OpenCloudOS-Kernel/fs/nfsd/nfsfh.h

339 lines
7.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 1995, 1996, 1997 Olaf Kirch <okir@monad.swb.de>
*
* This file describes the layout of the file handles as passed
* over the wire.
*/
#ifndef _LINUX_NFSD_NFSFH_H
#define _LINUX_NFSD_NFSFH_H
#include <linux/crc32.h>
#include <linux/sunrpc/svc.h>
#include <uapi/linux/nfsd/nfsfh.h>
static inline __u32 ino_t_to_u32(ino_t ino)
{
return (__u32) ino;
}
static inline ino_t u32_to_ino_t(__u32 uino)
{
return (ino_t) uino;
}
/*
* This is the internal representation of an NFS handle used in knfsd.
* pre_mtime/post_version will be used to support wcc_attr's in NFSv3.
*/
typedef struct svc_fh {
struct knfsd_fh fh_handle; /* FH data */
int fh_maxsize; /* max size for fh_handle */
struct dentry * fh_dentry; /* validated dentry */
struct svc_export * fh_export; /* export pointer */
bool fh_locked; /* inode locked by us */
bool fh_want_write; /* remount protection taken */
#ifdef CONFIG_NFSD_V3
bool fh_post_saved; /* post-op attrs saved */
bool fh_pre_saved; /* pre-op attrs saved */
/* Pre-op attributes saved during fh_lock */
__u64 fh_pre_size; /* size before operation */
struct timespec fh_pre_mtime; /* mtime before oper */
struct timespec fh_pre_ctime; /* ctime before oper */
/*
* pre-op nfsv4 change attr: note must check IS_I_VERSION(inode)
* to find out if it is valid.
*/
u64 fh_pre_change;
/* Post-op attributes saved in fh_unlock */
struct kstat fh_post_attr; /* full attrs after operation */
u64 fh_post_change; /* nfsv4 change; see above */
#endif /* CONFIG_NFSD_V3 */
} svc_fh;
enum nfsd_fsid {
FSID_DEV = 0,
FSID_NUM,
FSID_MAJOR_MINOR,
FSID_ENCODE_DEV,
FSID_UUID4_INUM,
FSID_UUID8,
FSID_UUID16,
FSID_UUID16_INUM,
};
enum fsid_source {
FSIDSOURCE_DEV,
FSIDSOURCE_FSID,
FSIDSOURCE_UUID,
};
extern enum fsid_source fsid_source(struct svc_fh *fhp);
/*
* This might look a little large to "inline" but in all calls except
* one, 'vers' is constant so moste of the function disappears.
*
* In some cases the values are considered to be host endian and in
* others, net endian. fsidv is always considered to be u32 as the
* callers don't know which it will be. So we must use __force to keep
* sparse from complaining. Since these values are opaque to the
* client, that shouldn't be a problem.
*/
static inline void mk_fsid(int vers, u32 *fsidv, dev_t dev, ino_t ino,
u32 fsid, unsigned char *uuid)
{
u32 *up;
switch(vers) {
case FSID_DEV:
fsidv[0] = (__force __u32)htonl((MAJOR(dev)<<16) |
MINOR(dev));
fsidv[1] = ino_t_to_u32(ino);
break;
case FSID_NUM:
fsidv[0] = fsid;
break;
case FSID_MAJOR_MINOR:
fsidv[0] = (__force __u32)htonl(MAJOR(dev));
fsidv[1] = (__force __u32)htonl(MINOR(dev));
fsidv[2] = ino_t_to_u32(ino);
break;
case FSID_ENCODE_DEV:
fsidv[0] = new_encode_dev(dev);
fsidv[1] = ino_t_to_u32(ino);
break;
case FSID_UUID4_INUM:
/* 4 byte fsid and inode number */
up = (u32*)uuid;
fsidv[0] = ino_t_to_u32(ino);
fsidv[1] = up[0] ^ up[1] ^ up[2] ^ up[3];
break;
case FSID_UUID8:
/* 8 byte fsid */
up = (u32*)uuid;
fsidv[0] = up[0] ^ up[2];
fsidv[1] = up[1] ^ up[3];
break;
case FSID_UUID16:
/* 16 byte fsid - NFSv3+ only */
memcpy(fsidv, uuid, 16);
break;
case FSID_UUID16_INUM:
/* 8 byte inode and 16 byte fsid */
*(u64*)fsidv = (u64)ino;
memcpy(fsidv+2, uuid, 16);
break;
default: BUG();
}
}
static inline int key_len(int type)
{
switch(type) {
case FSID_DEV: return 8;
case FSID_NUM: return 4;
case FSID_MAJOR_MINOR: return 12;
case FSID_ENCODE_DEV: return 8;
case FSID_UUID4_INUM: return 8;
case FSID_UUID8: return 8;
case FSID_UUID16: return 16;
case FSID_UUID16_INUM: return 24;
default: return 0;
}
}
/*
* Shorthand for dprintk()'s
*/
extern char * SVCFH_fmt(struct svc_fh *fhp);
/*
* Function prototypes
*/
