OpenCloudOS-Kernel/include/uapi/misc/fastrpc.h

57 lines
1.4 KiB
C
Raw Normal View History

treewide: add "WITH Linux-syscall-note" to SPDX tag of uapi headers UAPI headers licensed under GPL are supposed to have exception "WITH Linux-syscall-note" so that they can be included into non-GPL user space application code. The exception note is missing in some UAPI headers. Some of them slipped in by the treewide conversion commit b24413180f56 ("License cleanup: add SPDX GPL-2.0 license identifier to files with no license"). Just run: $ git show --oneline b24413180f56 -- arch/x86/include/uapi/asm/ I believe they are not intentional, and should be fixed too. This patch was generated by the following script: git grep -l --not -e Linux-syscall-note --and -e SPDX-License-Identifier \ -- :arch/*/include/uapi/asm/*.h :include/uapi/ :^*/Kbuild | while read file do sed -i -e '/[[:space:]]OR[[:space:]]/s/\(GPL-[^[:space:]]*\)/(\1 WITH Linux-syscall-note)/g' \ -e '/[[:space:]]or[[:space:]]/s/\(GPL-[^[:space:]]*\)/(\1 WITH Linux-syscall-note)/g' \ -e '/[[:space:]]OR[[:space:]]/!{/[[:space:]]or[[:space:]]/!s/\(GPL-[^[:space:]]*\)/\1 WITH Linux-syscall-note/g}' $file done After this patch is applied, there are 5 UAPI headers that do not contain "WITH Linux-syscall-note". They are kept untouched since this exception applies only to GPL variants. $ git grep --not -e Linux-syscall-note --and -e SPDX-License-Identifier \ -- :arch/*/include/uapi/asm/*.h :include/uapi/ :^*/Kbuild include/uapi/drm/panfrost_drm.h:/* SPDX-License-Identifier: MIT */ include/uapi/linux/batman_adv.h:/* SPDX-License-Identifier: MIT */ include/uapi/linux/qemu_fw_cfg.h:/* SPDX-License-Identifier: BSD-3-Clause */ include/uapi/linux/vbox_err.h:/* SPDX-License-Identifier: MIT */ include/uapi/linux/virtio_iommu.h:/* SPDX-License-Identifier: BSD-3-Clause */ Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-25 15:58:31 +08:00
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
misc: fastrpc: Add support for context Invoke method This patch adds support to compute context invoke method on the remote processor (DSP). This involves setting up the functions input and output arguments, input and output handles and mapping the dmabuf fd for the argument/handle buffers. The below diagram depicts invocation of a single method where the client and objects reside on different processors. An object could expose multiple methods which can be grouped together and referred to as an interface. ,--------, ,------, ,-----------, ,------, ,--------, | | method | | | | | | method | | | Client |------->| Stub |->| Transport |->| Skel |------->| Object | | | | | | | | | | | `--------` `------` `-----------` `------` `--------` Client: Linux user mode process that initiates the remote invocation Stub: Auto generated code linked in with the user mode process that takes care of marshaling parameters Transport: Involved in carrying an invocation from a client to an object. This involves two portions: 1) FastRPC Linux kernel driver that receives the remote invocation, queues them up and then waits for the response after signaling the remote side. 2) Service running on the remote side that dequeues the messages from the queue and dispatches them for processing. Skel: Auto generated code that takes care of un-marshaling parameters Object: Method implementation Most of the work is derived from various downstream Qualcomm kernels. Credits to various Qualcomm authors who have contributed to this code. Specially Tharun Kumar Merugu <mtharu@codeaurora.org> Co-developed-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-09 01:11:25 +08:00
#ifndef __QCOM_FASTRPC_H__
#define __QCOM_FASTRPC_H__
#include <linux/types.h>
#define FASTRPC_IOCTL_ALLOC_DMA_BUFF _IOWR('R', 1, struct fastrpc_alloc_dma_buf)
#define FASTRPC_IOCTL_FREE_DMA_BUFF _IOWR('R', 2, __u32)
misc: fastrpc: Add support for context Invoke method This patch adds support to compute context invoke method on the remote processor (DSP). This involves setting up the functions input and output arguments, input and output handles and mapping the dmabuf fd for the argument/handle buffers. The below diagram depicts invocation of a single method where the client and objects reside on different processors. An object could expose multiple methods which can be grouped together and referred to as an interface. ,--------, ,------, ,-----------, ,------, ,--------, | | method | | | | | | method | | | Client |------->| Stub |->| Transport |->| Skel |------->| Object | | | | | | | | | | | `--------` `------` `-----------` `------` `--------` Client: Linux user mode process that initiates the remote invocation Stub: Auto generated code linked in with the user mode process that takes care of marshaling parameters Transport: Involved in carrying an invocation from a client to an object. This involves two portions: 1) FastRPC Linux kernel driver that receives the remote invocation, queues them up and then waits for the response after signaling the remote side. 2) Service running on the remote side that dequeues the messages from the queue and dispatches them for processing. Skel: Auto generated code that takes care of un-marshaling parameters Object: Method implementation Most of the work is derived from various downstream Qualcomm kernels. Credits to various Qualcomm authors who have contributed to this code. Specially Tharun Kumar Merugu <mtharu@codeaurora.org> Co-developed-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-09 01:11:25 +08:00
