2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/jiffies.h>
|
2011-05-23 04:47:17 +08:00
|
|
|
#include <linux/prefetch.h>
|
2011-05-28 04:14:23 +08:00
|
|
|
#include <linux/export.h>
|
2010-04-01 23:28:24 +08:00
|
|
|
#include <net/ipv6.h>
|
|
|
|
#include <net/tcp.h>
|
|
|
|
#include "cxgb4.h"
|
|
|
|
#include "t4_regs.h"
|
|
|
|
#include "t4_msg.h"
|
|
|
|
#include "t4fw_api.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rx buffer size. We use largish buffers if possible but settle for single
|
|
|
|
* pages under memory shortage.
|
|
|
|
*/
|
|
|
|
#if PAGE_SHIFT >= 16
|
|
|
|
# define FL_PG_ORDER 0
|
|
|
|
#else
|
|
|
|
# define FL_PG_ORDER (16 - PAGE_SHIFT)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* RX_PULL_LEN should be <= RX_COPY_THRES */
|
|
|
|
#define RX_COPY_THRES 256
|
|
|
|
#define RX_PULL_LEN 128
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
|
|
|
|
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
|
|
|
|
*/
|
|
|
|
#define RX_PKT_SKB_LEN 512
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors we clean up at a time. Should be modest as
|
|
|
|
* freeing skbs isn't cheap and it happens while holding locks. We just need
|
|
|
|
* to free packets faster than they arrive, we eventually catch up and keep
|
|
|
|
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
|
|
|
|
*/
|
|
|
|
#define MAX_TX_RECLAIM 16
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Rx buffers we replenish at a time. Again keep this modest,
|
|
|
|
* allocating buffers isn't cheap either.
|
|
|
|
*/
|
|
|
|
#define MAX_RX_REFILL 16U
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Rx queue check timer. This timer is infrequent as it has
|
|
|
|
* something to do only when the system experiences severe memory shortage.
|
|
|
|
*/
|
|
|
|
#define RX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Tx queue check timer.
|
|
|
|
*/
|
|
|
|
#define TX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
2014-03-13 23:20:48 +08:00
|
|
|
/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
|
|
|
|
* (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
|
|
|
|
* State Machines in the same state for this amount of time (in HZ) then we'll
|
|
|
|
* issue a warning about a potential hang. We'll repeat the warning as the
|
|
|
|
* SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
|
|
|
|
* the situation clears. If the situation clears, we'll note that as well.
|
|
|
|
*/
|
|
|
|
#define SGE_IDMA_WARN_THRESH (1 * HZ)
|
|
|
|
#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors to be reclaimed by the Tx timer.
|
|
|
|
*/
|
|
|
|
#define MAX_TIMER_TX_RECLAIM 100
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Timer index used when backing off due to memory shortage.
|
|
|
|
*/
|
|
|
|
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
|
|
|
|
* attempt to refill it.
|
|
|
|
*/
|
|
|
|
#define FL_STARVE_THRES 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Suspend an Ethernet Tx queue with fewer available descriptors than this.
|
|
|
|
* This is the same as calc_tx_descs() for a TSO packet with
|
|
|
|
* nr_frags == MAX_SKB_FRAGS.
|
|
|
|
*/
|
|
|
|
#define ETHTXQ_STOP_THRES \
|
|
|
|
(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Suspension threshold for non-Ethernet Tx queues. We require enough room
|
|
|
|
* for a full sized WR.
|
|
|
|
*/
|
|
|
|
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
|
|
|
|
* into a WR.
|
|
|
|
*/
|
|
|
|
#define MAX_IMM_TX_PKT_LEN 128
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max size of a WR sent through a control Tx queue.
|
|
|
|
*/
|
|
|
|
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
|
|
|
|
|
|
|
|
struct tx_sw_desc { /* SW state per Tx descriptor */
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct ulptx_sgl *sgl;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
|
|
struct page *page;
|
|
|
|
dma_addr_t dma_addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2012-09-26 10:39:38 +08:00
|
|
|
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
|
|
|
|
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
|
|
|
|
* We could easily support more but there doesn't seem to be much need for
|
|
|
|
* that ...
