OpenCloudOS-Kernel/arch/x86/crypto/chacha20-ssse3-x86_64.S

631 lines
14 KiB
ArmAsm
Raw Normal View History

crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64 Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This single block variant works on a single state matrix using SSE instructions. It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate operations. For large messages, throughput increases by ~65% compared to chacha20-generic: testing speed of chacha20 (chacha20-generic) encryption test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes) test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes) test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes) test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes) test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:01 +08:00
/*
* ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSSE3 functions
*
* Copyright (C) 2015 Martin Willi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/linkage.h>
crypto: x86 - make constants readonly, allow linker to merge them A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 05:33:04 +08:00
.section .rodata.cst16.ROT8, "aM", @progbits, 16
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64 Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This single block variant works on a single state matrix using SSE instructions. It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate operations. For large messages, throughput increases by ~65% compared to chacha20-generic: testing speed of chacha20 (chacha20-generic) encryption test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes) test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes) test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes) test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes) test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:01 +08:00
.align 16
ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003
crypto: x86 - make constants readonly, allow linker to merge them A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 05:33:04 +08:00
.section .rodata.cst16.ROT16, "aM", @progbits, 16
.align 16
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64 Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This single block variant works on a single state matrix using SSE instructions. It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate operations. For large messages, throughput increases by ~65% compared to chacha20-generic: testing speed of chacha20 (chacha20-generic) encryption test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes) test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes) test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes) test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes) test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:01 +08:00
ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302
crypto: x86 - make constants readonly, allow linker to merge them A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 05:33:04 +08:00
.section .rodata.cst16.CTRINC, "aM", @progbits, 16
.align 16
crypto: chacha20 - Add a four block SSSE3 variant for x86_64 Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing four ChaCha20 blocks in parallel. This avoids the word shuffling needed in the single block variant, further increasing throughput. For large messages, throughput increases by ~110% compared to single block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:02 +08:00
CTRINC: .octa 0x00000003000000020000000100000000
