OpenCloudOS-Kernel/include/linux/tracehook.h

600 lines
21 KiB
C
Raw Normal View History

tracehook: add linux/tracehook.h This patch series introduces the "tracehook" interface layer of inlines in <linux/tracehook.h>. There are more details in the log entry for patch 01/23 and in the header file comments inside that patch. Most of these changes move code around with little or no change, and they should not break anything or change any behavior. This sets a new standard for uniform arch support to enable clean arch-independent implementations of new debugging and tracing stuff, denoted by CONFIG_HAVE_ARCH_TRACEHOOK. Patch 20/23 adds that symbol to arch/Kconfig, with comments listing everything an arch has to do before setting "select HAVE_ARCH_TRACEHOOK". These are elaborted a bit at: http://sourceware.org/systemtap/wiki/utrace/arch/HowTo The new inlines that arch code must define or call have detailed kerneldoc comments in the generic header files that say what is required. No arch is obligated to do any work, and no arch's build should be broken by these changes. There are several steps that each arch should take so it can set HAVE_ARCH_TRACEHOOK. Most of these are simple. Providing this support will let new things people add for doing debugging and tracing of user-level threads "just work" for your arch in the future. For an arch that does not provide HAVE_ARCH_TRACEHOOK, some new options for such features will not be available for config. I have done some arch work and will submit this to the arch maintainers after the generic tracehook series settles in. For now, that work is available in my GIT repositories, and in patch and mbox-of-patches form at http://people.redhat.com/roland/utrace/2.6-current/ This paves the way for my "utrace" work, to be submitted later. But it is not innately tied to that. I hope that the tracehook series can go in soon regardless of what eventually does or doesn't go on top of it. For anyone implementing any kind of new tracing/debugging plan, or just understanding all the context of the existing ptrace implementation, having tracehook.h makes things much easier to find and understand. This patch: This adds the new kernel-internal header file <linux/tracehook.h>. This is not yet used at all. The comments in the header introduce what the following series of patches is about. The aim is to formalize and consolidate all the places that the core kernel code and the arch code now ties into the ptrace implementation. These patches mostly don't cause any functional change. They just move the details of ptrace logic out of core code into tracehook.h inlines, where they are mostly compiled away to the same as before. All that changes is that everything is thoroughly documented and any future reworking of ptrace, or addition of something new, would not have to touch core code all over, just change the tracehook.h inlines. The new linux/ptrace.h inlines are used by the following patches in the new tracehook_*() inlines. Using these helpers for the ptrace event stops makes it simple to change or disable the old ptrace implementation of these stops conditionally later. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:43 +08:00
/*
* Tracing hooks
*
* Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved.
tracehook: add linux/tracehook.h This patch series introduces the "tracehook" interface layer of inlines in <linux/tracehook.h>. There are more details in the log entry for patch 01/23 and in the header file comments inside that patch. Most of these changes move code around with little or no change, and they should not break anything or change any behavior. This sets a new standard for uniform arch support to enable clean arch-independent implementations of new debugging and tracing stuff, denoted by CONFIG_HAVE_ARCH_TRACEHOOK. Patch 20/23 adds that symbol to arch/Kconfig, with comments listing everything an arch has to do before setting "select HAVE_ARCH_TRACEHOOK". These are elaborted a bit at: http://sourceware.org/systemtap/wiki/utrace/arch/HowTo The new inlines that arch code must define or call have detailed kerneldoc comments in the generic header files that say what is required. No arch is obligated to do any work, and no arch's build should be broken by these changes. There are several steps that each arch should take so it can set HAVE_ARCH_TRACEHOOK. Most of these are simple. Providing this support will let new things people add for doing debugging and tracing of user-level threads "just work" for your arch in the future. For an arch that does not provide HAVE_ARCH_TRACEHOOK, some new options for such features will not be available for config. I have done some arch work and will submit this to the arch maintainers after the generic tracehook series settles in. For now, that work is available in my GIT repositories, and in patch and mbox-of-patches form at http://people.redhat.com/roland/utrace/2.6-current/ This paves the way for my "utrace" work, to be submitted later. But it is not innately tied to that. I hope that the tracehook series can go in soon regardless of what eventually does or doesn't go on top of it. For anyone implementing any kind of new tracing/debugging plan, or just understanding all the context of the existing ptrace implementation, having tracehook.h makes things much easier to find and understand. This patch: This adds the new kernel-internal header file <linux/tracehook.h>. This is not yet used at all. The comments in the header introduce what the following series of patches is about. The aim is to formalize and consolidate all the places that the core kernel code and the arch code now ties into the ptrace implementation. These patches mostly don't cause any functional change. They just move the details of ptrace logic out of core code into tracehook.h inlines, where they are mostly compiled away to the same as before. All that changes is that everything is thoroughly documented and any future reworking of ptrace, or addition of something new, would not have to touch core code all over, just change the tracehook.h inlines. The new linux/ptrace.h inlines are used by the following patches in the new tracehook_*() inlines. Using these helpers for the ptrace event stops makes it simple to change or disable the old ptrace implementation of these stops conditionally later. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:43 +08:00
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*
* This file defines hook entry points called by core code where
* user tracing/debugging support might need to do something. These
* entry points are called tracehook_*(). Each hook declared below
* has a detailed kerneldoc comment giving the context (locking et
* al) from which it is called, and the meaning of its return value.