|
|
|
|
*/
|
|
|
|
#define FL_MTU_SMALL 1500
|
|
|
|
#define FL_MTU_LARGE 9000
|
|
|
|
|
|
|
|
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
|
|
|
|
unsigned int mtu)
|
|
|
|
{
|
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
|
|
|
|
return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
|
|
|
|
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
|
|
|
|
* these to specify the buffer size as an index into the SGE Free List Buffer
|
|
|
|
* Size register array. We also use bit 4, when the buffer has been unmapped
|
|
|
|
* for DMA, but this is of course never sent to the hardware and is only used
|
|
|
|
* to prevent double unmappings. All of the above requires that the Free List
|
|
|
|
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
|
|
|
|
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
|
|
|
|
* Free List Buffer alignment is 32 bytes, this works out for us ...
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
|
|
|
enum {
|
2012-09-26 10:39:38 +08:00
|
|
|
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
|
|
|
|
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
|
|
|
|
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX We shouldn't depend on being able to use these indices.
|
|
|
|
* XXX Especially when some other Master PF has initialized the
|
|
|
|
* XXX adapter or we use the Firmware Configuration File. We
|
|
|
|
* XXX should really search through the Host Buffer Size register
|
|
|
|
* XXX array for the appropriately sized buffer indices.
|
|
|
|
*/
|
|
|
|
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
|
|
|
|
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
|
|
|
|
|
|
|
|
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
|
|
|
|
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
|
2010-04-01 23:28:24 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
|
|
|
|
{
|
|
|
|
return !(d->dma_addr & RX_UNMAPPED_BUF);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_avail - return the number of available slots in a Tx queue
|
|
|
|
* @q: the Tx queue
|
|
|
|
*
|
|
|
|
* Returns the number of descriptors in a Tx queue available to write new
|
|
|
|
* packets.
|
|
|
|
*/
|
|
|
|
static inline unsigned int txq_avail(const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
return q->size - 1 - q->in_use;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fl_cap - return the capacity of a free-buffer list
|
|
|
|
* @fl: the FL
|
|
|
|
*
|
|
|
|
* Returns the capacity of a free-buffer list. The capacity is less than
|
|
|
|
* the size because one descriptor needs to be left unpopulated, otherwise
|
|
|
|
* HW will think the FL is empty.
|
|
|
|
*/
|
|
|
|
static inline unsigned int fl_cap(const struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
return fl->size - 8; /* 1 descriptor = 8 buffers */
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool fl_starving(const struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int map_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto out_err;
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
|
|
|
|
for (fp = si->frags; fp < end; fp++) {
|
2011-10-20 07:01:46 +08:00
|
|
|
*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
|
|
|
|
DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto unwind;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
unwind:
|
|
|
|
while (fp-- > si->frags)
|
2011-10-19 05:00:24 +08:00
|
|
|
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
out_err:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
|
|
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
const dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
for (fp = si->frags; fp < end; fp++)
|
2011-10-19 05:00:24 +08:00
|
|
|
dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* deferred_unmap_destructor - unmap a packet when it is freed
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* This is the packet destructor used for Tx packets that need to remain
|
|
|
|
* mapped until they are freed rather than until their Tx descriptors are
|
|
|
|
* freed.