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64 Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This single block variant works on a single state matrix using SSE instructions. It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate operations. For large messages, throughput increases by ~65% compared to chacha20-generic: testing speed of chacha20 (chacha20-generic) encryption test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes) test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes) test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes) test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes) test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:01 +08:00
.text
ENTRY(chacha20_block_xor_ssse3)
# %rdi: Input state matrix, s
# %rsi: 1 data block output, o
# %rdx: 1 data block input, i
# This function encrypts one ChaCha20 block by loading the state matrix
# in four SSE registers. It performs matrix operation on four words in
# parallel, but requireds shuffling to rearrange the words after each
# round. 8/16-bit word rotation is done with the slightly better
# performing SSSE3 byte shuffling, 7/12-bit word rotation uses
# traditional shift+OR.
# x0..3 = s0..3
movdqa 0x00(%rdi),%xmm0
movdqa 0x10(%rdi),%xmm1
movdqa 0x20(%rdi),%xmm2
movdqa 0x30(%rdi),%xmm3
movdqa %xmm0,%xmm8
movdqa %xmm1,%xmm9
movdqa %xmm2,%xmm10
movdqa %xmm3,%xmm11
movdqa ROT8(%rip),%xmm4
movdqa ROT16(%rip),%xmm5
mov $10,%ecx
.Ldoubleround:
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
paddd %xmm1,%xmm0
pxor %xmm0,%xmm3
pshufb %xmm5,%xmm3
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
paddd %xmm3,%xmm2
pxor %xmm2,%xmm1
movdqa %xmm1,%xmm6
pslld $12,%xmm6
psrld $20,%xmm1
por %xmm6,%xmm1
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
paddd %xmm1,%xmm0
pxor %xmm0,%xmm3
pshufb %xmm4,%xmm3
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
paddd %xmm3,%xmm2
pxor %xmm2,%xmm1
movdqa %xmm1,%xmm7
pslld $7,%xmm7
psrld $25,%xmm1
por %xmm7,%xmm1
# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
pshufd $0x39,%xmm1,%xmm1
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
pshufd $0x4e,%xmm2,%xmm2
# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
pshufd $0x93,%xmm3,%xmm3
# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
paddd %xmm1,%xmm0
pxor %xmm0,%xmm3
pshufb %xmm5,%xmm3
# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
paddd %xmm3,%xmm2
pxor %xmm2,%xmm1
movdqa %xmm1,%xmm6
pslld $12,%xmm6
psrld $20,%xmm1
por %xmm6,%xmm1
# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
paddd %xmm1,%xmm0
pxor %xmm0,%xmm3
pshufb %xmm4,%xmm3
# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
paddd %xmm3,%xmm2
pxor %xmm2,%xmm1
movdqa %xmm1,%xmm7
pslld $7,%xmm7
psrld $25,%xmm1
por %xmm7,%xmm1
# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
pshufd $0x93,%xmm1,%xmm1
# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
pshufd $0x4e,%xmm2,%xmm2
# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
pshufd $0x39,%xmm3,%xmm3
dec %ecx
jnz .Ldoubleround
# o0 = i0 ^ (x0 + s0)
movdqu 0x00(%rdx),%xmm4
paddd %xmm8,%xmm0
pxor %xmm4,%xmm0
movdqu %xmm0,0x00(%rsi)
# o1 = i1 ^ (x1 + s1)
movdqu 0x10(%rdx),%xmm5
paddd %xmm9,%xmm1
pxor %xmm5,%xmm1
movdqu %xmm1,0x10(%rsi)
# o2 = i2 ^ (x2 + s2)
movdqu 0x20(%rdx),%xmm6
paddd %xmm10,%xmm2
pxor %xmm6,%xmm2
movdqu %xmm2,0x20(%rsi)
# o3 = i3 ^ (x3 + s3)
movdqu 0x30(%rdx),%xmm7
paddd %xmm11,%xmm3
pxor %xmm7,%xmm3
movdqu %xmm3,0x30(%rsi)
ret
ENDPROC(chacha20_block_xor_ssse3)
crypto: chacha20 - Add a four block SSSE3 variant for x86_64 Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing four ChaCha20 blocks in parallel. This avoids the word shuffling needed in the single block variant, further increasing throughput. For large messages, throughput increases by ~110% compared to single block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:02 +08:00
ENTRY(chacha20_4block_xor_ssse3)