*
* Each function here typically has only one call site, so it is ok
* to have some nontrivial tracehook_*() inlines. In all cases, the
* fast path when no tracing is enabled should be very short.
*
* The purpose of this file and the tracehook_* layer is to consolidate
* the interface that the kernel core and arch code uses to enable any
* user debugging or tracing facility (such as ptrace). The interfaces
* here are carefully documented so that maintainers of core and arch
* code do not need to think about the implementation details of the
* tracing facilities. Likewise, maintainers of the tracing code do not
* need to understand all the calling core or arch code in detail, just
* documented circumstances of each call, such as locking conditions.
*
* If the calling core code changes so that locking is different, then
* it is ok to change the interface documented here. The maintainer of
* core code changing should notify the maintainers of the tracing code
* that they need to work out the change.
*
* Some tracehook_*() inlines take arguments that the current tracing
* implementations might not necessarily use. These function signatures
* are chosen to pass in all the information that is on hand in the
* caller and might conceivably be relevant to a tracer, so that the
* core code won't have to be updated when tracing adds more features.
* If a call site changes so that some of those parameters are no longer
* already on hand without extra work, then the tracehook_* interface
* can change so there is no make-work burden on the core code. The
* maintainer of core code changing should notify the maintainers of the
* tracing code that they need to work out the change.
*/
#ifndef _LINUX_TRACEHOOK_H
#define _LINUX_TRACEHOOK_H 1
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/security.h>
struct linux_binprm;
/**
* tracehook_expect_breakpoints - guess if task memory might be touched
* @task: current task, making a new mapping
*
* Return nonzero if @task is expected to want breakpoint insertion in
* its memory at some point. A zero return is no guarantee it won't
* be done, but this is a hint that it's known to be likely.
*
* May be called with @task->mm->mmap_sem held for writing.
*/
static inline int tracehook_expect_breakpoints(struct task_struct *task)
{
return (task_ptrace(task) & PT_PTRACED) != 0;
}
/*
* ptrace report for syscall entry and exit looks identical.
*/
static inline void ptrace_report_syscall(struct pt_regs *regs)
{
int ptrace = task_ptrace(current);
if (!(ptrace & PT_PTRACED))
return;
ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
/*
* this isn't the same as continuing with a signal, but it will do
* for normal use. strace only continues with a signal if the
* stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
current->exit_code = 0;
}
}
/**
* tracehook_report_syscall_entry - task is about to attempt a system call
* @regs: user register state of current task
*
* This will be called if %TIF_SYSCALL_TRACE has been set, when the
* current task has just entered the kernel for a system call.
* Full user register state is available here. Changing the values
* in @regs can affect the system call number and arguments to be tried.
* It is safe to block here, preventing the system call from beginning.
*
* Returns zero normally, or nonzero if the calling arch code should abort
* the system call. That must prevent normal entry so no system call is
* made. If @task ever returns to user mode after this, its register state
* is unspecified, but should be something harmless like an %ENOSYS error
* return. It should preserve enough information so that syscall_rollback()
* can work (see asm-generic/syscall.h).
*
* Called without locks, just after entering kernel mode.
*/
static inline __must_check int tracehook_report_syscall_entry(
struct pt_regs *regs)
{
ptrace_report_syscall(regs);
return 0;
}
/**
* tracehook_report_syscall_exit - task has just finished a system call
* @regs: user register state of current task
* @step: nonzero if simulating single-step or block-step
*
* This will be called if %TIF_SYSCALL_TRACE has been set, when the
* current task has just finished an attempted system call. Full
* user register state is available here. It is safe to block here,
* preventing signals from being processed.
