun4i_drv_of_table,
},
};
module_platform_driver(sun4i_drv_platform_driver);
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 Display Engine DRM/KMS Driver");
MODULE_LICENSE("GPL");