OpenCloudOS-Kernel/arch/arm/net/bpf_jit_32.c

1956 lines
52 KiB
C
Raw Normal View History

/*
* Just-In-Time compiler for eBPF filters on 32bit ARM
*
* Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; version 2 of the License.
*/
#include <linux/bpf.h>
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/if_vlan.h>
net: bpf: arm: make hole-faulting more robust Will Deacon pointed out, that the currently used opcode for filling holes, that is 0xe7ffffff, seems not robust enough ... $ echo 0xffffffe7 | xxd -r > test.bin $ arm-linux-gnueabihf-objdump -m arm -D -b binary test.bin ... 0: e7ffffff udf #65535 ; 0xffff ... while for Thumb, it ends up as ... 0: ffff e7ff vqshl.u64 q15, <illegal reg q15.5>, #63 ... which is a bit fragile. The ARM specification defines some *permanently* guaranteed undefined instruction (UDF) space, for example for ARM in ARMv7-AR, section A5.4 and for Thumb in ARMv7-M, section A5.2.6. Similarly, ptrace, kprobes, kgdb, bug and uprobes make use of such instruction as well to trap. Given mentioned section from the specification, we can find such a universe as (where 'x' denotes 'don't care'): ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx Thumb: 1101 1110 xxxx xxxx We therefore should use a more robust opcode that fits both. Russell King suggested that we can even reuse a single 32-bit word, that is, 0xe7fddef1 which will fault if executed in ARM *or* Thumb mode as done in f928d4f2a86f ("ARM: poison the vectors page"). That will still hold our requirements: $ echo 0xf1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -m arm -D -b binary test.bin ... 0: e7fddef1 udf #56801 ; 0xdde1 $ echo 0xf1defde7f1defde7f1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -marm -Mforce-thumb -D -b binary test.bin ... 0: def1 udf #241 ; 0xf1 2: e7fd b.n 0x0 4: def1 udf #241 ; 0xf1 6: e7fd b.n 0x4 8: def1 udf #241 ; 0xf1 a: e7fd b.n 0x8 So on ARM 0xe7fddef1 conforms to the above UDF pattern, and the low 16 bit likewise correspond to UDF in Thumb case. The 0xe7fd part is an unconditional branch back to the UDF instruction. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mircea Gherzan <mgherzan@gmail.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 20:56:57 +08:00
#include <asm/cacheflush.h>
#include <asm/hwcap.h>
#include <asm/opcodes.h>
#include <asm/system_info.h>
#include "bpf_jit_32.h"
/*
* eBPF prog stack layout:
*
* high
* original ARM_SP => +-----+
* | | callee saved registers
* +-----+ <= (BPF_FP + SCRATCH_SIZE)
* | ... | eBPF JIT scratch space
* eBPF fp register => +-----+
* (BPF_FP) | ... | eBPF prog stack
* +-----+
* |RSVD | JIT scratchpad
* current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
* | |
* | ... | Function call stack
* | |
* +-----+
* low
*
* The callee saved registers depends on whether frame pointers are enabled.
* With frame pointers (to be compliant with the ABI):
*
* high
* original ARM_SP => +--------------+ \
* | pc | |
* current ARM_FP => +--------------+ } callee saved registers
* |r4-r9,fp,ip,lr| |
* +--------------+ /
* low
*
* Without frame pointers:
*
* high
* original ARM_SP => +--------------+
* | r4-r9,fp,lr | callee saved registers
* current ARM_FP => +--------------+
* low
*
* When popping registers off the stack at the end of a BPF function, we
* reference them via the current ARM_FP register.
*/
#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
1 << ARM_FP)
#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
enum {
/* Stack layout - these are offsets from (top of stack - 4) */
BPF_R2_HI,
BPF_R2_LO,
BPF_R3_HI,
BPF_R3_LO,
BPF_R4_HI,
BPF_R4_LO,
BPF_R5_HI,
BPF_R5_LO,
BPF_R7_HI,
BPF_R7_LO,
BPF_R8_HI,
BPF_R8_LO,
BPF_R9_HI,
BPF_R9_LO,
BPF_FP_HI,
BPF_FP_LO,
BPF_TC_HI,
BPF_TC_LO,
BPF_AX_HI,
BPF_AX_LO,
/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
* BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
* BPF_REG_FP and Tail call counts.
*/
BPF_JIT_SCRATCH_REGS,
};
/*
* Negative "register" values indicate the register is stored on the stack
* and are the offset from the top of the eBPF JIT scratch space.
*/
#define STACK_OFFSET(k) (-4 - (k) * 4)
#define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
#ifdef CONFIG_FRAME_POINTER
#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
#else
#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
#endif
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
#define FLAG_IMM_OVERFLOW (1 << 0)
/*
* Map eBPF registers to ARM 32bit registers or stack scratch space.
*
* 1. First argument is passed using the arm 32bit registers and rest of the
* arguments are passed on stack scratch space.
* 2. First callee-saved argument is mapped to arm 32 bit registers and rest
* arguments are mapped to scratch space on stack.
* 3. We need two 64 bit temp registers to do complex operations on eBPF
* registers.
*
* As the eBPF registers are all 64 bit registers and arm has only 32 bit
* registers, we have to map each eBPF registers with two arm 32 bit regs or
* scratch memory space and we have to build eBPF 64 bit register from those.
*
*/
static const s8 bpf2a32[][2] = {
/* return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {ARM_R1, ARM_R0},
/* arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {ARM_R3, ARM_R2},
/* Stored on stack scratch space */
[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
/* callee saved registers that in-kernel function will preserve */
[BPF_REG_6] = {ARM_R5, ARM_R4},
/* Stored on stack scratch space */
[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
/* Read only Frame Pointer to access Stack */
[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
/* Temporary Register for internal BPF JIT, can be used
* for constant blindings and others.
*/
[TMP_REG_1] = {ARM_R7, ARM_R6},
[TMP_REG_2] = {ARM_R9, ARM_R8},
/* Tail call count. Stored on stack scratch space. */
[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
/* temporary register for blinding constants.
* Stored on stack scratch space.
*/
[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
};
#define dst_lo dst[1]
#define dst_hi dst[0]
#define src_lo src[1]
#define src_hi src[0]
/*
* JIT Context:
*
* prog : bpf_prog
* idx : index of current last JITed instruction.
* prologue_bytes : bytes used in prologue.
* epilogue_offset : offset of epilogue starting.
* offsets : array of eBPF instruction offsets in
* JITed code.
* target : final JITed code.