|
|
|
|
*/
|
|
|
|
static void deferred_unmap_destructor(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
|
|
|
|
const struct ulptx_sgl *sgl, const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
const struct ulptx_sge_pair *p;
|
|
|
|
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
|
|
|
|
|
|
|
|
if (likely(skb_headlen(skb)))
|
|
|
|
dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
else {
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
nfrags--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* the complexity below is because of the possibility of a wrap-around
|
|
|
|
* in the middle of an SGL
|
|
|
|
*/
|
|
|
|
for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
|
|
|
|
if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
|
|
|
|
unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p++;
|
|
|
|
} else if ((u8 *)p == (u8 *)q->stat) {
|
|
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
|
|
goto unmap;
|
|
|
|
} else if ((u8 *)p + 8 == (u8 *)q->stat) {
|
|
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[1]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p = (const struct ulptx_sge_pair *)&addr[2];
|
|
|
|
} else {
|
|
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p = (const struct ulptx_sge_pair *)&addr[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (nfrags) {
|
|
|
|
__be64 addr;
|
|
|
|
|
|
|
|
if ((u8 *)p == (u8 *)q->stat)
|
|
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
|
|
addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
|
|
|
|
*(const __be64 *)q->desc;
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_tx_desc - reclaims Tx descriptors and their buffers
|
|
|
|
* @adapter: the adapter
|
|
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
|
|
* @n: the number of descriptors to reclaim
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
|
|
*/
|
|
|
|
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
|
|
|
|
unsigned int n, bool unmap)
|
|
|
|
{
|
|
|
|
struct tx_sw_desc *d;
|
|
|
|
unsigned int cidx = q->cidx;
|
|
|
|
struct device *dev = adap->pdev_dev;
|
|
|
|
|
|
|
|
d = &q->sdesc[cidx];
|
|
|
|
while (n--) {
|
|
|
|
if (d->skb) { /* an SGL is present */
|
|
|
|
if (unmap)
|
|
|
|
unmap_sgl(dev, d->skb, d->sgl, q);
|
2014-03-16 07:29:49 +08:00
|
|
|
dev_consume_skb_any(d->skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
d->skb = NULL;
|
|
|
|
}
|
|
|
|
++d;
|
|
|
|
if (++cidx == q->size) {
|
|
|
|
cidx = 0;
|
|
|
|
d = q->sdesc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->cidx = cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the number of reclaimable descriptors in a Tx queue.
|
|
|
|
*/
|
|
|
|
static inline int reclaimable(const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
int hw_cidx = ntohs(q->stat->cidx);
|
|
|
|
hw_cidx -= q->cidx;
|
|
|
|
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* reclaim_completed_tx - reclaims completed Tx descriptors
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
|
|
* queue locked.
|
|
|
|
*/
|
|
|
|
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
|
|
|
|
bool unmap)
|
|
|
|
{
|
|
|
|
int avail = reclaimable(q);
|
|
|
|
|
|
|
|
if (avail) {
|
|
|
|
/*
|
|
|
|
* Limit the amount of clean up work we do at a time to keep
|
|
|
|
* the Tx lock hold time O(1).
|
|
|
|
*/
|
|
|
|
if (avail > MAX_TX_RECLAIM)
|
|
|
|
avail = MAX_TX_RECLAIM;
|
|
|
|
|
|
|
|
free_tx_desc(adap, q, avail, unmap);
|
|
|
|
q->in_use -= avail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
static inline int get_buf_size(struct adapter *adapter,
|
|
|
|
const struct rx_sw_desc *d)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
|
|
|
|
int buf_size;
|
|
|
|
|
|
|
|
switch (rx_buf_size_idx) {
|
|
|
|
case RX_SMALL_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE << s->fl_pg_order;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_SMALL_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG_ON(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return buf_size;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list to free buffers from
|
|
|
|
* @n: how many buffers to free
|
|
|
|
*
|
|
|
|
* Release the next @n buffers on an SGE free-buffer Rx queue. The
|
|
|
|
* buffers must be made inaccessible to HW before calling this function.
|
|
|
|
*/
|
|
|
|
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
|
|
|
|
{
|
|
|
|
while (n--) {
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 10:39:38 +08:00
|
|
|
get_buf_size(adap, d),
|
|
|
|
PCI_DMA_FROMDEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
put_page(d->page);
|
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list
|
|
|
|
*
|
|
|
|
* Unmap the current buffer on an SGE free-buffer Rx queue. The
|
|
|
|
* buffer must be made inaccessible to HW before calling this function.
|
|
|
|
*
|
|
|
|
* This is similar to @free_rx_bufs above but does not free the buffer.
|
|
|
|
* Do note that the FL still loses any further access to the buffer.