# %rdi: Input state matrix, s
# %rsi: 4 data blocks output, o
# %rdx: 4 data blocks input, i
# This function encrypts four consecutive ChaCha20 blocks by loading the
# the state matrix in SSE registers four times. As we need some scratch
# registers, we save the first four registers on the stack. The
# algorithm performs each operation on the corresponding word of each
# state matrix, hence requires no word shuffling. For final XORing step
# we transpose the matrix by interleaving 32- and then 64-bit words,
# which allows us to do XOR in SSE registers. 8/16-bit word rotation is
# done with the slightly better performing SSSE3 byte shuffling,
# 7/12-bit word rotation uses traditional shift+OR.
lea 8(%rsp),%r10
sub $0x80,%rsp
and $~63,%rsp
crypto: chacha20 - Add a four block SSSE3 variant for x86_64 Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing four ChaCha20 blocks in parallel. This avoids the word shuffling needed in the single block variant, further increasing throughput. For large messages, throughput increases by ~110% compared to single block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:02 +08:00
# x0..15[0-3] = s0..3[0..3]
movq 0x00(%rdi),%xmm1
pshufd $0x00,%xmm1,%xmm0
pshufd $0x55,%xmm1,%xmm1
movq 0x08(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
movq 0x10(%rdi),%xmm5
pshufd $0x00,%xmm5,%xmm4
pshufd $0x55,%xmm5,%xmm5
movq 0x18(%rdi),%xmm7
pshufd $0x00,%xmm7,%xmm6
pshufd $0x55,%xmm7,%xmm7
movq 0x20(%rdi),%xmm9
pshufd $0x00,%xmm9,%xmm8
pshufd $0x55,%xmm9,%xmm9
movq 0x28(%rdi),%xmm11
pshufd $0x00,%xmm11,%xmm10
pshufd $0x55,%xmm11,%xmm11
movq 0x30(%rdi),%xmm13
pshufd $0x00,%xmm13,%xmm12
pshufd $0x55,%xmm13,%xmm13
movq 0x38(%rdi),%xmm15
pshufd $0x00,%xmm15,%xmm14
pshufd $0x55,%xmm15,%xmm15
# x0..3 on stack
movdqa %xmm0,0x00(%rsp)
movdqa %xmm1,0x10(%rsp)
movdqa %xmm2,0x20(%rsp)
movdqa %xmm3,0x30(%rsp)
movdqa CTRINC(%rip),%xmm1
movdqa ROT8(%rip),%xmm2
movdqa ROT16(%rip),%xmm3
# x12 += counter values 0-3
paddd %xmm1,%xmm12
mov $10,%ecx
.Ldoubleround4:
# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
movdqa 0x00(%rsp),%xmm0
paddd %xmm4,%xmm0
movdqa %xmm0,0x00(%rsp)
pxor %xmm0,%xmm12
pshufb %xmm3,%xmm12
# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
movdqa 0x10(%rsp),%xmm0
paddd %xmm5,%xmm0
movdqa %xmm0,0x10(%rsp)
pxor %xmm0,%xmm13
pshufb %xmm3,%xmm13
# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
movdqa 0x20(%rsp),%xmm0
paddd %xmm6,%xmm0
movdqa %xmm0,0x20(%rsp)
pxor %xmm0,%xmm14
pshufb %xmm3,%xmm14
# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
movdqa 0x30(%rsp),%xmm0
paddd %xmm7,%xmm0
movdqa %xmm0,0x30(%rsp)
pxor %xmm0,%xmm15
pshufb %xmm3,%xmm15
# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
paddd %xmm12,%xmm8
pxor %xmm8,%xmm4
movdqa %xmm4,%xmm0
pslld $12,%xmm0
psrld $20,%xmm4
por %xmm0,%xmm4
# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
paddd %xmm13,%xmm9
pxor %xmm9,%xmm5
movdqa %xmm5,%xmm0
pslld $12,%xmm0
psrld $20,%xmm5
por %xmm0,%xmm5
# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
paddd %xmm14,%xmm10
pxor %xmm10,%xmm6
movdqa %xmm6,%xmm0
pslld $12,%xmm0