* epilogue_bytes : no of bytes used in epilogue.
* imm_count : no of immediate counts used for global
* variables.
* imms : array of global variable addresses.
*/
struct jit_ctx {
const struct bpf_prog *prog;
unsigned int idx;
unsigned int prologue_bytes;
unsigned int epilogue_offset;
unsigned int cpu_architecture;
u32 flags;
u32 *offsets;
u32 *target;
u32 stack_size;
#if __LINUX_ARM_ARCH__ < 7
u16 epilogue_bytes;
u16 imm_count;
u32 *imms;
#endif
};
/*
* Wrappers which handle both OABI and EABI and assures Thumb2 interworking
* (where the assembly routines like __aeabi_uidiv could cause problems).
*/
static u32 jit_udiv32(u32 dividend, u32 divisor)
{
return dividend / divisor;
}
static u32 jit_mod32(u32 dividend, u32 divisor)
{
return dividend % divisor;
}
static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
{
inst |= (cond << 28);
inst = __opcode_to_mem_arm(inst);
if (ctx->target != NULL)
ctx->target[ctx->idx] = inst;
ctx->idx++;
}
/*
* Emit an instruction that will be executed unconditionally.
*/
static inline void emit(u32 inst, struct jit_ctx *ctx)
{
_emit(ARM_COND_AL, inst, ctx);
}
/*
* This is rather horrid, but necessary to convert an integer constant
* to an immediate operand for the opcodes, and be able to detect at
* build time whether the constant can't be converted (iow, usable in
* BUILD_BUG_ON()).
*/
#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
#define const_imm8m(x) \
({ int r; \
u32 v = (x); \
if (!(v & ~0x000000ff)) \
r = imm12val(v, 0); \
else if (!(v & ~0xc000003f)) \
r = imm12val(v, 2); \
else if (!(v & ~0xf000000f)) \
r = imm12val(v, 4); \
else if (!(v & ~0xfc000003)) \
r = imm12val(v, 6); \
else if (!(v & ~0xff000000)) \
r = imm12val(v, 8); \
else if (!(v & ~0x3fc00000)) \
r = imm12val(v, 10); \
else if (!(v & ~0x0ff00000)) \
r = imm12val(v, 12); \
else if (!(v & ~0x03fc0000)) \
r = imm12val(v, 14); \
else if (!(v & ~0x00ff0000)) \
r = imm12val(v, 16); \
else if (!(v & ~0x003fc000)) \
r = imm12val(v, 18); \
else if (!(v & ~0x000ff000)) \
r = imm12val(v, 20); \
else if (!(v & ~0x0003fc00)) \
r = imm12val(v, 22); \
else if (!(v & ~0x0000ff00)) \
r = imm12val(v, 24); \
else if (!(v & ~0x00003fc0)) \
r = imm12val(v, 26); \
else if (!(v & ~0x00000ff0)) \
r = imm12val(v, 28); \
else if (!(v & ~0x000003fc)) \
r = imm12val(v, 30); \
else \
r = -1; \
r; })
/*
* Checks if immediate value can be converted to imm12(12 bits) value.
*/
static int imm8m(u32 x)
{
u32 rot;
for (rot = 0; rot < 16; rot++)
if ((x & ~ror32(0xff, 2 * rot)) == 0)
return rol32(x, 2 * rot) | (rot << 8);
return -1;
}
#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
{
op |= rt << 12 | rn << 16;
if (imm12 >= 0)
op |= ARM_INST_LDST__U;
else
imm12 = -imm12;
return op | (imm12 & ARM_INST_LDST__IMM12);
}
static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
{
op |= rt << 12 | rn << 16;
if (imm8 >= 0)
op |= ARM_INST_LDST__U;
else
imm8 = -imm8;
return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
}
#define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
#define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
/*
* Initializes the JIT space with undefined instructions.
*/
static void jit_fill_hole(void *area, unsigned int size)
{
net: bpf: arm: make hole-faulting more robust Will Deacon pointed out, that the currently used opcode for filling holes, that is 0xe7ffffff, seems not robust enough ... $ echo 0xffffffe7 | xxd -r > test.bin $ arm-linux-gnueabihf-objdump -m arm -D -b binary test.bin ... 0: e7ffffff udf #65535 ; 0xffff ... while for Thumb, it ends up as ... 0: ffff e7ff vqshl.u64 q15, <illegal reg q15.5>, #63 ... which is a bit fragile. The ARM specification defines some *permanently* guaranteed undefined instruction (UDF) space, for example for ARM in ARMv7-AR, section A5.4 and for Thumb in ARMv7-M, section A5.2.6. Similarly, ptrace, kprobes, kgdb, bug and uprobes make use of such instruction as well to trap. Given mentioned section from the specification, we can find such a universe as (where 'x' denotes 'don't care'): ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx Thumb: 1101 1110 xxxx xxxx We therefore should use a more robust opcode that fits both. Russell King suggested that we can even reuse a single 32-bit word, that is, 0xe7fddef1 which will fault if executed in ARM *or* Thumb mode as done in f928d4f2a86f ("ARM: poison the vectors page"). That will still hold our requirements: $ echo 0xf1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -m arm -D -b binary test.bin ... 0: e7fddef1 udf #56801 ; 0xdde1 $ echo 0xf1defde7f1defde7f1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -marm -Mforce-thumb -D -b binary test.bin ... 0: def1 udf #241 ; 0xf1 2: e7fd b.n 0x0 4: def1 udf #241 ; 0xf1 6: e7fd b.n 0x4 8: def1 udf #241 ; 0xf1 a: e7fd b.n 0x8 So on ARM 0xe7fddef1 conforms to the above UDF pattern, and the low 16 bit likewise correspond to UDF in Thumb case. The 0xe7fd part is an unconditional branch back to the UDF instruction. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mircea Gherzan <mgherzan@gmail.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 20:56:57 +08:00
u32 *ptr;
/* We are guaranteed to have aligned memory. */
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