|
|
|
|
*/
|
|
|
|
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 10:39:38 +08:00
|
|
|
get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
2013-03-14 13:08:49 +08:00
|
|
|
u32 val;
|
2010-04-01 23:28:24 +08:00
|
|
|
if (q->pend_cred >= 8) {
|
2013-03-14 13:08:49 +08:00
|
|
|
val = PIDX(q->pend_cred / 8);
|
2013-12-03 19:35:56 +08:00
|
|
|
if (!is_t4(adap->params.chip))
|
2013-03-14 13:08:49 +08:00
|
|
|
val |= DBTYPE(1);
|
2010-04-01 23:28:24 +08:00
|
|
|
wmb();
|
2012-11-16 01:11:17 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
|
2013-03-14 13:08:49 +08:00
|
|
|
QID(q->cntxt_id) | val);
|
2010-04-01 23:28:24 +08:00
|
|
|
q->pend_cred &= 7;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
|
|
|
|
dma_addr_t mapping)
|
|
|
|
{
|
|
|
|
sd->page = pg;
|
|
|
|
sd->dma_addr = mapping; /* includes size low bits */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* refill_fl - refill an SGE Rx buffer ring
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the ring to refill
|
|
|
|
* @n: the number of new buffers to allocate
|
|
|
|
* @gfp: the gfp flags for the allocations
|
|
|
|
*
|
|
|
|
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
|
|
|
|
* allocated with the supplied gfp flags. The caller must assure that
|
|
|
|
* @n does not exceed the queue's capacity. If afterwards the queue is
|
|
|
|
* found critically low mark it as starving in the bitmap of starving FLs.
|
|
|
|
*
|
|
|
|
* Returns the number of buffers allocated.
|
|
|
|
*/
|
|
|
|
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct page *pg;
|
|
|
|
dma_addr_t mapping;
|
|
|
|
unsigned int cred = q->avail;
|
|
|
|
__be64 *d = &q->desc[q->pidx];
|
|
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
|
|
|
|
2011-11-22 18:57:41 +08:00
|
|
|
gfp |= __GFP_NOWARN | __GFP_COLD;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
if (s->fl_pg_order == 0)
|
|
|
|
goto alloc_small_pages;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Prefer large buffers
|
|
|
|
*/
|
|
|
|
while (n) {
|
2012-09-26 10:39:38 +08:00
|
|
|
pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->large_alloc_failed++;
|
|
|
|
break; /* fall back to single pages */
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0,
|
2012-09-26 10:39:38 +08:00
|
|
|
PAGE_SIZE << s->fl_pg_order,
|
2010-04-01 23:28:24 +08:00
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2012-09-26 10:39:38 +08:00
|
|
|
__free_pages(pg, s->fl_pg_order);
|
2010-04-01 23:28:24 +08:00
|
|
|
goto out; /* do not try small pages for this error */
|
|
|
|
}
|
2012-09-26 10:39:38 +08:00
|
|
|
mapping |= RX_LARGE_PG_BUF;
|
2010-04-01 23:28:24 +08:00
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
alloc_small_pages:
|
2010-04-01 23:28:24 +08:00
|
|
|
while (n--) {
|
2012-08-01 07:44:24 +08:00
|
|
|
pg = __skb_alloc_page(gfp, NULL);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->alloc_failed++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2011-11-22 18:57:41 +08:00
|
|
|
put_page(pg);
|
2010-04-01 23:28:24 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out: cred = q->avail - cred;
|
|
|
|
q->pend_cred += cred;
|
|
|
|
ring_fl_db(adap, q);
|
|
|
|
|
|
|
|
if (unlikely(fl_starving(q))) {
|
|
|
|
smp_wmb();
|
2010-08-24 01:20:58 +08:00
|
|
|
set_bit(q->cntxt_id - adap->sge.egr_start,
|
|
|
|
adap->sge.starving_fl);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return cred;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
|
|
|
|
GFP_ATOMIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_ring - allocate resources for an SGE descriptor ring
|
|
|
|
* @dev: the PCI device's core device
|
|
|
|
* @nelem: the number of descriptors
|
|
|
|
* @elem_size: the size of each descriptor
|
|
|
|
* @sw_size: the size of the SW state associated with each ring element
|
|
|
|
* @phys: the physical address of the allocated ring
|
|
|
|
* @metadata: address of the array holding the SW state for the ring
|
|
|
|
* @stat_size: extra space in HW ring for status information
|
2010-12-15 05:36:55 +08:00
|
|
|
* @node: preferred node for memory allocations
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Allocates resources for an SGE descriptor ring, such as Tx queues,
|
|
|
|
* free buffer lists, or response queues. Each SGE ring requires
|
|
|
|
* space for its HW descriptors plus, optionally, space for the SW state
|
|
|
|
* associated with each HW entry (the metadata). The function returns
|
|
|
|
* three values: the virtual address for the HW ring (the return value
|
|
|
|
* of the function), the bus address of the HW ring, and the address
|
|
|
|
* of the SW ring.