*
* If @step is nonzero, this report is also in lieu of the normal
* trap that would follow the system call instruction because
* user_enable_block_step() or user_enable_single_step() was used.
* In this case, %TIF_SYSCALL_TRACE might not be set.
*
* Called without locks, just before checking for pending signals.
*/
static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step)
{
ptrace: change tracehook_report_syscall_exit() to handle stepping Suggested by Roland. Change tracehook_report_syscall_exit() to look at step flag and send the trap signal if needed. This change affects ia64, microblaze, parisc, powerpc, sh. They pass nonzero "step" argument to tracehook but since it was ignored the tracee reports via ptrace_notify(), this is not right and not consistent. - PTRACE_SETSIGINFO doesn't work - if the tracer resumes the tracee with signr != 0 the new signal is generated rather than delivering it - If PT_TRACESYSGOOD is set the tracee reports the wrong exit_code I don't have a powerpc machine, but I think this test-case should see the difference: #include <unistd.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <assert.h> #include <stdio.h> int main(void) { int pid, status; if (!(pid = fork())) { assert(ptrace(PTRACE_TRACEME) == 0); kill(getpid(), SIGSTOP); getppid(); return 0; } assert(pid == wait(&status)); assert(ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACESYSGOOD) == 0); assert(ptrace(PTRACE_SYSCALL, pid, 0,0) == 0); assert(pid == wait(&status)); assert(ptrace(PTRACE_SINGLESTEP, pid, 0,0) == 0); assert(pid == wait(&status)); if (status == 0x57F) return 0; printf("kernel bug: status=%X shouldn't have 0x80\n", status); return 1; } Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Roland McGrath <roland@redhat.com> Cc: <linux-arch@vger.kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 08:47:19 +08:00
if (step) {
siginfo_t info;
user_single_step_siginfo(current, regs, &info);
force_sig_info(SIGTRAP, &info, current);
return;
}
ptrace_report_syscall(regs);
}
/**
* tracehook_unsafe_exec - check for exec declared unsafe due to tracing
* @task: current task doing exec
*
* Return %LSM_UNSAFE_* bits applied to an exec because of tracing.
*
* @task->cred_guard_mutex is held by the caller through the do_execve().
*/
static inline int tracehook_unsafe_exec(struct task_struct *task)
{
int unsafe = 0;
int ptrace = task_ptrace(task);
if (ptrace & PT_PTRACED) {
if (ptrace & PT_PTRACE_CAP)
unsafe |= LSM_UNSAFE_PTRACE_CAP;
else
unsafe |= LSM_UNSAFE_PTRACE;
}
return unsafe;
}
/**
* tracehook_tracer_task - return the task that is tracing the given task
* @tsk: task to consider
*
* Returns NULL if noone is tracing @task, or the &struct task_struct
* pointer to its tracer.
*
* Must called under rcu_read_lock(). The pointer returned might be kept
* live only by RCU. During exec, this may be called with task_lock()
* held on @task, still held from when tracehook_unsafe_exec() was called.
*/
static inline struct task_struct *tracehook_tracer_task(struct task_struct *tsk)
{
if (task_ptrace(tsk) & PT_PTRACED)
return rcu_dereference(tsk->parent);
return NULL;
}
/**
* tracehook_report_exec - a successful exec was completed
* @fmt: &struct linux_binfmt that performed the exec
* @bprm: &struct linux_binprm containing exec details
* @regs: user-mode register state
*
* An exec just completed, we are shortly going to return to user mode.
* The freshly initialized register state can be seen and changed in @regs.
* The name, file and other pointers in @bprm are still on hand to be
* inspected, but will be freed as soon as this returns.
*
* Called with no locks, but with some kernel resources held live
* and a reference on @fmt->module.