net: bpf: arm: make hole-faulting more robust Will Deacon pointed out, that the currently used opcode for filling holes, that is 0xe7ffffff, seems not robust enough ... $ echo 0xffffffe7 | xxd -r > test.bin $ arm-linux-gnueabihf-objdump -m arm -D -b binary test.bin ... 0: e7ffffff udf #65535 ; 0xffff ... while for Thumb, it ends up as ... 0: ffff e7ff vqshl.u64 q15, <illegal reg q15.5>, #63 ... which is a bit fragile. The ARM specification defines some *permanently* guaranteed undefined instruction (UDF) space, for example for ARM in ARMv7-AR, section A5.4 and for Thumb in ARMv7-M, section A5.2.6. Similarly, ptrace, kprobes, kgdb, bug and uprobes make use of such instruction as well to trap. Given mentioned section from the specification, we can find such a universe as (where 'x' denotes 'don't care'): ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx Thumb: 1101 1110 xxxx xxxx We therefore should use a more robust opcode that fits both. Russell King suggested that we can even reuse a single 32-bit word, that is, 0xe7fddef1 which will fault if executed in ARM *or* Thumb mode as done in f928d4f2a86f ("ARM: poison the vectors page"). That will still hold our requirements: $ echo 0xf1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -m arm -D -b binary test.bin ... 0: e7fddef1 udf #56801 ; 0xdde1 $ echo 0xf1defde7f1defde7f1defde7 | xxd -r > test.bin $ arm-unknown-linux-gnueabi-objdump -marm -Mforce-thumb -D -b binary test.bin ... 0: def1 udf #241 ; 0xf1 2: e7fd b.n 0x0 4: def1 udf #241 ; 0xf1 6: e7fd b.n 0x4 8: def1 udf #241 ; 0xf1 a: e7fd b.n 0x8 So on ARM 0xe7fddef1 conforms to the above UDF pattern, and the low 16 bit likewise correspond to UDF in Thumb case. The 0xe7fd part is an unconditional branch back to the UDF instruction. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mircea Gherzan <mgherzan@gmail.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 20:56:57 +08:00
*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
}
#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
/* EABI requires the stack to be aligned to 64-bit boundaries */
#define STACK_ALIGNMENT 8
#else
/* Stack must be aligned to 32-bit boundaries */
#define STACK_ALIGNMENT 4
#endif
/* total stack size used in JITed code */
#define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
#if __LINUX_ARM_ARCH__ < 7
static u16 imm_offset(u32 k, struct jit_ctx *ctx)
{
unsigned int i = 0, offset;
u16 imm;
/* on the "fake" run we just count them (duplicates included) */
if (ctx->target == NULL) {
ctx->imm_count++;
return 0;
}
while ((i < ctx->imm_count) && ctx->imms[i]) {
if (ctx->imms[i] == k)
break;
i++;
}
if (ctx->imms[i] == 0)
ctx->imms[i] = k;
/* constants go just after the epilogue */
offset = ctx->offsets[ctx->prog->len - 1] * 4;
offset += ctx->prologue_bytes;
offset += ctx->epilogue_bytes;
offset += i * 4;
ctx->target[offset / 4] = k;
/* PC in ARM mode == address of the instruction + 8 */
imm = offset - (8 + ctx->idx * 4);
if (imm & ~0xfff) {
/*
* literal pool is too far, signal it into flags. we
* can only detect it on the second pass unfortunately.
*/
ctx->flags |= FLAG_IMM_OVERFLOW;
return 0;
}
return imm;
}
#endif /* __LINUX_ARM_ARCH__ */
static inline int bpf2a32_offset(int bpf_to, int bpf_from,
const struct jit_ctx *ctx) {
int to, from;
if (ctx->target == NULL)
return 0;
to = ctx->offsets[bpf_to];
from = ctx->offsets[bpf_from];
return to - from - 1;
}
/*
* Move an immediate that's not an imm8m to a core register.
*/
static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 7
emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
#else
emit(ARM_MOVW(rd, val & 0xffff), ctx);
if (val > 0xffff)
emit(ARM_MOVT(rd, val >> 16), ctx);
#endif
}
static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
{
int imm12 = imm8m(val);
if (imm12 >= 0)
emit(ARM_MOV_I(rd, imm12), ctx);
else
emit_mov_i_no8m(rd, val, ctx);
}
static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
{
if (elf_hwcap & HWCAP_THUMB)
emit(ARM_BX(tgt_reg), ctx);
else
emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
}
static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 5
emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
emit_bx_r(tgt_reg, ctx);
#else
emit(ARM_BLX_R(tgt_reg), ctx);
#endif
}
static inline int epilogue_offset(const struct jit_ctx *ctx)
{
int to, from;
/* No need for 1st dummy run */
if (ctx->target == NULL)
return 0;
to = ctx->epilogue_offset;
from = ctx->idx;
return to - from - 2;
}
static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
{
const s8 *tmp = bpf2a32[TMP_REG_1];
#if __LINUX_ARM_ARCH__ == 7
if (elf_hwcap & HWCAP_IDIVA) {
if (op == BPF_DIV)
emit(ARM_UDIV(rd, rm, rn), ctx);
else {
emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
}
return;
}
#endif
/*
* For BPF_ALU | BPF_DIV | BPF_K instructions
* As ARM_R1 and ARM_R0 contains 1st argument of bpf
* function, we need to save it on caller side to save
* it from getting destroyed within callee.
* After the return from the callee, we restore ARM_R0
* ARM_R1.
*/
if (rn != ARM_R1) {
emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
emit(ARM_MOV_R(ARM_R1, rn), ctx);
}
if (rm != ARM_R0) {
emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
emit(ARM_MOV_R(ARM_R0, rm), ctx);
}
/* Call appropriate function */
emit_mov_i(ARM_IP, op == BPF_DIV ?
(u32)jit_udiv32 : (u32)jit_mod32, ctx);
emit_blx_r(ARM_IP, ctx);
/* Save return value */
if (rd != ARM_R0)
emit(ARM_MOV_R(rd, ARM_R0), ctx);
/* Restore ARM_R0 and ARM_R1 */
if (rn != ARM_R1)
emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
if (rm != ARM_R0)
emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
}
/* Is the translated BPF register on stack? */
static bool is_stacked(s8 reg)
{
return reg < 0;
}
/* If a BPF register is on the stack (stk is true), load it to the
* supplied temporary register and return the temporary register
* for subsequent operations, otherwise just use the CPU register.
*/
static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
{
if (is_stacked(reg)) {
emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
reg = tmp;
}
return reg;
}
static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
struct jit_ctx *ctx)
{
if (is_stacked(reg[1])) {
if (__LINUX_ARM_ARCH__ >= 6 ||
ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
emit(ARM_LDRD_I(tmp[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
} else {
emit(ARM_LDR_I(tmp[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
emit(ARM_LDR_I(tmp[0], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
}
reg = tmp;
}
return reg;
}
/* If a BPF register is on the stack (stk is true), save the register
* back to the stack. If the source register is not the same, then
* move it into the correct register.