psrld $20,%xmm6
por %xmm0,%xmm6
# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
paddd %xmm15,%xmm11
pxor %xmm11,%xmm7
movdqa %xmm7,%xmm0
pslld $12,%xmm0
psrld $20,%xmm7
por %xmm0,%xmm7
# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
movdqa 0x00(%rsp),%xmm0
paddd %xmm4,%xmm0
movdqa %xmm0,0x00(%rsp)
pxor %xmm0,%xmm12
pshufb %xmm2,%xmm12
# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
movdqa 0x10(%rsp),%xmm0
paddd %xmm5,%xmm0
movdqa %xmm0,0x10(%rsp)
pxor %xmm0,%xmm13
pshufb %xmm2,%xmm13
# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
movdqa 0x20(%rsp),%xmm0
paddd %xmm6,%xmm0
movdqa %xmm0,0x20(%rsp)
pxor %xmm0,%xmm14
pshufb %xmm2,%xmm14
# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
movdqa 0x30(%rsp),%xmm0
paddd %xmm7,%xmm0
movdqa %xmm0,0x30(%rsp)
pxor %xmm0,%xmm15
pshufb %xmm2,%xmm15
# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
paddd %xmm12,%xmm8
pxor %xmm8,%xmm4
movdqa %xmm4,%xmm0
pslld $7,%xmm0
psrld $25,%xmm4
por %xmm0,%xmm4
# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
paddd %xmm13,%xmm9
pxor %xmm9,%xmm5
movdqa %xmm5,%xmm0
pslld $7,%xmm0
psrld $25,%xmm5
por %xmm0,%xmm5
# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
paddd %xmm14,%xmm10
pxor %xmm10,%xmm6
movdqa %xmm6,%xmm0
pslld $7,%xmm0
psrld $25,%xmm6
por %xmm0,%xmm6
# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
paddd %xmm15,%xmm11
pxor %xmm11,%xmm7
movdqa %xmm7,%xmm0
pslld $7,%xmm0
psrld $25,%xmm7
por %xmm0,%xmm7
# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
movdqa 0x00(%rsp),%xmm0
paddd %xmm5,%xmm0
movdqa %xmm0,0x00(%rsp)
pxor %xmm0,%xmm15
pshufb %xmm3,%xmm15
# x1 += x6, x12 = rotl32(x12 ^ x1, 16)
movdqa 0x10(%rsp),%xmm0
paddd %xmm6,%xmm0
movdqa %xmm0,0x10(%rsp)
pxor %xmm0,%xmm12
pshufb %xmm3,%xmm12
# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
movdqa 0x20(%rsp),%xmm0
paddd %xmm7,%xmm0
movdqa %xmm0,0x20(%rsp)
pxor %xmm0,%xmm13
pshufb %xmm3,%xmm13
# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
movdqa 0x30(%rsp),%xmm0
paddd %xmm4,%xmm0
movdqa %xmm0,0x30(%rsp)
pxor %xmm0,%xmm14
pshufb %xmm3,%xmm14
# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
paddd %xmm15,%xmm10
pxor %xmm10,%xmm5
movdqa %xmm5,%xmm0
pslld $12,%xmm0
psrld $20,%xmm5
por %xmm0,%xmm5
# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
paddd %xmm12,%xmm11
pxor %xmm11,%xmm6
movdqa %xmm6,%xmm0
pslld $12,%xmm0
psrld $20,%xmm6
por %xmm0,%xmm6
# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
paddd %xmm13,%xmm8
pxor %xmm8,%xmm7
movdqa %xmm7,%xmm0
pslld $12,%xmm0
psrld $20,%xmm7
por %xmm0,%xmm7
# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
paddd %xmm14,%xmm9
pxor %xmm9,%xmm4
movdqa %xmm4,%xmm0
pslld $12,%xmm0
psrld $20,%xmm4
por %xmm0,%xmm4
# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
movdqa 0x00(%rsp),%xmm0
paddd %xmm5,%xmm0
movdqa %xmm0,0x00(%rsp)
pxor %xmm0,%xmm15
pshufb %xmm2,%xmm15
# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
movdqa 0x10(%rsp),%xmm0
paddd %xmm6,%xmm0
movdqa %xmm0,0x10(%rsp)
pxor %xmm0,%xmm12
pshufb %xmm2,%xmm12
# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