*/
static inline void tracehook_report_exec(struct linux_binfmt *fmt,
struct linux_binprm *bprm,
struct pt_regs *regs)
{
if (!ptrace_event(PT_TRACE_EXEC, PTRACE_EVENT_EXEC, 0) &&
unlikely(task_ptrace(current) & PT_PTRACED))
send_sig(SIGTRAP, current, 0);
}
tracehook: add linux/tracehook.h This patch series introduces the "tracehook" interface layer of inlines in <linux/tracehook.h>. There are more details in the log entry for patch 01/23 and in the header file comments inside that patch. Most of these changes move code around with little or no change, and they should not break anything or change any behavior. This sets a new standard for uniform arch support to enable clean arch-independent implementations of new debugging and tracing stuff, denoted by CONFIG_HAVE_ARCH_TRACEHOOK. Patch 20/23 adds that symbol to arch/Kconfig, with comments listing everything an arch has to do before setting "select HAVE_ARCH_TRACEHOOK". These are elaborted a bit at: http://sourceware.org/systemtap/wiki/utrace/arch/HowTo The new inlines that arch code must define or call have detailed kerneldoc comments in the generic header files that say what is required. No arch is obligated to do any work, and no arch's build should be broken by these changes. There are several steps that each arch should take so it can set HAVE_ARCH_TRACEHOOK. Most of these are simple. Providing this support will let new things people add for doing debugging and tracing of user-level threads "just work" for your arch in the future. For an arch that does not provide HAVE_ARCH_TRACEHOOK, some new options for such features will not be available for config. I have done some arch work and will submit this to the arch maintainers after the generic tracehook series settles in. For now, that work is available in my GIT repositories, and in patch and mbox-of-patches form at http://people.redhat.com/roland/utrace/2.6-current/ This paves the way for my "utrace" work, to be submitted later. But it is not innately tied to that. I hope that the tracehook series can go in soon regardless of what eventually does or doesn't go on top of it. For anyone implementing any kind of new tracing/debugging plan, or just understanding all the context of the existing ptrace implementation, having tracehook.h makes things much easier to find and understand. This patch: This adds the new kernel-internal header file <linux/tracehook.h>. This is not yet used at all. The comments in the header introduce what the following series of patches is about. The aim is to formalize and consolidate all the places that the core kernel code and the arch code now ties into the ptrace implementation. These patches mostly don't cause any functional change. They just move the details of ptrace logic out of core code into tracehook.h inlines, where they are mostly compiled away to the same as before. All that changes is that everything is thoroughly documented and any future reworking of ptrace, or addition of something new, would not have to touch core code all over, just change the tracehook.h inlines. The new linux/ptrace.h inlines are used by the following patches in the new tracehook_*() inlines. Using these helpers for the ptrace event stops makes it simple to change or disable the old ptrace implementation of these stops conditionally later. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:43 +08:00
/**
* tracehook_report_exit - task has begun to exit
* @exit_code: pointer to value destined for @current->exit_code
*
* @exit_code points to the value passed to do_exit(), which tracing
* might change here. This is almost the first thing in do_exit(),
* before freeing any resources or setting the %PF_EXITING flag.
*
* Called with no locks held.
*/
static inline void tracehook_report_exit(long *exit_code)
{
ptrace_event(PT_TRACE_EXIT, PTRACE_EVENT_EXIT, *exit_code);
}
/**
* tracehook_prepare_clone - prepare for new child to be cloned
* @clone_flags: %CLONE_* flags from clone/fork/vfork system call
*
* This is called before a new user task is to be cloned.
* Its return value will be passed to tracehook_finish_clone().
*
* Called with no locks held.
*/
static inline int tracehook_prepare_clone(unsigned clone_flags)
{
if (clone_flags & CLONE_UNTRACED)
return 0;
if (clone_flags & CLONE_VFORK) {
if (current->ptrace & PT_TRACE_VFORK)
return PTRACE_EVENT_VFORK;
} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
if (current->ptrace & PT_TRACE_CLONE)
return PTRACE_EVENT_CLONE;
} else if (current->ptrace & PT_TRACE_FORK)
return PTRACE_EVENT_FORK;
return 0;
}
/**
* tracehook_finish_clone - new child created and being attached
* @child: new child task
* @clone_flags: %CLONE_* flags from clone/fork/vfork system call
* @trace: return value from tracehook_prepare_clone()
*
* This is called immediately after adding @child to its parent's children list.
* The @trace value is that returned by tracehook_prepare_clone().
*
* Called with current's siglock and write_lock_irq(&tasklist_lock) held.
*/
static inline void tracehook_finish_clone(struct task_struct *child,
unsigned long clone_flags, int trace)
{
ptrace_init_task(child, (clone_flags & CLONE_PTRACE) || trace);
}
/**
* tracehook_report_clone - in parent, new child is about to start running
* @regs: parent's user register state
* @clone_flags: flags from parent's system call
* @pid: new child's PID in the parent's namespace
* @child: new child task
*
* Called after a child is set up, but before it has been started running.