*/
static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
{
if (is_stacked(reg))
emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
else if (reg != src)
emit(ARM_MOV_R(reg, src), ctx);
}
static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
struct jit_ctx *ctx)
{
if (is_stacked(reg[1])) {
if (__LINUX_ARM_ARCH__ >= 6 ||
ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
emit(ARM_STRD_I(src[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
} else {
emit(ARM_STR_I(src[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
emit(ARM_STR_I(src[0], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
}
} else {
if (reg[1] != src[1])
emit(ARM_MOV_R(reg[1], src[1]), ctx);
if (reg[0] != src[0])
emit(ARM_MOV_R(reg[0], src[0]), ctx);
}
}
static inline void emit_a32_mov_i(const s8 dst, const u32 val,
struct jit_ctx *ctx)
{
const s8 *tmp = bpf2a32[TMP_REG_1];
if (is_stacked(dst)) {
emit_mov_i(tmp[1], val, ctx);
arm_bpf_put_reg32(dst, tmp[1], ctx);
} else {
emit_mov_i(dst, val, ctx);
}
}
static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
{
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
emit_mov_i(rd[1], (u32)val, ctx);
emit_mov_i(rd[0], val >> 32, ctx);
arm_bpf_put_reg64(dst, rd, ctx);
}
/* Sign extended move */
static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
const u32 val, struct jit_ctx *ctx) {
u64 val64 = val;
if (is64 && (val & (1<<31)))
val64 |= 0xffffffff00000000ULL;
emit_a32_mov_i64(dst, val64, ctx);
}
static inline void emit_a32_add_r(const u8 dst, const u8 src,
const bool is64, const bool hi,
struct jit_ctx *ctx) {
/* 64 bit :
* adds dst_lo, dst_lo, src_lo
* adc dst_hi, dst_hi, src_hi
* 32 bit :
* add dst_lo, dst_lo, src_lo
*/
if (!hi && is64)
emit(ARM_ADDS_R(dst, dst, src), ctx);
else if (hi && is64)
emit(ARM_ADC_R(dst, dst, src), ctx);
else
emit(ARM_ADD_R(dst, dst, src), ctx);
}
static inline void emit_a32_sub_r(const u8 dst, const u8 src,
const bool is64, const bool hi,
struct jit_ctx *ctx) {
/* 64 bit :
* subs dst_lo, dst_lo, src_lo
* sbc dst_hi, dst_hi, src_hi
* 32 bit :
* sub dst_lo, dst_lo, src_lo
*/
if (!hi && is64)
emit(ARM_SUBS_R(dst, dst, src), ctx);
else if (hi && is64)
emit(ARM_SBC_R(dst, dst, src), ctx);
else
emit(ARM_SUB_R(dst, dst, src), ctx);
}
static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
const bool hi, const u8 op, struct jit_ctx *ctx){
switch (BPF_OP(op)) {
/* dst = dst + src */
case BPF_ADD:
emit_a32_add_r(dst, src, is64, hi, ctx);
break;
/* dst = dst - src */
case BPF_SUB:
emit_a32_sub_r(dst, src, is64, hi, ctx);
break;
/* dst = dst | src */
case BPF_OR:
emit(ARM_ORR_R(dst, dst, src), ctx);
break;
/* dst = dst & src */
case BPF_AND:
emit(ARM_AND_R(dst, dst, src), ctx);
break;
/* dst = dst ^ src */
case BPF_XOR:
emit(ARM_EOR_R(dst, dst, src), ctx);
break;
/* dst = dst * src */
case BPF_MUL:
emit(ARM_MUL(dst, dst, src), ctx);
break;
/* dst = dst << src */
case BPF_LSH:
emit(ARM_LSL_R(dst, dst, src), ctx);
break;
/* dst = dst >> src */
case BPF_RSH:
emit(ARM_LSR_R(dst, dst, src), ctx);
break;
/* dst = dst >> src (signed)*/
case BPF_ARSH:
emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
break;
}
}
/* ALU operation (32 bit)
* dst = dst (op) src
*/
static inline void emit_a32_alu_r(const s8 dst, const s8 src,
struct jit_ctx *ctx, const bool is64,
const bool hi, const u8 op) {
const s8 *tmp = bpf2a32[TMP_REG_1];
s8 rn, rd;
rn = arm_bpf_get_reg32(src, tmp[1], ctx);
rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
/* ALU operation */
emit_alu_r(rd, rn, is64, hi, op, ctx);
arm_bpf_put_reg32(dst, rd, ctx);
}
/* ALU operation (64 bit) */
static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
const s8 src[], struct jit_ctx *ctx,
const u8 op) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
rd = arm_bpf_get_reg64(dst, tmp, ctx);
if (is64) {
const s8 *rs;
rs = arm_bpf_get_reg64(src, tmp2, ctx);
/* ALU operation */
emit_alu_r(rd[1], rs[1], true, false, op, ctx);
emit_alu_r(rd[0], rs[0], true, true, op, ctx);
} else {
s8 rs;
rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
/* ALU operation */
emit_alu_r(rd[1], rs, true, false, op, ctx);
emit_a32_mov_i(rd[0], 0, ctx);
}
arm_bpf_put_reg64(dst, rd, ctx);
}
/* dst = src (4 bytes)*/
static inline void emit_a32_mov_r(const s8 dst, const s8 src,
struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
s8 rt;
rt = arm_bpf_get_reg32(src, tmp[0], ctx);
arm_bpf_put_reg32(dst, rt, ctx);
}
/* dst = src */
static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
const s8 src[],
struct jit_ctx *ctx) {
if (!is64) {
emit_a32_mov_r(dst_lo, src_lo, ctx);
/* Zero out high 4 bytes */
emit_a32_mov_i(dst_hi, 0, ctx);
} else if (__LINUX_ARM_ARCH__ < 6 &&
ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
/* complete 8 byte move */
emit_a32_mov_r(dst_lo, src_lo, ctx);
emit_a32_mov_r(dst_hi, src_hi, ctx);
} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
const u8 *tmp = bpf2a32[TMP_REG_1];
emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
} else if (is_stacked(src_lo)) {
emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
} else if (is_stacked(dst_lo)) {
emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
} else {
emit(ARM_MOV_R(dst[0], src[0]), ctx);
emit(ARM_MOV_R(dst[1], src[1]), ctx);
}
}
/* Shift operations */
static inline void emit_a32_alu_i(const s8 dst, const u32 val,
struct jit_ctx *ctx, const u8 op) {
const s8 *tmp = bpf2a32[TMP_REG_1];
s8 rd;
rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
/* Do shift operation */
switch (op) {
case BPF_LSH:
emit(ARM_LSL_I(rd, rd, val), ctx);
break;
case BPF_RSH:
emit(ARM_LSR_I(rd, rd, val), ctx);
break;
case BPF_NEG:
emit(ARM_RSB_I(rd, rd, val), ctx);
break;
}
arm_bpf_put_reg32(dst, rd, ctx);
}
/* dst = ~dst (64 bit) */
static inline void emit_a32_neg64(const s8 dst[],
struct jit_ctx *ctx){
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *rd;
/* Setup Operand */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do Negate Operation */
emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
arm_bpf_put_reg64(dst, rd, ctx);
}
/* dst = dst << src */
static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */
rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do LSH operation */
emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
}
/* dst = dst >> src (signed)*/
static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */
rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do the ARSH operation */
