OpenCloudOS-Kernel/drivers/usb/serial/safe_serial.c

306 lines
9.9 KiB
C
Raw Normal View History

/*
* Safe Encapsulated USB Serial Driver
*
* Copyright (C) 2010 Johan Hovold <jhovold@gmail.com>
* Copyright (C) 2001 Lineo
* Copyright (C) 2001 Hewlett-Packard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* By:
* Stuart Lynne <sl@lineo.com>, Tom Rushworth <tbr@lineo.com>
*/
/*
* The encapsultaion is designed to overcome difficulties with some USB
* hardware.
*
* While the USB protocol has a CRC over the data while in transit, i.e. while
* being carried over the bus, there is no end to end protection. If the
* hardware has any problems getting the data into or out of the USB transmit
* and receive FIFO's then data can be lost.
*
* This protocol adds a two byte trailer to each USB packet to specify the
* number of bytes of valid data and a 10 bit CRC that will allow the receiver
* to verify that the entire USB packet was received without error.
*
* Because in this case the sender and receiver are the class and function
* drivers there is now end to end protection.
*
* There is an additional option that can be used to force all transmitted
* packets to be padded to the maximum packet size. This provides a work
* around for some devices which have problems with small USB packets.
*
* Assuming a packetsize of N:
*
* 0..N-2 data and optional padding
*
* N-2 bits 7-2 - number of bytes of valid data
* bits 1-0 top two bits of 10 bit CRC
* N-1 bottom 8 bits of 10 bit CRC
*
*
* | Data Length | 10 bit CRC |
* + 7 . 6 . 5 . 4 . 3 . 2 . 1 . 0 | 7 . 6 . 5 . 4 . 3 . 2 . 1 . 0 +
*
* The 10 bit CRC is computed across the sent data, followed by the trailer
* with the length set and the CRC set to zero. The CRC is then OR'd into
* the trailer.
*
* When received a 10 bit CRC is computed over the entire frame including
* the trailer and should be equal to zero.
*
* Two module parameters are used to control the encapsulation, if both are
* turned of the module works as a simple serial device with NO
* encapsulation.
*
* See linux/drivers/usbd/serial_fd for a device function driver
* implementation of this.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/usb.h>
#include <linux/usb/serial.h>
#ifndef CONFIG_USB_SERIAL_SAFE_PADDED
#define CONFIG_USB_SERIAL_SAFE_PADDED 0
#endif
static bool safe = 1;
static bool padded = CONFIG_USB_SERIAL_SAFE_PADDED;
#define DRIVER_AUTHOR "sl@lineo.com, tbr@lineo.com, Johan Hovold <jhovold@gmail.com>"
#define DRIVER_DESC "USB Safe Encapsulated Serial"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
module_param(safe, bool, 0);
MODULE_PARM_DESC(safe, "Turn Safe Encapsulation On/Off");
module_param(padded, bool, 0);
MODULE_PARM_DESC(padded, "Pad to full wMaxPacketSize On/Off");
#define CDC_DEVICE_CLASS 0x02
#define CDC_INTERFACE_CLASS 0x02
#define CDC_INTERFACE_SUBCLASS 0x06
#define LINEO_INTERFACE_CLASS 0xff
#define LINEO_INTERFACE_SUBCLASS_SAFENET 0x01
#define LINEO_SAFENET_CRC 0x01
#define LINEO_SAFENET_CRC_PADDED 0x02
#define LINEO_INTERFACE_SUBCLASS_SAFESERIAL 0x02
#define LINEO_SAFESERIAL_CRC 0x01
#define LINEO_SAFESERIAL_CRC_PADDED 0x02
#define MY_USB_DEVICE(vend, prod, dc, ic, isc) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_DEV_CLASS | \