* This is not a good place to block, because the child has not started
* yet. Suspend the child here if desired, and then block in
* tracehook_report_clone_complete(). This must prevent the child from
* self-reaping if tracehook_report_clone_complete() uses the @child
* pointer; otherwise it might have died and been released by the time
* tracehook_report_clone_complete() is called.
*
* Called with no locks held, but the child cannot run until this returns.
*/
static inline void tracehook_report_clone(struct pt_regs *regs,
unsigned long clone_flags,
pid_t pid, struct task_struct *child)
{
if (unlikely(task_ptrace(child))) {
/*
* It doesn't matter who attached/attaching to this
* task, the pending SIGSTOP is right in any case.
*/
sigaddset(&child->pending.signal, SIGSTOP);
set_tsk_thread_flag(child, TIF_SIGPENDING);
}
}
/**
* tracehook_report_clone_complete - new child is running
* @trace: return value from tracehook_prepare_clone()
* @regs: parent's user register state
* @clone_flags: flags from parent's system call
* @pid: new child's PID in the parent's namespace
* @child: child task, already running
*
* This is called just after the child has started running. This is
* just before the clone/fork syscall returns, or blocks for vfork
* child completion if @clone_flags has the %CLONE_VFORK bit set.
* The @child pointer may be invalid if a self-reaping child died and
* tracehook_report_clone() took no action to prevent it from self-reaping.
*
* Called with no locks held.
*/
static inline void tracehook_report_clone_complete(int trace,
struct pt_regs *regs,
unsigned long clone_flags,
pid_t pid,
struct task_struct *child)
{
if (unlikely(trace))
ptrace_event(0, trace, pid);
}
/**
* tracehook_report_vfork_done - vfork parent's child has exited or exec'd
* @child: child task, already running
* @pid: new child's PID in the parent's namespace
*
* Called after a %CLONE_VFORK parent has waited for the child to complete.
* The clone/vfork system call will return immediately after this.
* The @child pointer may be invalid if a self-reaping child died and
* tracehook_report_clone() took no action to prevent it from self-reaping.
*
* Called with no locks held.
*/
static inline void tracehook_report_vfork_done(struct task_struct *child,
pid_t pid)
{
ptrace_event(PT_TRACE_VFORK_DONE, PTRACE_EVENT_VFORK_DONE, pid);
}
/**
* tracehook_prepare_release_task - task is being reaped, clean up tracing
* @task: task in %EXIT_DEAD state
*
* This is called in release_task() just before @task gets finally reaped
* and freed. This would be the ideal place to remove and clean up any
* tracing-related state for @task.
*
* Called with no locks held.
*/
static inline void tracehook_prepare_release_task(struct task_struct *task)
{
}
/**
* tracehook_finish_release_task - final tracing clean-up
* @task: task in %EXIT_DEAD state
*
* This is called in release_task() when @task is being in the middle of
* being reaped. After this, there must be no tracing entanglements.
*
* Called with write_lock_irq(&tasklist_lock) held.
*/
static inline void tracehook_finish_release_task(struct task_struct *task)
{
ptrace_release_task(task);
}
/**
* tracehook_signal_handler - signal handler setup is complete
* @sig: number of signal being delivered
* @info: siginfo_t of signal being delivered
* @ka: sigaction setting that chose the handler
* @regs: user register state
* @stepping: nonzero if debugger single-step or block-step in use
*
* Called by the arch code after a signal handler has been set up.
* Register and stack state reflects the user handler about to run.
* Signal mask changes have already been made.
*
* Called without locks, shortly before returning to user mode
* (or handling more signals).
*/
static inline void tracehook_signal_handler(int sig, siginfo_t *info,
const struct k_sigaction *ka,
struct pt_regs *regs, int stepping)
{
if (stepping)
ptrace_notify(SIGTRAP);
}
/**
* tracehook_consider_ignored_signal - suppress short-circuit of ignored signal
* @task: task receiving the signal
* @sig: signal number being sent
*
* Return zero iff tracing doesn't care to examine this ignored signal,
* so it can short-circuit normal delivery and never even get queued.
*
* Called with @task->sighand->siglock held.