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
_emit(ARM_COND_MI, ARM_B(0), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
}
/* dst = dst >> src */
static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */
rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do RSH operation */
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
}
/* dst = dst << val */
static inline void emit_a32_lsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx){
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
/* Setup operands */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do LSH operation */
if (val < 32) {
emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
} else {
if (val == 32)
emit(ARM_MOV_R(rd[0], rd[1]), ctx);
else
emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
}
arm_bpf_put_reg64(dst, rd, ctx);
}
/* dst = dst >> val */
static inline void emit_a32_rsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
/* Setup operands */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do LSR operation */
if (val < 32) {
emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
} else if (val == 32) {
emit(ARM_MOV_R(rd[1], rd[0]), ctx);
emit(ARM_MOV_I(rd[0], 0), ctx);
} else {
emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
emit(ARM_MOV_I(rd[0], 0), ctx);
}
arm_bpf_put_reg64(dst, rd, ctx);
}
/* dst = dst >> val (signed) */
static inline void emit_a32_arsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx){
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
/* Setup operands */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Do ARSH operation */
if (val < 32) {
emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
} else if (val == 32) {
emit(ARM_MOV_R(rd[1], rd[0]), ctx);
emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
} else {
emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
}
arm_bpf_put_reg64(dst, rd, ctx);
}
static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
struct jit_ctx *ctx) {
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd, *rt;
/* Setup operands for multiplication */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
rt = arm_bpf_get_reg64(src, tmp2, ctx);
/* Do Multiplication */
emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
arm_bpf_put_reg32(dst_hi, rd[0], ctx);
}
/* *(size *)(dst + off) = src */
static inline void emit_str_r(const s8 dst, const s8 src[],
s32 off, struct jit_ctx *ctx, const u8 sz){
const s8 *tmp = bpf2a32[TMP_REG_1];
s32 off_max;
s8 rd;
rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
if (sz == BPF_H)
off_max = 0xff;
else
off_max = 0xfff;
if (off < 0 || off > off_max) {
emit_a32_mov_i(tmp[0], off, ctx);
emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
rd = tmp[0];
off = 0;
}
switch (sz) {
case BPF_B:
/* Store a Byte */
emit(ARM_STRB_I(src_lo, rd, off), ctx);
break;
case BPF_H:
/* Store a HalfWord */
emit(ARM_STRH_I(src_lo, rd, off), ctx);
break;
case BPF_W:
/* Store a Word */
emit(ARM_STR_I(src_lo, rd, off), ctx);
break;
case BPF_DW:
/* Store a Double Word */
emit(ARM_STR_I(src_lo, rd, off), ctx);
emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
break;
}
}
/* dst = *(size*)(src + off) */
static inline void emit_ldx_r(const s8 dst[], const s8 src,
s32 off, struct jit_ctx *ctx, const u8 sz){
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
s8 rm = src;
s32 off_max;
if (sz == BPF_H)
off_max = 0xff;
else
off_max = 0xfff;
if (off < 0 || off > off_max) {
emit_a32_mov_i(tmp[0], off, ctx);
emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
rm = tmp[0];
off = 0;
} else if (rd[1] == rm) {
emit(ARM_MOV_R(tmp[0], rm), ctx);
rm = tmp[0];
}
switch (sz) {
case BPF_B:
/* Load a Byte */
emit(ARM_LDRB_I(rd[1], rm, off), ctx);
emit_a32_mov_i(rd[0], 0, ctx);
break;
case BPF_H:
/* Load a HalfWord */
emit(ARM_LDRH_I(rd[1], rm, off), ctx);
emit_a32_mov_i(rd[0], 0, ctx);
break;
case BPF_W:
/* Load a Word */
emit(ARM_LDR_I(rd[1], rm, off), ctx);
emit_a32_mov_i(rd[0], 0, ctx);
break;
case BPF_DW:
/* Load a Double Word */
emit(ARM_LDR_I(rd[1], rm, off), ctx);
emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
break;
}
arm_bpf_put_reg64(dst, rd, ctx);
}
/* Arithmatic Operation */
static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
const u8 rn, struct jit_ctx *ctx, u8 op) {
switch (op) {
case BPF_JSET:
emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
break;
case BPF_JEQ:
case BPF_JNE:
case BPF_JGT:
case BPF_JGE:
case BPF_JLE:
case BPF_JLT:
emit(ARM_CMP_R(rd, rm), ctx);
_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
break;
case BPF_JSLE:
case BPF_JSGT:
emit(ARM_CMP_R(rn, rt), ctx);
emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
break;
case BPF_JSLT:
case BPF_JSGE:
emit(ARM_CMP_R(rt, rn), ctx);
emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
break;
}
}
static int out_offset = -1; /* initialized on the first pass of build_body() */
static int emit_bpf_tail_call(struct jit_ctx *ctx)
{
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
const s8 *r2 = bpf2a32[BPF_REG_2];
const s8 *r3 = bpf2a32[BPF_REG_3];
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *tcc = bpf2a32[TCALL_CNT];
const s8 *tc;
const int idx0 = ctx->idx;
#define cur_offset (ctx->idx - idx0)
#define jmp_offset (out_offset - (cur_offset) - 2)
u32 lo, hi;
s8 r_array, r_index;
int off;
/* if (index >= array->map.max_entries)
* goto out;
*/
BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
ARM_INST_LDST__IMM12);
off = offsetof(struct bpf_array, map.max_entries);
r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
/* index is 32-bit for arrays */
r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
/* array->map.max_entries */
emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
/* index >= array->map.max_entries */
emit(ARM_CMP_R(r_index, tmp[1]), ctx);
_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
/* tmp2[0] = array, tmp2[1] = index */
/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
* tail_call_cnt++;
*/
lo = (u32)MAX_TAIL_CALL_CNT;
hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
tc = arm_bpf_get_reg64(tcc, tmp, ctx);
emit(ARM_CMP_I(tc[0], hi), ctx);
_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
arm_bpf_put_reg64(tcc, tmp, ctx);
/* prog = array->ptrs[index]
* if (prog == NULL)
* goto out;
*/
BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
off = imm8m(offsetof(struct bpf_array, ptrs));
emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
emit(ARM_CMP_I(tmp[1], 0), ctx);
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
/* goto *(prog->bpf_func + prologue_size); */
BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
ARM_INST_LDST__IMM12);
off = offsetof(struct bpf_prog, bpf_func);
emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
emit_bx_r(tmp[1], ctx);
/* out: */
if (out_offset == -1)
out_offset = cur_offset;
if (cur_offset != out_offset) {
pr_err_once("tail_call out_offset = %d, expected %d!\n",
cur_offset, out_offset);
return -1;
}
return 0;
#undef cur_offset
#undef jmp_offset
}
/* 0xabcd => 0xcdab */
static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 6
const s8 *tmp2 = bpf2a32[TMP_REG_2];
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
#else /* ARMv6+ */
emit(ARM_REV16(rd, rn), ctx);
#endif
}
/* 0xabcdefgh => 0xghefcdab */
static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
{
#if __LINUX_ARM_ARCH__ < 6
const s8 *tmp2 = bpf2a32[TMP_REG_2];
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
#else /* ARMv6+ */
emit(ARM_REV(rd, rn), ctx);
#endif
}
net: filter: get rid of BPF_S_* enum This patch finally allows us to get rid of the BPF_S_* enum. Currently, the code performs unnecessary encode and decode workarounds in seccomp and filter migration itself when a filter is being attached in order to overcome BPF_S_* encoding which is not used anymore by the new interpreter resp. JIT compilers. Keeping it around would mean that also in future we would need to extend and maintain this enum and related encoders/decoders. We can get rid of all that and save us these operations during filter attaching. Naturally, also JIT compilers need to be updated by this. Before JIT conversion is being done, each compiler checks if A is being loaded at startup to obtain information if it needs to emit instructions to clear A first. Since BPF extensions are a subset of BPF_LD | BPF_{W,H,B} | BPF_ABS variants, case statements for extensions can be removed at that point. To ease and minimalize code changes in the classic JITs, we have introduced bpf_anc_helper(). Tested with test_bpf on x86_64 (JIT, int), s390x (JIT, int), arm (JIT, int), i368 (int), ppc64 (JIT, int); for sparc we unfortunately didn't have access, but changes are analogous to the rest. Joint work with Alexei Starovoitov. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mircea Gherzan <mgherzan@gmail.com> Cc: Kees Cook <keescook@chromium.org> Acked-by: Chema Gonzalez <chemag@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-29 16:22:50 +08:00
// push the scratch stack register on top of the stack
static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
{
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rt;
u16 reg_set = 0;
rt = arm_bpf_get_reg64(src, tmp2, ctx);
reg_set = (1 << rt[1]) | (1 << rt[0]);
emit(ARM_PUSH(reg_set), ctx);
}
static void build_prologue(struct jit_ctx *ctx)
{
const s8 r0 = bpf2a32[BPF_REG_0][1];
const s8 r2 = bpf2a32[BPF_REG_1][1];
const s8 r3 = bpf2a32[BPF_REG_1][0];
const s8 r4 = bpf2a32[BPF_REG_6][1];
const s8 fplo = bpf2a32[BPF_REG_FP][1];
const s8 fphi = bpf2a32[BPF_REG_FP][0];
const s8 *tcc = bpf2a32[TCALL_CNT];
/* Save callee saved registers. */
#ifdef CONFIG_FRAME_POINTER
u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
emit(ARM_PUSH(reg_set), ctx);
emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
#else
emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
#endif
/* Save frame pointer for later */
emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
ctx->stack_size = imm8m(STACK_SIZE);
/* Set up function call stack */
emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
/* Set up BPF prog stack base register */
emit_a32_mov_r(fplo, ARM_IP, ctx);
emit_a32_mov_i(fphi, 0, ctx);
/* mov r4, 0 */
emit(ARM_MOV_I(r4, 0), ctx);
/* Move BPF_CTX to BPF_R1 */
emit(ARM_MOV_R(r3, r4), ctx);
emit(ARM_MOV_R(r2, r0), ctx);
/* Initialize Tail Count */
emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
/* end of prologue */
}
/* restore callee saved registers. */
static void build_epilogue(struct jit_ctx *ctx)
{
#ifdef CONFIG_FRAME_POINTER
/* When using frame pointers, some additional registers need to
* be loaded. */
u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
emit(ARM_LDM(ARM_SP, reg_set), ctx);
#else
/* Restore callee saved registers. */
emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
emit(ARM_POP(CALLEE_POP_MASK), ctx);
#endif
}
/*
* Convert an eBPF instruction to native instruction, i.e
* JITs an eBPF instruction.
* Returns :
* 0 - Successfully JITed an 8-byte eBPF instruction
* >0 - Successfully JITed a 16-byte eBPF instruction
* <0 - Failed to JIT.
*/
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{
const u8 code = insn->code;
const s8 *dst = bpf2a32[insn->dst_reg];
const s8 *src = bpf2a32[insn->src_reg];
const s8 *tmp = bpf2a32[TMP_REG_1];
const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s16 off = insn->off;
const s32 imm = insn->imm;
const int i = insn - ctx->prog->insnsi;
const bool is64 = BPF_CLASS(code) == BPF_ALU64;
const s8 *rd, *rs;
s8 rd_lo, rt, rm, rn;
s32 jmp_offset;
#define check_imm(bits, imm) do { \
if ((imm) >= (1 << ((bits) - 1)) || \
(imm) < -(1 << ((bits) - 1))) { \
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
i, imm, imm); \
return -EINVAL; \
} \
} while (0)
#define check_imm24(imm) check_imm(24, imm)
switch (code) {
/* ALU operations */
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU | BPF_MOV | BPF_X:
case BPF_ALU64 | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_MOV | BPF_X:
switch (BPF_SRC(code)) {
case BPF_X:
emit_a32_mov_r64(is64, dst, src, ctx);
break;
case BPF_K:
/* Sign-extend immediate value to destination reg */
emit_a32_mov_se_i64(is64, dst, imm, ctx);
break;
}
break;
/* dst = dst + src/imm */
/* dst = dst - src/imm */
/* dst = dst | src/imm */
/* dst = dst & src/imm */
/* dst = dst ^ src/imm */
/* dst = dst * src/imm */
/* dst = dst << src */
/* dst = dst >> src */
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_X:
switch (BPF_SRC(code)) {
case BPF_X:
emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
break;
case BPF_K:
/* Move immediate value to the temporary register
* and then do the ALU operation on the temporary
* register as this will sign-extend the immediate
* value into temporary reg and then it would be
* safe to do the operation on it.