USB_DEVICE_ID_MATCH_INT_CLASS | \
USB_DEVICE_ID_MATCH_INT_SUBCLASS, \
.idVendor = (vend), \
.idProduct = (prod),\
.bDeviceClass = (dc),\
.bInterfaceClass = (ic), \
.bInterfaceSubClass = (isc),
static const struct usb_device_id id_table[] = {
{MY_USB_DEVICE(0x49f, 0xffff, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Itsy */
{MY_USB_DEVICE(0x3f0, 0x2101, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Calypso */
{MY_USB_DEVICE(0x4dd, 0x8001, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Iris */
{MY_USB_DEVICE(0x4dd, 0x8002, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Collie */
{MY_USB_DEVICE(0x4dd, 0x8003, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Collie */
{MY_USB_DEVICE(0x4dd, 0x8004, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Collie */
{MY_USB_DEVICE(0x5f9, 0xffff, CDC_DEVICE_CLASS, LINEO_INTERFACE_CLASS, LINEO_INTERFACE_SUBCLASS_SAFESERIAL)}, /* Sharp tmp */
{} /* terminating entry */
};
MODULE_DEVICE_TABLE(usb, id_table);
static const __u16 crc10_table[256] = {
0x000, 0x233, 0x255, 0x066, 0x299, 0x0aa, 0x0cc, 0x2ff,
0x301, 0x132, 0x154, 0x367, 0x198, 0x3ab, 0x3cd, 0x1fe,
0x031, 0x202, 0x264, 0x057, 0x2a8, 0x09b, 0x0fd, 0x2ce,
0x330, 0x103, 0x165, 0x356, 0x1a9, 0x39a, 0x3fc, 0x1cf,
0x062, 0x251, 0x237, 0x004, 0x2fb, 0x0c8, 0x0ae, 0x29d,
0x363, 0x150, 0x136, 0x305, 0x1fa, 0x3c9, 0x3af, 0x19c,
0x053, 0x260, 0x206, 0x035, 0x2ca, 0x0f9, 0x09f, 0x2ac,
0x352, 0x161, 0x107, 0x334, 0x1cb, 0x3f8, 0x39e, 0x1ad,
0x0c4, 0x2f7, 0x291, 0x0a2, 0x25d, 0x06e, 0x008, 0x23b,
0x3c5, 0x1f6, 0x190, 0x3a3, 0x15c, 0x36f, 0x309, 0x13a,
0x0f5, 0x2c6, 0x2a0, 0x093, 0x26c, 0x05f, 0x039, 0x20a,
0x3f4, 0x1c7, 0x1a1, 0x392, 0x16d, 0x35e, 0x338, 0x10b,
0x0a6, 0x295, 0x2f3, 0x0c0, 0x23f, 0x00c, 0x06a, 0x259,
0x3a7, 0x194, 0x1f2, 0x3c1, 0x13e, 0x30d, 0x36b, 0x158,
0x097, 0x2a4, 0x2c2, 0x0f1, 0x20e, 0x03d, 0x05b, 0x268,
0x396, 0x1a5, 0x1c3, 0x3f0, 0x10f, 0x33c, 0x35a, 0x169,
0x188, 0x3bb, 0x3dd, 0x1ee, 0x311, 0x122, 0x144, 0x377,
0x289, 0x0ba, 0x0dc, 0x2ef, 0x010, 0x223, 0x245, 0x076,
0x1b9, 0x38a, 0x3ec, 0x1df, 0x320, 0x113, 0x175, 0x346,
0x2b8, 0x08b, 0x0ed, 0x2de, 0x021, 0x212, 0x274, 0x047,
0x1ea, 0x3d9, 0x3bf, 0x18c, 0x373, 0x140, 0x126, 0x315,
0x2eb, 0x0d8, 0x0be, 0x28d, 0x072, 0x241, 0x227, 0x014,
0x1db, 0x3e8, 0x38e, 0x1bd, 0x342, 0x171, 0x117, 0x324,
0x2da, 0x0e9, 0x08f, 0x2bc, 0x043, 0x270, 0x216, 0x025,
0x14c, 0x37f, 0x319, 0x12a, 0x3d5, 0x1e6, 0x180, 0x3b3,
0x24d, 0x07e, 0x018, 0x22b, 0x0d4, 0x2e7, 0x281, 0x0b2,
0x17d, 0x34e, 0x328, 0x11b, 0x3e4, 0x1d7, 0x1b1, 0x382,
0x27c, 0x04f, 0x029, 0x21a, 0x0e5, 0x2d6, 0x2b0, 0x083,
0x12e, 0x31d, 0x37b, 0x148, 0x3b7, 0x184, 0x1e2, 0x3d1,
0x22f, 0x01c, 0x07a, 0x249, 0x0b6, 0x285, 0x2e3, 0x0d0,
0x11f, 0x32c, 0x34a, 0x179, 0x386, 0x1b5, 0x1d3, 0x3e0,
0x21e, 0x02d, 0x04b, 0x278, 0x087, 0x2b4, 0x2d2, 0x0e1,
};
#define CRC10_INITFCS 0x000 /* Initial FCS value */
#define CRC10_GOODFCS 0x000 /* Good final FCS value */
#define CRC10_FCS(fcs, c) ((((fcs) << 8) & 0x3ff) ^ crc10_table[((fcs) >> 2) & 0xff] ^ (c))
/**
* fcs_compute10 - memcpy and calculate 10 bit CRC across buffer
* @sp: pointer to buffer
* @len: number of bytes
* @fcs: starting FCS
*
* Perform a memcpy and calculate fcs using ppp 10bit CRC algorithm. Return
* new 10 bit FCS.