__be32 fh_verify(struct svc_rqst *, struct svc_fh *, umode_t, int);
__be32 fh_compose(struct svc_fh *, struct svc_export *, struct dentry *, struct svc_fh *);
__be32 fh_update(struct svc_fh *);
void fh_put(struct svc_fh *);
static __inline__ struct svc_fh *
fh_copy(struct svc_fh *dst, struct svc_fh *src)
{
WARN_ON(src->fh_dentry || src->fh_locked);
*dst = *src;
return dst;
}
static inline void
fh_copy_shallow(struct knfsd_fh *dst, struct knfsd_fh *src)
{
dst->fh_size = src->fh_size;
memcpy(&dst->fh_base, &src->fh_base, src->fh_size);
}
static __inline__ struct svc_fh *
fh_init(struct svc_fh *fhp, int maxsize)
{
memset(fhp, 0, sizeof(*fhp));
fhp->fh_maxsize = maxsize;
return fhp;
}
static inline bool fh_match(struct knfsd_fh *fh1, struct knfsd_fh *fh2)
{
if (fh1->fh_size != fh2->fh_size)
return false;
if (memcmp(fh1->fh_base.fh_pad, fh2->fh_base.fh_pad, fh1->fh_size) != 0)
return false;
return true;
}
static inline bool fh_fsid_match(struct knfsd_fh *fh1, struct knfsd_fh *fh2)
{
if (fh1->fh_fsid_type != fh2->fh_fsid_type)
return false;
if (memcmp(fh1->fh_fsid, fh2->fh_fsid, key_len(fh1->fh_fsid_type)) != 0)
return false;
return true;
}
#ifdef CONFIG_CRC32
/**
* knfsd_fh_hash - calculate the crc32 hash for the filehandle
* @fh - pointer to filehandle
*
* returns a crc32 hash for the filehandle that is compatible with
* the one displayed by "wireshark".
*/
static inline u32
knfsd_fh_hash(struct knfsd_fh *fh)
{
return ~crc32_le(0xFFFFFFFF, (unsigned char *)&fh->fh_base, fh->fh_size);
}
#else
static inline u32
knfsd_fh_hash(struct knfsd_fh *fh)
{
return 0;
}
#endif
#ifdef CONFIG_NFSD_V3
/*
* The wcc data stored in current_fh should be cleared
* between compound ops.
*/
static inline void
fh_clear_wcc(struct svc_fh *fhp)
{
fhp->fh_post_saved = false;
fhp->fh_pre_saved = false;
}
/*
* We could use i_version alone as the change attribute. However,
* i_version can go backwards after a reboot. On its own that doesn't
* necessarily cause a problem, but if i_version goes backwards and then
* is incremented again it could reuse a value that was previously used
* before boot, and a client who queried the two values might
* incorrectly assume nothing changed.
*
* By using both ctime and the i_version counter we guarantee that as
* long as time doesn't go backwards we never reuse an old value.
*/
static inline u64 nfsd4_change_attribute(struct inode *inode)
{
u64 chattr;
chattr = inode->i_ctime.tv_sec;
chattr <<= 30;
chattr += inode->i_ctime.tv_nsec;
chattr += inode->i_version;
return chattr;
}
/*
* Fill in the pre_op attr for the wcc data
*/
static inline void
fill_pre_wcc(struct svc_fh *fhp)
{
struct inode *inode;
inode = d_inode(fhp->fh_dentry);
if (!fhp->fh_pre_saved) {
fhp->fh_pre_mtime = inode->i_mtime;
fhp->fh_pre_ctime = inode->i_ctime;
fhp->fh_pre_size = inode->i_size;
fhp->fh_pre_change = nfsd4_change_attribute(inode);
fhp->fh_pre_saved = true;
}
}
extern void fill_post_wcc(struct svc_fh *);
#else
#define fh_clear_wcc(ignored)
#define fill_pre_wcc(ignored)
#define fill_post_wcc(notused)
#endif /* CONFIG_NFSD_V3 */
/*
* Lock a file handle/inode
* NOTE: both fh_lock and fh_unlock are done "by hand" in
* vfs.c:nfsd_rename as it needs to grab 2 i_mutex's at once
* so, any changes here should be reflected there.
*/
static inline void
fh_lock_nested(struct svc_fh *fhp, unsigned int subclass)
{
struct dentry *dentry = fhp->fh_dentry;
struct inode *inode;
BUG_ON(!dentry);
if (fhp->fh_locked) {
printk(KERN_WARNING "fh_lock: %pd2 already locked!\n",
dentry);
return;
}
inode = d_inode(dentry);
inode_lock_nested(inode, subclass);
fill_pre_wcc(fhp);
fhp->fh_locked = true;
}
static inline void
fh_lock(struct svc_fh *fhp)
{
fh_lock_nested(fhp, I_MUTEX_NORMAL);
}
/*
* Unlock a file handle/inode
*/
static inline void
fh_unlock(struct svc_fh *fhp)
{
if (fhp->fh_locked) {
fill_post_wcc(fhp);
inode_unlock(d_inode(fhp->fh_dentry));
fhp->fh_locked = false;
}
}
#endif /* _LINUX_NFSD_NFSFH_H */