*/
static inline int tracehook_consider_ignored_signal(struct task_struct *task,
signals: remove 'handler' parameter to tracehook functions Container-init must behave like global-init to processes within the container and hence it must be immune to unhandled fatal signals from within the container (i.e SIG_DFL signals that terminate the process). But the same container-init must behave like a normal process to processes in ancestor namespaces and so if it receives the same fatal signal from a process in ancestor namespace, the signal must be processed. Implementing these semantics requires that send_signal() determine pid namespace of the sender but since signals can originate from workqueues/ interrupt-handlers, determining pid namespace of sender may not always be possible or safe. This patchset implements the design/simplified semantics suggested by Oleg Nesterov. The simplified semantics for container-init are: - container-init must never be terminated by a signal from a descendant process. - container-init must never be immune to SIGKILL from an ancestor namespace (so a process in parent namespace must always be able to terminate a descendant container). - container-init may be immune to unhandled fatal signals (like SIGUSR1) even if they are from ancestor namespace. SIGKILL/SIGSTOP are the only reliable signals to a container-init from ancestor namespace. This patch: Based on an earlier patch submitted by Oleg Nesterov and comments from Roland McGrath (http://lkml.org/lkml/2008/11/19/258). The handler parameter is currently unused in the tracehook functions. Besides, the tracehook functions are called with siglock held, so the functions can check the handler if they later need to. Removing the parameter simiplifies changes to sig_ignored() in a follow-on patch. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Acked-by: Roland McGrath <roland@redhat.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:58:00 +08:00
int sig)
{
return (task_ptrace(task) & PT_PTRACED) != 0;
}
/**
* tracehook_consider_fatal_signal - suppress special handling of fatal signal
* @task: task receiving the signal
* @sig: signal number being sent
*
* Return nonzero to prevent special handling of this termination signal.
signals: remove 'handler' parameter to tracehook functions Container-init must behave like global-init to processes within the container and hence it must be immune to unhandled fatal signals from within the container (i.e SIG_DFL signals that terminate the process). But the same container-init must behave like a normal process to processes in ancestor namespaces and so if it receives the same fatal signal from a process in ancestor namespace, the signal must be processed. Implementing these semantics requires that send_signal() determine pid namespace of the sender but since signals can originate from workqueues/ interrupt-handlers, determining pid namespace of sender may not always be possible or safe. This patchset implements the design/simplified semantics suggested by Oleg Nesterov. The simplified semantics for container-init are: - container-init must never be terminated by a signal from a descendant process. - container-init must never be immune to SIGKILL from an ancestor namespace (so a process in parent namespace must always be able to terminate a descendant container). - container-init may be immune to unhandled fatal signals (like SIGUSR1) even if they are from ancestor namespace. SIGKILL/SIGSTOP are the only reliable signals to a container-init from ancestor namespace. This patch: Based on an earlier patch submitted by Oleg Nesterov and comments from Roland McGrath (http://lkml.org/lkml/2008/11/19/258). The handler parameter is currently unused in the tracehook functions. Besides, the tracehook functions are called with siglock held, so the functions can check the handler if they later need to. Removing the parameter simiplifies changes to sig_ignored() in a follow-on patch. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Acked-by: Roland McGrath <roland@redhat.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:58:00 +08:00
* Normally handler for signal is %SIG_DFL. It can be %SIG_IGN if @sig is
* ignored, in which case force_sig() is about to reset it to %SIG_DFL.
* When this returns zero, this signal might cause a quick termination
* that does not give the debugger a chance to intercept the signal.
*
* Called with or without @task->sighand->siglock held.
*/
static inline int tracehook_consider_fatal_signal(struct task_struct *task,
signals: remove 'handler' parameter to tracehook functions Container-init must behave like global-init to processes within the container and hence it must be immune to unhandled fatal signals from within the container (i.e SIG_DFL signals that terminate the process). But the same container-init must behave like a normal process to processes in ancestor namespaces and so if it receives the same fatal signal from a process in ancestor namespace, the signal must be processed. Implementing these semantics requires that send_signal() determine pid namespace of the sender but since signals can originate from workqueues/ interrupt-handlers, determining pid namespace of sender may not always be possible or safe. This patchset implements the design/simplified semantics suggested by Oleg Nesterov. The simplified semantics for container-init are: - container-init must never be terminated by a signal from a descendant process. - container-init must never be immune to SIGKILL from an ancestor namespace (so a process in parent namespace must always be able to terminate a descendant container). - container-init may be immune to unhandled fatal signals (like SIGUSR1) even if they are from ancestor namespace. SIGKILL/SIGSTOP are the only reliable signals to a container-init from ancestor namespace. This patch: Based on an earlier patch submitted by Oleg Nesterov and comments from Roland McGrath (http://lkml.org/lkml/2008/11/19/258). The handler parameter is currently unused in the tracehook functions. Besides, the tracehook functions are called with siglock held, so the functions can check the handler if they later need to. Removing the parameter simiplifies changes to sig_ignored() in a follow-on patch. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Acked-by: Roland McGrath <roland@redhat.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:58:00 +08:00
int sig)
{
return (task_ptrace(task) & PT_PTRACED) != 0;
}
/**
* tracehook_force_sigpending - let tracing force signal_pending(current) on
*
* Called when recomputing our signal_pending() flag. Return nonzero
* to force the signal_pending() flag on, so that tracehook_get_signal()
* will be called before the next return to user mode.