*/
static __u16 __inline__ fcs_compute10(unsigned char *sp, int len, __u16 fcs)
{
for (; len-- > 0; fcs = CRC10_FCS(fcs, *sp++));
return fcs;
}
static void safe_process_read_urb(struct urb *urb)
{
struct usb_serial_port *port = urb->context;
unsigned char *data = urb->transfer_buffer;
unsigned char length = urb->actual_length;
int actual_length;
__u16 fcs;
if (!length)
return;
if (!safe)
goto out;
fcs = fcs_compute10(data, length, CRC10_INITFCS);
if (fcs) {
dev_err(&port->dev, "%s - bad CRC %x\n", __func__, fcs);
return;
}
actual_length = data[length - 2] >> 2;
if (actual_length > (length - 2)) {
dev_err(&port->dev, "%s - inconsistent lengths %d:%d\n",
__func__, actual_length, length);
return;
}
dev_info(&urb->dev->dev, "%s - actual: %d\n", __func__, actual_length);
length = actual_length;
out:
tty_insert_flip_string(&port->port, data, length);
tty_flip_buffer_push(&port->port);
}
static int safe_prepare_write_buffer(struct usb_serial_port *port,
void *dest, size_t size)
{
unsigned char *buf = dest;
int count;
int trailer_len;
int pkt_len;
__u16 fcs;
trailer_len = safe ? 2 : 0;
count = kfifo_out_locked(&port->write_fifo, buf, size - trailer_len,
&port->lock);
if (!safe)
return count;
/* pad if necessary */
if (padded) {
pkt_len = size;
memset(buf + count, '0', pkt_len - count - trailer_len);
} else {
pkt_len = count + trailer_len;
}
/* set count */
buf[pkt_len - 2] = count << 2;
buf[pkt_len - 1] = 0;
/* compute fcs and insert into trailer */
fcs = fcs_compute10(buf, pkt_len, CRC10_INITFCS);
buf[pkt_len - 2] |= fcs >> 8;
buf[pkt_len - 1] |= fcs & 0xff;
return pkt_len;
}
static int safe_startup(struct usb_serial *serial)
{
struct usb_interface_descriptor *desc;
if (serial->dev->descriptor.bDeviceClass != CDC_DEVICE_CLASS)
return -ENODEV;
desc = &serial->interface->cur_altsetting->desc;
if (desc->bInterfaceClass != LINEO_INTERFACE_CLASS)
return -ENODEV;
if (desc->bInterfaceSubClass != LINEO_INTERFACE_SUBCLASS_SAFESERIAL)
return -ENODEV;
switch (desc->bInterfaceProtocol) {
case LINEO_SAFESERIAL_CRC:
break;
case LINEO_SAFESERIAL_CRC_PADDED:
padded = 1;
break;
default:
return -EINVAL;
}
return 0;
}
static struct usb_serial_driver safe_device = {
.driver = {
.owner = THIS_MODULE,
.name = "safe_serial",
},
.id_table = id_table,
.num_ports = 1,
.process_read_urb = safe_process_read_urb,
.prepare_write_buffer = safe_prepare_write_buffer,
.attach = safe_startup,
};
static struct usb_serial_driver * const serial_drivers[] = {
&safe_device, NULL
};
module_usb_serial_driver(serial_drivers, id_table);