OpenCloudOS-Kernel/drivers/hwmon/abx500.c

492 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (C) ST-Ericsson 2010 - 2013
* Author: Martin Persson <martin.persson@stericsson.com>
* Hongbo Zhang <hongbo.zhang@linaro.org>
* License Terms: GNU General Public License v2
*
* ABX500 does not provide auto ADC, so to monitor the required temperatures,
* a periodic work is used. It is more important to not wake up the CPU than
* to perform this job, hence the use of a deferred delay.
*
* A deferred delay for thermal monitor is considered safe because:
* If the chip gets too hot during a sleep state it's most likely due to
* external factors, such as the surrounding temperature. I.e. no SW decisions
* will make any difference.
*/
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/workqueue.h>
#include "abx500.h"
#define DEFAULT_MONITOR_DELAY HZ
#define DEFAULT_MAX_TEMP 130
static inline void schedule_monitor(struct abx500_temp *data)
{
data->work_active = true;
schedule_delayed_work(&data->work, DEFAULT_MONITOR_DELAY);
}
static void threshold_updated(struct abx500_temp *data)
{
int i;
for (i = 0; i < data->monitored_sensors; i++)
if (data->max[i] != 0 || data->min[i] != 0) {
schedule_monitor(data);
return;
}
dev_dbg(&data->pdev->dev, "No active thresholds.\n");
cancel_delayed_work_sync(&data->work);
data->work_active = false;
}
static void gpadc_monitor(struct work_struct *work)
{
int temp, i, ret;
char alarm_node[30];
bool updated_min_alarm, updated_max_alarm;
struct abx500_temp *data;
data = container_of(work, struct abx500_temp, work.work);
mutex_lock(&data->lock);
for (i = 0; i < data->monitored_sensors; i++) {
/* Thresholds are considered inactive if set to 0 */
if (data->max[i] == 0 && data->min[i] == 0)
continue;
if (data->max[i] < data->min[i])
continue;
ret = data->ops.read_sensor(data, data->gpadc_addr[i], &temp);
if (ret < 0) {
dev_err(&data->pdev->dev, "GPADC read failed\n");
continue;
}
updated_min_alarm = false;
updated_max_alarm = false;
if (data->min[i] != 0) {
if (temp < data->min[i]) {
if (data->min_alarm[i] == false) {
data->min_alarm[i] = true;
updated_min_alarm = true;
}
} else {
if (data->min_alarm[i] == true) {
data->min_alarm[i] = false;
updated_min_alarm = true;
}
}
}
if (data->max[i] != 0) {
if (temp > data->max[i]) {
if (data->max_alarm[i] == false) {
data->max_alarm[i] = true;
updated_max_alarm = true;
}
} else if (temp < data->max[i] - data->max_hyst[i]) {
if (data->max_alarm[i] == true) {
data->max_alarm[i] = false;
updated_max_alarm = true;
}
}
}
if (updated_min_alarm) {
ret = sprintf(alarm_node, "temp%d_min_alarm", i + 1);
sysfs_notify(&data->pdev->dev.kobj, NULL, alarm_node);
}
if (updated_max_alarm) {
ret = sprintf(alarm_node, "temp%d_max_alarm", i + 1);
sysfs_notify(&data->pdev->dev.kobj, NULL, alarm_node);
}
}
schedule_monitor(data);
mutex_unlock(&data->lock);
}
/* HWMON sysfs interfaces */
static ssize_t show_name(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
/* Show chip name */
return data->ops.show_name(dev, devattr, buf);
}
static ssize_t show_label(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
/* Show each sensor label */
return data->ops.show_label(dev, devattr, buf);
}
static ssize_t show_input(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int ret, temp;
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
u8 gpadc_addr = data->gpadc_addr[attr->index];
ret = data->ops.read_sensor(data, gpadc_addr, &temp);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", temp);
}
/* Set functions (RW nodes) */
static ssize_t set_min(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long val;
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
int res = kstrtol(buf, 10, &val);
if (res < 0)
return res;
val = clamp_val(val, 0, DEFAULT_MAX_TEMP);
mutex_lock(&data->lock);
data->min[attr->index] = val;
threshold_updated(data);
mutex_unlock(&data->lock);
return count;
}
static ssize_t set_max(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long val;
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
int res = kstrtol(buf, 10, &val);
if (res < 0)
return res;
val = clamp_val(val, 0, DEFAULT_MAX_TEMP);
mutex_lock(&data->lock);
data->max[attr->index] = val;
threshold_updated(data);
mutex_unlock(&data->lock);
return count;
}
static ssize_t set_max_hyst(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long val;
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
int res = kstrtoul(buf, 10, &val);
if (res < 0)
return res;
val = clamp_val(val, 0, DEFAULT_MAX_TEMP);
mutex_lock(&data->lock);
data->max_hyst[attr->index] = val;
threshold_updated(data);
mutex_unlock(&data->lock);
return count;
}
/* Show functions (RO nodes) */
static ssize_t show_min(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
return sprintf(buf, "%ld\n", data->min[attr->index]);
}
static ssize_t show_max(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
return sprintf(buf, "%ld\n", data->max[attr->index]);
}
static ssize_t show_max_hyst(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
return sprintf(buf, "%ld\n", data->max_hyst[attr->index]);
}
static ssize_t show_min_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
return sprintf(buf, "%d\n", data->min_alarm[attr->index]);
}
static ssize_t show_max_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct abx500_temp *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
return sprintf(buf, "%d\n", data->max_alarm[attr->index]);
}