movdqa 0x20(%rsp),%xmm0
paddd %xmm7,%xmm0
movdqa %xmm0,0x20(%rsp)
pxor %xmm0,%xmm13
pshufb %xmm2,%xmm13
# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
movdqa 0x30(%rsp),%xmm0
paddd %xmm4,%xmm0
movdqa %xmm0,0x30(%rsp)
pxor %xmm0,%xmm14
pshufb %xmm2,%xmm14
# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
paddd %xmm15,%xmm10
pxor %xmm10,%xmm5
movdqa %xmm5,%xmm0
pslld $7,%xmm0
psrld $25,%xmm5
por %xmm0,%xmm5
# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
paddd %xmm12,%xmm11
pxor %xmm11,%xmm6
movdqa %xmm6,%xmm0
pslld $7,%xmm0
psrld $25,%xmm6
por %xmm0,%xmm6
# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
paddd %xmm13,%xmm8
pxor %xmm8,%xmm7
movdqa %xmm7,%xmm0
pslld $7,%xmm0
psrld $25,%xmm7
por %xmm0,%xmm7
# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
paddd %xmm14,%xmm9
pxor %xmm9,%xmm4
movdqa %xmm4,%xmm0
pslld $7,%xmm0
psrld $25,%xmm4
por %xmm0,%xmm4
dec %ecx
jnz .Ldoubleround4
# x0[0-3] += s0[0]
# x1[0-3] += s0[1]
movq 0x00(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd 0x00(%rsp),%xmm2
movdqa %xmm2,0x00(%rsp)
paddd 0x10(%rsp),%xmm3
movdqa %xmm3,0x10(%rsp)
# x2[0-3] += s0[2]
# x3[0-3] += s0[3]
movq 0x08(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd 0x20(%rsp),%xmm2
movdqa %xmm2,0x20(%rsp)
paddd 0x30(%rsp),%xmm3
movdqa %xmm3,0x30(%rsp)
# x4[0-3] += s1[0]
# x5[0-3] += s1[1]
movq 0x10(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm4
paddd %xmm3,%xmm5
# x6[0-3] += s1[2]
# x7[0-3] += s1[3]
movq 0x18(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm6
paddd %xmm3,%xmm7
# x8[0-3] += s2[0]
# x9[0-3] += s2[1]
movq 0x20(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm8
paddd %xmm3,%xmm9
# x10[0-3] += s2[2]
# x11[0-3] += s2[3]
movq 0x28(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm10
paddd %xmm3,%xmm11
# x12[0-3] += s3[0]
# x13[0-3] += s3[1]
movq 0x30(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm12
paddd %xmm3,%xmm13
# x14[0-3] += s3[2]
# x15[0-3] += s3[3]
movq 0x38(%rdi),%xmm3
pshufd $0x00,%xmm3,%xmm2
pshufd $0x55,%xmm3,%xmm3
paddd %xmm2,%xmm14
paddd %xmm3,%xmm15
# x12 += counter values 0-3
paddd %xmm1,%xmm12
# interleave 32-bit words in state n, n+1
movdqa 0x00(%rsp),%xmm0
movdqa 0x10(%rsp),%xmm1
movdqa %xmm0,%xmm2
punpckldq %xmm1,%xmm2
punpckhdq %xmm1,%xmm0
movdqa %xmm2,0x00(%rsp)
movdqa %xmm0,0x10(%rsp)
movdqa 0x20(%rsp),%xmm0
movdqa 0x30(%rsp),%xmm1
movdqa %xmm0,%xmm2
punpckldq %xmm1,%xmm2
punpckhdq %xmm1,%xmm0
movdqa %xmm2,0x20(%rsp)
movdqa %xmm0,0x30(%rsp)
movdqa %xmm4,%xmm0
punpckldq %xmm5,%xmm4
punpckhdq %xmm5,%xmm0
movdqa %xmm0,%xmm5
movdqa %xmm6,%xmm0
punpckldq %xmm7,%xmm6
punpckhdq %xmm7,%xmm0
movdqa %xmm0,%xmm7
movdqa %xmm8,%xmm0
punpckldq %xmm9,%xmm8
punpckhdq %xmm9,%xmm0
movdqa %xmm0,%xmm9
movdqa %xmm10,%xmm0
punpckldq %xmm11,%xmm10
punpckhdq %xmm11,%xmm0
movdqa %xmm0,%xmm11
movdqa %xmm12,%xmm0
punpckldq %xmm13,%xmm12
punpckhdq %xmm13,%xmm0
movdqa %xmm0,%xmm13
movdqa %xmm14,%xmm0
punpckldq %xmm15,%xmm14
punpckhdq %xmm15,%xmm0
movdqa %xmm0,%xmm15
# interleave 64-bit words in state n, n+2
movdqa 0x00(%rsp),%xmm0
movdqa 0x20(%rsp),%xmm1
movdqa %xmm0,%xmm2