*/
emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
break;
}
break;
/* dst = dst / src(imm) */
/* dst = dst % src(imm) */
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_MOD | BPF_X:
rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
switch (BPF_SRC(code)) {
case BPF_X:
rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
break;
case BPF_K:
rt = tmp2[0];
emit_a32_mov_i(rt, imm, ctx);
break;
default:
rt = src_lo;
break;
}
emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
emit_a32_mov_i(dst_hi, 0, ctx);
break;
case BPF_ALU64 | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X:
goto notyet;
/* dst = dst >> imm */
/* dst = dst << imm */
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_LSH | BPF_K:
if (unlikely(imm > 31))
return -EINVAL;
if (imm)
emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
emit_a32_mov_i(dst_hi, 0, ctx);
break;
/* dst = dst << imm */
case BPF_ALU64 | BPF_LSH | BPF_K:
if (unlikely(imm > 63))
return -EINVAL;
emit_a32_lsh_i64(dst, imm, ctx);
break;
/* dst = dst >> imm */
case BPF_ALU64 | BPF_RSH | BPF_K:
if (unlikely(imm > 63))
return -EINVAL;
emit_a32_rsh_i64(dst, imm, ctx);
break;
/* dst = dst << src */
case BPF_ALU64 | BPF_LSH | BPF_X:
emit_a32_lsh_r64(dst, src, ctx);
break;
/* dst = dst >> src */
case BPF_ALU64 | BPF_RSH | BPF_X:
emit_a32_rsh_r64(dst, src, ctx);
break;
/* dst = dst >> src (signed) */
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit_a32_arsh_r64(dst, src, ctx);
break;
/* dst = dst >> imm (signed) */
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (unlikely(imm > 63))
return -EINVAL;
emit_a32_arsh_i64(dst, imm, ctx);
break;
/* dst = ~dst */
case BPF_ALU | BPF_NEG:
emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
emit_a32_mov_i(dst_hi, 0, ctx);
break;
/* dst = ~dst (64 bit) */
case BPF_ALU64 | BPF_NEG:
emit_a32_neg64(dst, ctx);
break;
/* dst = dst * src/imm */
case BPF_ALU64 | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K:
switch (BPF_SRC(code)) {
case BPF_X:
emit_a32_mul_r64(dst, src, ctx);
break;
case BPF_K:
/* Move immediate value to the temporary register
* and then do the multiplication on it as this
* will sign-extend the immediate value into temp
* reg then it would be safe to do the operation
* on it.
*/
emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
emit_a32_mul_r64(dst, tmp2, ctx);
break;
}
break;
/* dst = htole(dst) */
/* dst = htobe(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
rd = arm_bpf_get_reg64(dst, tmp, ctx);
if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_bswap_uxt;
switch (imm) {
case 16:
emit_rev16(rd[1], rd[1], ctx);
goto emit_bswap_uxt;
case 32:
emit_rev32(rd[1], rd[1], ctx);
goto emit_bswap_uxt;
case 64:
emit_rev32(ARM_LR, rd[1], ctx);
emit_rev32(rd[1], rd[0], ctx);
emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
break;
}
goto exit;
emit_bswap_uxt:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
#if __LINUX_ARM_ARCH__ < 6
emit_a32_mov_i(tmp2[1], 0xffff, ctx);
emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
#else /* ARMv6+ */
emit(ARM_UXTH(rd[1], rd[1]), ctx);
#endif
emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
break;
case 32:
/* zero-extend 32 bits into 64 bits */
emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
break;
case 64:
/* nop */
break;
}
exit:
arm_bpf_put_reg64(dst, rd, ctx);
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
{
u64 val = (u32)imm | (u64)insn[1].imm << 32;
emit_a32_mov_i64(dst, val, ctx);
return 1;
}
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW:
rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
break;
/* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_DW:
switch (BPF_SIZE(code)) {
case BPF_DW:
/* Sign-extend immediate value into temp reg */
emit_a32_mov_se_i64(true, tmp2, imm, ctx);
break;
case BPF_W:
case BPF_H:
case BPF_B:
emit_a32_mov_i(tmp2[1], imm, ctx);
break;
}
emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
break;
/* STX XADD: lock *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W:
/* STX XADD: lock *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW:
goto notyet;
/* STX: *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_DW:
rs = arm_bpf_get_reg64(src, tmp2, ctx);
emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
break;
/* PC += off if dst == src */
/* PC += off if dst > src */
/* PC += off if dst >= src */
/* PC += off if dst < src */
/* PC += off if dst <= src */
/* PC += off if dst != src */
/* PC += off if dst > src (signed) */
/* PC += off if dst >= src (signed) */
/* PC += off if dst < src (signed) */
/* PC += off if dst <= src (signed) */
/* PC += off if dst & src */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
/* Setup source registers */
rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
goto go_jmp;
/* PC += off if dst == imm */
/* PC += off if dst > imm */
/* PC += off if dst >= imm */
/* PC += off if dst < imm */
/* PC += off if dst <= imm */
/* PC += off if dst != imm */
/* PC += off if dst > imm (signed) */
/* PC += off if dst >= imm (signed) */
/* PC += off if dst < imm (signed) */
/* PC += off if dst <= imm (signed) */
/* PC += off if dst & imm */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
if (off == 0)
break;
rm = tmp2[0];
rn = tmp2[1];
/* Sign-extend immediate value */
emit_a32_mov_se_i64(true, tmp2, imm, ctx);
go_jmp:
/* Setup destination register */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
/* Check for the condition */
emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code));
/* Setup JUMP instruction */
jmp_offset = bpf2a32_offset(i+off, i, ctx);
switch (BPF_OP(code)) {
case BPF_JNE:
case BPF_JSET:
_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
break;
case BPF_JEQ:
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
break;
case BPF_JGT:
_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
break;
case BPF_JGE:
_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
break;
case BPF_JSGT:
_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
break;
case BPF_JSGE:
_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
break;
case BPF_JLE:
_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
break;
case BPF_JLT:
_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
break;
case BPF_JSLT:
_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
break;
case BPF_JSLE:
_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
break;
}
break;
/* JMP OFF */
case BPF_JMP | BPF_JA:
{
if (off == 0)
break;
jmp_offset = bpf2a32_offset(i+off, i, ctx);
check_imm24(jmp_offset);
emit(ARM_B(jmp_offset), ctx);
break;
}
/* tail call */
case BPF_JMP | BPF_TAIL_CALL:
if (emit_bpf_tail_call(ctx))
return -EFAULT;
break;
/* function call */
case BPF_JMP | BPF_CALL:
{
const s8 *r0 = bpf2a32[BPF_REG_0];
const s8 *r1 = bpf2a32[BPF_REG_1];
const s8 *r2 = bpf2a32[BPF_REG_2];
const s8 *r3 = bpf2a32[BPF_REG_3];
const s8 *r4 = bpf2a32[BPF_REG_4];
const s8 *r5 = bpf2a32[BPF_REG_5];
const u32 func = (u32)__bpf_call_base + (u32)imm;
emit_a32_mov_r64(true, r0, r1, ctx);
emit_a32_mov_r64(true, r1, r2, ctx);
emit_push_r64(r5, ctx);
emit_push_r64(r4, ctx);
emit_push_r64(r3, ctx);
emit_a32_mov_i(tmp[1], func, ctx);
emit_blx_r(tmp[1], ctx);
emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
break;
}
/* function return */
case BPF_JMP | BPF_EXIT:
/* Optimization: when last instruction is EXIT
* simply fallthrough to epilogue.