static umode_t abx500_attrs_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct abx500_temp *data = dev_get_drvdata(dev);
if (data->ops.is_visible)
return data->ops.is_visible(attr, n);
return attr->mode;
}
/* Chip name, required by hwmon */
static SENSOR_DEVICE_ATTR(name, S_IRUGO, show_name, NULL, 0);
/* GPADC - SENSOR1 */
static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, show_label, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_input, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_min, set_min, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_max, set_max, 0);
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO,
show_max_hyst, set_max_hyst, 0);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_min_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_max_alarm, NULL, 0);
/* GPADC - SENSOR2 */
static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, show_label, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_input, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_min, set_min, 1);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_max, set_max, 1);
static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IWUSR | S_IRUGO,
show_max_hyst, set_max_hyst, 1);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_min_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_max_alarm, NULL, 1);
/* GPADC - SENSOR3 */
static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, show_label, NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_input, NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_min, set_min, 2);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_max, set_max, 2);
static SENSOR_DEVICE_ATTR(temp3_max_hyst, S_IWUSR | S_IRUGO,
show_max_hyst, set_max_hyst, 2);
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_min_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_max_alarm, NULL, 2);
/* GPADC - SENSOR4 */
static SENSOR_DEVICE_ATTR(temp4_label, S_IRUGO, show_label, NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_input, NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_min, S_IWUSR | S_IRUGO, show_min, set_min, 3);
static SENSOR_DEVICE_ATTR(temp4_max, S_IWUSR | S_IRUGO, show_max, set_max, 3);
static SENSOR_DEVICE_ATTR(temp4_max_hyst, S_IWUSR | S_IRUGO,
show_max_hyst, set_max_hyst, 3);
static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_min_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_max_alarm, NULL, 3);
struct attribute *abx500_temp_attributes[] = {
&sensor_dev_attr_name.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_label.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group abx500_temp_group = {
.attrs = abx500_temp_attributes,
.is_visible = abx500_attrs_visible,
};
static irqreturn_t abx500_temp_irq_handler(int irq, void *irq_data)
{
struct platform_device *pdev = irq_data;
struct abx500_temp *data = platform_get_drvdata(pdev);
data->ops.irq_handler(irq, data);
return IRQ_HANDLED;
}
static int setup_irqs(struct platform_device *pdev)
{
int ret;
int irq = platform_get_irq_byname(pdev, "ABX500_TEMP_WARM");
if (irq < 0) {
dev_err(&pdev->dev, "Get irq by name failed\n");
return irq;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
abx500_temp_irq_handler, IRQF_NO_SUSPEND, "abx500-temp", pdev);
if (ret < 0)
dev_err(&pdev->dev, "Request threaded irq failed (%d)\n", ret);
return ret;
}
static int abx500_temp_probe(struct platform_device *pdev)
{
struct abx500_temp *data;
int err;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
mutex_init(&data->lock);
/* Chip specific initialization */
err = abx500_hwmon_init(data);
if (err < 0 || !data->ops.read_sensor || !data->ops.show_name ||
!data->ops.show_label)
return err;
INIT_DEFERRABLE_WORK(&data->work, gpadc_monitor);
platform_set_drvdata(pdev, data);
err = sysfs_create_group(&pdev->dev.kobj, &abx500_temp_group);
if (err < 0) {
dev_err(&pdev->dev, "Create sysfs group failed (%d)\n", err);
return err;
}
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
dev_err(&pdev->dev, "Class registration failed (%d)\n", err);
goto exit_sysfs_group;
}
if (data->ops.irq_handler) {
err = setup_irqs(pdev);
if (err < 0)
goto exit_hwmon_reg;
}
return 0;
exit_hwmon_reg:
hwmon_device_unregister(data->hwmon_dev);
exit_sysfs_group:
sysfs_remove_group(&pdev->dev.kobj, &abx500_temp_group);
return err;
}
static int abx500_temp_remove(struct platform_device *pdev)
{
struct abx500_temp *data = platform_get_drvdata(pdev);
cancel_delayed_work_sync(&data->work);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&pdev->dev.kobj, &abx500_temp_group);
return 0;
}
static int abx500_temp_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct abx500_temp *data = platform_get_drvdata(pdev);
if (data->work_active)
cancel_delayed_work_sync(&data->work);
return 0;
}
static int abx500_temp_resume(struct platform_device *pdev)
{
struct abx500_temp *data = platform_get_drvdata(pdev);
if (data->work_active)
schedule_monitor(data);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id abx500_temp_match[] = {
{ .compatible = "stericsson,abx500-temp" },
{},
};
#endif
static struct platform_driver abx500_temp_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "abx500-temp",
.of_match_table = of_match_ptr(abx500_temp_match),
},
.suspend = abx500_temp_suspend,
.resume = abx500_temp_resume,
.probe = abx500_temp_probe,
.remove = abx500_temp_remove,
};
module_platform_driver(abx500_temp_driver);
MODULE_AUTHOR("Martin Persson <martin.persson@stericsson.com>");
MODULE_DESCRIPTION("ABX500 temperature driver");
MODULE_LICENSE("GPL");