*
* Called with @current->sighand->siglock held.
*/
static inline int tracehook_force_sigpending(void)
{
return 0;
}
/**
* tracehook_get_signal - deliver synthetic signal to traced task
* @task: @current
* @regs: task_pt_regs(@current)
* @info: details of synthetic signal
* @return_ka: sigaction for synthetic signal
*
* Return zero to check for a real pending signal normally.
* Return -1 after releasing the siglock to repeat the check.
* Return a signal number to induce an artifical signal delivery,
* setting *@info and *@return_ka to specify its details and behavior.
*
* The @return_ka->sa_handler value controls the disposition of the
* signal, no matter the signal number. For %SIG_DFL, the return value
* is a representative signal to indicate the behavior (e.g. %SIGTERM
* for death, %SIGQUIT for core dump, %SIGSTOP for job control stop,
* %SIGTSTP for stop unless in an orphaned pgrp), but the signal number
* reported will be @info->si_signo instead.
*
* Called with @task->sighand->siglock held, before dequeuing pending signals.
*/
static inline int tracehook_get_signal(struct task_struct *task,
struct pt_regs *regs,
siginfo_t *info,
struct k_sigaction *return_ka)
{
return 0;
}
/**
* tracehook_notify_jctl - report about job control stop/continue
* @notify: zero, %CLD_STOPPED or %CLD_CONTINUED
* @why: %CLD_STOPPED or %CLD_CONTINUED
*
* This is called when we might call do_notify_parent_cldstop().
*
* @notify is zero if we would not ordinarily send a %SIGCHLD,
* or is the %CLD_STOPPED or %CLD_CONTINUED .si_code for %SIGCHLD.
*
* @why is %CLD_STOPPED when about to stop for job control;
* we are already in %TASK_STOPPED state, about to call schedule().
* It might also be that we have just exited (check %PF_EXITING),
* but need to report that a group-wide stop is complete.
*
* @why is %CLD_CONTINUED when waking up after job control stop and
* ready to make a delayed @notify report.
*
* Return the %CLD_* value for %SIGCHLD, or zero to generate no signal.
*
* Called with the siglock held.
*/
static inline int tracehook_notify_jctl(int notify, int why)
{
return notify ?: (current->ptrace & PT_PTRACED) ? why : 0;
}
/**
* tracehook_finish_jctl - report about return from job control stop
*
* This is called by do_signal_stop() after wakeup.
*/
static inline void tracehook_finish_jctl(void)
{
}
#define DEATH_REAP -1
#define DEATH_DELAYED_GROUP_LEADER -2
/**
* tracehook_notify_death - task is dead, ready to notify parent
* @task: @current task now exiting
* @death_cookie: value to pass to tracehook_report_death()
* @group_dead: nonzero if this was the last thread in the group to die
*
* A return value >= 0 means call do_notify_parent() with that signal
* number. Negative return value can be %DEATH_REAP to self-reap right
* now, or %DEATH_DELAYED_GROUP_LEADER to a zombie without notifying our
* parent. Note that a return value of 0 means a do_notify_parent() call
* that sends no signal, but still wakes up a parent blocked in wait*().
*
* Called with write_lock_irq(&tasklist_lock) held.
*/
static inline int tracehook_notify_death(struct task_struct *task,
void **death_cookie, int group_dead)
{
if (task_detached(task))
return task->ptrace ? SIGCHLD : DEATH_REAP;
/*
* If something other than our normal parent is ptracing us, then
* send it a SIGCHLD instead of honoring exit_signal. exit_signal
* only has special meaning to our real parent.