*/
if (i == ctx->prog->len - 1)
break;
jmp_offset = epilogue_offset(ctx);
check_imm24(jmp_offset);
emit(ARM_B(jmp_offset), ctx);
break;
notyet:
pr_info_once("*** NOT YET: opcode %02x ***\n", code);
return -EFAULT;
default:
pr_err_once("unknown opcode %02x\n", code);
return -EINVAL;
}
if (ctx->flags & FLAG_IMM_OVERFLOW)
/*
* this instruction generated an overflow when
* trying to access the literal pool, so
* delegate this filter to the kernel interpreter.
*/
return -1;
return 0;
}
static int build_body(struct jit_ctx *ctx)
{
const struct bpf_prog *prog = ctx->prog;
unsigned int i;
for (i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &(prog->insnsi[i]);
int ret;
ret = build_insn(insn, ctx);
/* It's used with loading the 64 bit immediate value. */
if (ret > 0) {
i++;
if (ctx->target == NULL)
ctx->offsets[i] = ctx->idx;
continue;
}
if (ctx->target == NULL)
ctx->offsets[i] = ctx->idx;
/* If unsuccesfull, return with error code */
if (ret)
return ret;
}
return 0;
}
static int validate_code(struct jit_ctx *ctx)
{
int i;
for (i = 0; i < ctx->idx; i++) {
if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
return -1;
}
return 0;
}
void bpf_jit_compile(struct bpf_prog *prog)
{
/* Nothing to do here. We support Internal BPF. */
}
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_prog *tmp, *orig_prog = prog;
struct bpf_binary_header *header;
bool tmp_blinded = false;
struct jit_ctx ctx;
unsigned int tmp_idx;
unsigned int image_size;
u8 *image_ptr;
/* If BPF JIT was not enabled then we must fall back to
* the interpreter.
*/
if (!prog->jit_requested)
return orig_prog;
/* If constant blinding was enabled and we failed during blinding
* then we must fall back to the interpreter. Otherwise, we save
* the new JITed code.
*/
tmp = bpf_jit_blind_constants(prog);
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
memset(&ctx, 0, sizeof(ctx));
ctx.prog = prog;
ctx.cpu_architecture = cpu_architecture();
/* Not able to allocate memory for offsets[] , then
* we must fall back to the interpreter
*/
ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
if (ctx.offsets == NULL) {
prog = orig_prog;
goto out;
}
/* 1) fake pass to find in the length of the JITed code,
* to compute ctx->offsets and other context variables
* needed to compute final JITed code.
* Also, calculate random starting pointer/start of JITed code
* which is prefixed by random number of fault instructions.
*
* If the first pass fails then there is no chance of it
* being successful in the second pass, so just fall back
* to the interpreter.
*/
if (build_body(&ctx)) {
prog = orig_prog;
goto out_off;
}
tmp_idx = ctx.idx;
build_prologue(&ctx);
ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
ctx.epilogue_offset = ctx.idx;
#if __LINUX_ARM_ARCH__ < 7
tmp_idx = ctx.idx;
build_epilogue(&ctx);
ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
ctx.idx += ctx.imm_count;
if (ctx.imm_count) {
ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
if (ctx.imms == NULL) {
prog = orig_prog;
goto out_off;
}
}
#else
/* there's nothing about the epilogue on ARMv7 */
build_epilogue(&ctx);
#endif
/* Now we can get the actual image size of the JITed arm code.
* Currently, we are not considering the THUMB-2 instructions
* for jit, although it can decrease the size of the image.
*
* As each arm instruction is of length 32bit, we are translating
* number of JITed intructions into the size required to store these
* JITed code.
*/
image_size = sizeof(u32) * ctx.idx;
/* Now we know the size of the structure to make */
header = bpf_jit_binary_alloc(image_size, &image_ptr,
sizeof(u32), jit_fill_hole);
/* Not able to allocate memory for the structure then
* we must fall back to the interpretation
*/
if (header == NULL) {
prog = orig_prog;
goto out_imms;
}
/* 2.) Actual pass to generate final JIT code */
ctx.target = (u32 *) image_ptr;
ctx.idx = 0;
build_prologue(&ctx);
/* If building the body of the JITed code fails somehow,
* we fall back to the interpretation.
*/
if (build_body(&ctx) < 0) {
image_ptr = NULL;
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_imms;
}
build_epilogue(&ctx);
/* 3.) Extra pass to validate JITed Code */
if (validate_code(&ctx)) {
image_ptr = NULL;
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_imms;
}
flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
if (bpf_jit_enable > 1)
/* there are 2 passes here */
bpf_jit_dump(prog->len, image_size, 2, ctx.target);
bpf_jit_binary_lock_ro(header);
prog->bpf_func = (void *)ctx.target;
prog->jited = 1;
prog->jited_len = image_size;
out_imms:
#if __LINUX_ARM_ARCH__ < 7
if (ctx.imm_count)
kfree(ctx.imms);
#endif
out_off:
kfree(ctx.offsets);
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
}