#define FASTRPC_IOCTL_INVOKE _IOWR('R', 3, struct fastrpc_invoke)
#define FASTRPC_IOCTL_INIT_ATTACH _IO('R', 4)
#define FASTRPC_IOCTL_INIT_CREATE _IOWR('R', 5, struct fastrpc_init_create)
#define FASTRPC_IOCTL_MMAP _IOWR('R', 6, struct fastrpc_req_mmap)
#define FASTRPC_IOCTL_MUNMAP _IOWR('R', 7, struct fastrpc_req_munmap)
misc: fastrpc: Add support for context Invoke method This patch adds support to compute context invoke method on the remote processor (DSP). This involves setting up the functions input and output arguments, input and output handles and mapping the dmabuf fd for the argument/handle buffers. The below diagram depicts invocation of a single method where the client and objects reside on different processors. An object could expose multiple methods which can be grouped together and referred to as an interface. ,--------, ,------, ,-----------, ,------, ,--------, | | method | | | | | | method | | | Client |------->| Stub |->| Transport |->| Skel |------->| Object | | | | | | | | | | | `--------` `------` `-----------` `------` `--------` Client: Linux user mode process that initiates the remote invocation Stub: Auto generated code linked in with the user mode process that takes care of marshaling parameters Transport: Involved in carrying an invocation from a client to an object. This involves two portions: 1) FastRPC Linux kernel driver that receives the remote invocation, queues them up and then waits for the response after signaling the remote side. 2) Service running on the remote side that dequeues the messages from the queue and dispatches them for processing. Skel: Auto generated code that takes care of un-marshaling parameters Object: Method implementation Most of the work is derived from various downstream Qualcomm kernels. Credits to various Qualcomm authors who have contributed to this code. Specially Tharun Kumar Merugu <mtharu@codeaurora.org> Co-developed-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-09 01:11:25 +08:00
struct fastrpc_invoke_args {
__u64 ptr;
__u64 length;
__s32 fd;
__u32 reserved;
};
struct fastrpc_invoke {
__u32 handle;
__u32 sc;
__u64 args;
};
struct fastrpc_init_create {
__u32 filelen; /* elf file length */
__s32 filefd; /* fd for the file */
__u32 attrs;
__u32 siglen;
__u64 file; /* pointer to elf file */
};
struct fastrpc_alloc_dma_buf {
__s32 fd; /* fd */
__u32 flags; /* flags to map with */
__u64 size; /* size */
};
struct fastrpc_req_mmap {
__s32 fd;
__u32 flags; /* flags for dsp to map with */
__u64 vaddrin; /* optional virtual address */
__u64 size; /* size */
__u64 vaddrout; /* dsp virtual address */
};
struct fastrpc_req_munmap {
__u64 vaddrout; /* address to unmap */
__u64 size; /* size */
};
misc: fastrpc: Add support for context Invoke method This patch adds support to compute context invoke method on the remote processor (DSP). This involves setting up the functions input and output arguments, input and output handles and mapping the dmabuf fd for the argument/handle buffers. The below diagram depicts invocation of a single method where the client and objects reside on different processors. An object could expose multiple methods which can be grouped together and referred to as an interface. ,--------, ,------, ,-----------, ,------, ,--------, | | method | | | | | | method | | | Client |------->| Stub |->| Transport |->| Skel |------->| Object | | | | | | | | | | | `--------` `------` `-----------` `------` `--------` Client: Linux user mode process that initiates the remote invocation Stub: Auto generated code linked in with the user mode process that takes care of marshaling parameters Transport: Involved in carrying an invocation from a client to an object. This involves two portions: 1) FastRPC Linux kernel driver that receives the remote invocation, queues them up and then waits for the response after signaling the remote side. 2) Service running on the remote side that dequeues the messages from the queue and dispatches them for processing. Skel: Auto generated code that takes care of un-marshaling parameters Object: Method implementation Most of the work is derived from various downstream Qualcomm kernels. Credits to various Qualcomm authors who have contributed to this code. Specially Tharun Kumar Merugu <mtharu@codeaurora.org> Co-developed-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Thierry Escande <thierry.escande@linaro.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-09 01:11:25 +08:00
#endif /* __QCOM_FASTRPC_H__ */