*/
if (thread_group_empty(task) && !ptrace_reparented(task))
return task->exit_signal;
return task->ptrace ? SIGCHLD : DEATH_DELAYED_GROUP_LEADER;
}
/**
* tracehook_report_death - task is dead and ready to be reaped
* @task: @current task now exiting
* @signal: return value from tracheook_notify_death()
* @death_cookie: value passed back from tracehook_notify_death()
* @group_dead: nonzero if this was the last thread in the group to die
*
* Thread has just become a zombie or is about to self-reap. If positive,
* @signal is the signal number just sent to the parent (usually %SIGCHLD).
* If @signal is %DEATH_REAP, this thread will self-reap. If @signal is
* %DEATH_DELAYED_GROUP_LEADER, this is a delayed_group_leader() zombie.
* The @death_cookie was passed back by tracehook_notify_death().
*
* If normal reaping is not inhibited, @task->exit_state might be changing
* in parallel.
*
* Called without locks.
*/
static inline void tracehook_report_death(struct task_struct *task,
int signal, void *death_cookie,
int group_dead)
{
}
#ifdef TIF_NOTIFY_RESUME
/**
* set_notify_resume - cause tracehook_notify_resume() to be called
* @task: task that will call tracehook_notify_resume()
*
* Calling this arranges that @task will call tracehook_notify_resume()
* before returning to user mode. If it's already running in user mode,
* it will enter the kernel and call tracehook_notify_resume() soon.
* If it's blocked, it will not be woken.
*/
static inline void set_notify_resume(struct task_struct *task)
{
if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME))
kick_process(task);
}
/**
* tracehook_notify_resume - report when about to return to user mode
* @regs: user-mode registers of @current task
*
* This is called when %TIF_NOTIFY_RESUME has been set. Now we are
* about to return to user mode, and the user state in @regs can be
* inspected or adjusted. The caller in arch code has cleared
* %TIF_NOTIFY_RESUME before the call. If the flag gets set again
* asynchronously, this will be called again before we return to
* user mode.
*
* Called without locks.
*/
static inline void tracehook_notify_resume(struct pt_regs *regs)
{
}
#endif /* TIF_NOTIFY_RESUME */
tracehook: add linux/tracehook.h This patch series introduces the "tracehook" interface layer of inlines in <linux/tracehook.h>. There are more details in the log entry for patch 01/23 and in the header file comments inside that patch. Most of these changes move code around with little or no change, and they should not break anything or change any behavior. This sets a new standard for uniform arch support to enable clean arch-independent implementations of new debugging and tracing stuff, denoted by CONFIG_HAVE_ARCH_TRACEHOOK. Patch 20/23 adds that symbol to arch/Kconfig, with comments listing everything an arch has to do before setting "select HAVE_ARCH_TRACEHOOK". These are elaborted a bit at: http://sourceware.org/systemtap/wiki/utrace/arch/HowTo The new inlines that arch code must define or call have detailed kerneldoc comments in the generic header files that say what is required. No arch is obligated to do any work, and no arch's build should be broken by these changes. There are several steps that each arch should take so it can set HAVE_ARCH_TRACEHOOK. Most of these are simple. Providing this support will let new things people add for doing debugging and tracing of user-level threads "just work" for your arch in the future. For an arch that does not provide HAVE_ARCH_TRACEHOOK, some new options for such features will not be available for config. I have done some arch work and will submit this to the arch maintainers after the generic tracehook series settles in. For now, that work is available in my GIT repositories, and in patch and mbox-of-patches form at http://people.redhat.com/roland/utrace/2.6-current/ This paves the way for my "utrace" work, to be submitted later. But it is not innately tied to that. I hope that the tracehook series can go in soon regardless of what eventually does or doesn't go on top of it. For anyone implementing any kind of new tracing/debugging plan, or just understanding all the context of the existing ptrace implementation, having tracehook.h makes things much easier to find and understand. This patch: This adds the new kernel-internal header file <linux/tracehook.h>. This is not yet used at all. The comments in the header introduce what the following series of patches is about. The aim is to formalize and consolidate all the places that the core kernel code and the arch code now ties into the ptrace implementation. These patches mostly don't cause any functional change. They just move the details of ptrace logic out of core code into tracehook.h inlines, where they are mostly compiled away to the same as before. All that changes is that everything is thoroughly documented and any future reworking of ptrace, or addition of something new, would not have to touch core code all over, just change the tracehook.h inlines. The new linux/ptrace.h inlines are used by the following patches in the new tracehook_*() inlines. Using these helpers for the ptrace event stops makes it simple to change or disable the old ptrace implementation of these stops conditionally later. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:43 +08:00
#endif /* <linux/tracehook.h> */