punpcklqdq %xmm1,%xmm2
punpckhqdq %xmm1,%xmm0
movdqa %xmm2,0x00(%rsp)
movdqa %xmm0,0x20(%rsp)
movdqa 0x10(%rsp),%xmm0
movdqa 0x30(%rsp),%xmm1
movdqa %xmm0,%xmm2
punpcklqdq %xmm1,%xmm2
punpckhqdq %xmm1,%xmm0
movdqa %xmm2,0x10(%rsp)
movdqa %xmm0,0x30(%rsp)
movdqa %xmm4,%xmm0
punpcklqdq %xmm6,%xmm4
punpckhqdq %xmm6,%xmm0
movdqa %xmm0,%xmm6
movdqa %xmm5,%xmm0
punpcklqdq %xmm7,%xmm5
punpckhqdq %xmm7,%xmm0
movdqa %xmm0,%xmm7
movdqa %xmm8,%xmm0
punpcklqdq %xmm10,%xmm8
punpckhqdq %xmm10,%xmm0
movdqa %xmm0,%xmm10
movdqa %xmm9,%xmm0
punpcklqdq %xmm11,%xmm9
punpckhqdq %xmm11,%xmm0
movdqa %xmm0,%xmm11
movdqa %xmm12,%xmm0
punpcklqdq %xmm14,%xmm12
punpckhqdq %xmm14,%xmm0
movdqa %xmm0,%xmm14
movdqa %xmm13,%xmm0
punpcklqdq %xmm15,%xmm13
punpckhqdq %xmm15,%xmm0
movdqa %xmm0,%xmm15
# xor with corresponding input, write to output
movdqa 0x00(%rsp),%xmm0
movdqu 0x00(%rdx),%xmm1
pxor %xmm1,%xmm0
movdqu %xmm0,0x00(%rsi)
movdqa 0x10(%rsp),%xmm0
movdqu 0x80(%rdx),%xmm1
pxor %xmm1,%xmm0
movdqu %xmm0,0x80(%rsi)
movdqa 0x20(%rsp),%xmm0
movdqu 0x40(%rdx),%xmm1
pxor %xmm1,%xmm0
movdqu %xmm0,0x40(%rsi)
movdqa 0x30(%rsp),%xmm0
movdqu 0xc0(%rdx),%xmm1
pxor %xmm1,%xmm0
movdqu %xmm0,0xc0(%rsi)
movdqu 0x10(%rdx),%xmm1
pxor %xmm1,%xmm4
movdqu %xmm4,0x10(%rsi)
movdqu 0x90(%rdx),%xmm1
pxor %xmm1,%xmm5
movdqu %xmm5,0x90(%rsi)
movdqu 0x50(%rdx),%xmm1
pxor %xmm1,%xmm6
movdqu %xmm6,0x50(%rsi)
movdqu 0xd0(%rdx),%xmm1
pxor %xmm1,%xmm7
movdqu %xmm7,0xd0(%rsi)
movdqu 0x20(%rdx),%xmm1
pxor %xmm1,%xmm8
movdqu %xmm8,0x20(%rsi)
movdqu 0xa0(%rdx),%xmm1
pxor %xmm1,%xmm9
movdqu %xmm9,0xa0(%rsi)
movdqu 0x60(%rdx),%xmm1
pxor %xmm1,%xmm10
movdqu %xmm10,0x60(%rsi)
movdqu 0xe0(%rdx),%xmm1
pxor %xmm1,%xmm11
movdqu %xmm11,0xe0(%rsi)
movdqu 0x30(%rdx),%xmm1
pxor %xmm1,%xmm12
movdqu %xmm12,0x30(%rsi)
movdqu 0xb0(%rdx),%xmm1
pxor %xmm1,%xmm13
movdqu %xmm13,0xb0(%rsi)
movdqu 0x70(%rdx),%xmm1
pxor %xmm1,%xmm14
movdqu %xmm14,0x70(%rsi)
movdqu 0xf0(%rdx),%xmm1
pxor %xmm1,%xmm15
movdqu %xmm15,0xf0(%rsi)
lea -8(%r10),%rsp
crypto: chacha20 - Add a four block SSSE3 variant for x86_64 Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing four ChaCha20 blocks in parallel. This avoids the word shuffling needed in the single block variant, further increasing throughput. For large messages, throughput increases by ~110% compared to single block SSSE3: testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes) test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes) test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes) test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes) test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes) testing speed of chacha20 (chacha20-simd) encryption test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes) test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes) test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes) test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes) test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes) Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 01:14:02 +08:00
ret
ENDPROC(chacha20_4block_xor_ssse3)