|
|
|
|
*/
|
|
|
|
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
|
|
|
|
size_t sw_size, dma_addr_t *phys, void *metadata,
|
2010-12-15 05:36:55 +08:00
|
|
|
size_t stat_size, int node)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
size_t len = nelem * elem_size + stat_size;
|
|
|
|
void *s = NULL;
|
|
|
|
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
|
|
|
|
|
|
|
|
if (!p)
|
|
|
|
return NULL;
|
|
|
|
if (sw_size) {
|
2010-12-15 05:36:55 +08:00
|
|
|
s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (!s) {
|
|
|
|
dma_free_coherent(dev, len, p, *phys);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (metadata)
|
|
|
|
*(void **)metadata = s;
|
|
|
|
memset(p, 0, len);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
|
|
* @n: the number of SGL entries
|
|
|
|
*
|
|
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
|
|
* can hold the given number of entries.
|
|
|
|
*/
|
|
|
|
static inline unsigned int sgl_len(unsigned int n)
|
|
|
|
{
|
|
|
|
n--;
|
|
|
|
return (3 * n) / 2 + (n & 1) + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* flits_to_desc - returns the num of Tx descriptors for the given flits
|
|
|
|
* @n: the number of flits
|
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the supplied number
|
|
|
|
* of flits.
|
|
|
|
*/
|
|
|
|
static inline unsigned int flits_to_desc(unsigned int n)
|
|
|
|
{
|
|
|
|
BUG_ON(n > SGE_MAX_WR_LEN / 8);
|
|
|
|
return DIV_ROUND_UP(n, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_eth_imm - can an Ethernet packet be sent as immediate data?
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an Ethernet packet is small enough to fit as
|
2014-02-18 20:26:14 +08:00
|
|
|
* immediate data. Return value corresponds to headroom required.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
|
|
|
static inline int is_eth_imm(const struct sk_buff *skb)
|
|
|
|
{
|
2014-02-18 20:26:14 +08:00
|
|
|
int hdrlen = skb_shinfo(skb)->gso_size ?
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) : 0;
|
|
|
|
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt);
|
|
|
|
if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
|
|
|
|
return hdrlen;
|
|
|
|
return 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits - calculate the number of flits for a packet Tx WR
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for a Tx WR for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits;
|
2014-02-18 20:26:14 +08:00
|
|
|
int hdrlen = is_eth_imm(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (hdrlen)
|
|
|
|
return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
|
|
|
|
if (skb_shinfo(skb)->gso_size)
|
|
|
|
flits += 2;
|
|
|
|
return flits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return flits_to_desc(calc_tx_flits(skb));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* write_sgl - populate a scatter/gather list for a packet
|
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue we are writing into
|
|
|
|
* @sgl: starting location for writing the SGL
|
|
|
|
* @end: points right after the end of the SGL
|
|
|
|
* @start: start offset into skb main-body data to include in the SGL
|
|
|
|
* @addr: the list of bus addresses for the SGL elements
|
|
|
|
*
|
|
|
|
* Generates a gather list for the buffers that make up a packet.
|
|
|
|
* The caller must provide adequate space for the SGL that will be written.
|
|
|
|
* The SGL includes all of the packet's page fragments and the data in its
|
|
|
|
* main body except for the first @start bytes. @sgl must be 16-byte
|
|
|
|
* aligned and within a Tx descriptor with available space. @end points
|
|
|
|
* right after the end of the SGL but does not account for any potential
|
|
|
|
* wrap around, i.e., @end > @sgl.
|
|
|
|
*/
|
|
|
|
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
|
|
|
|
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
|
|
|
|
const dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
unsigned int i, len;
|
|
|
|
struct ulptx_sge_pair *to;
|
|
|
|
const struct skb_shared_info *si = skb_shinfo(skb);
|
|
|
|
unsigned int nfrags = si->nr_frags;
|
|
|
|
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
|
|
|
|
|
|
|
|
len = skb_headlen(skb) - start;
|
|
|
|
if (likely(len)) {
|
|
|
|
sgl->len0 = htonl(len);
|
|
|
|
sgl->addr0 = cpu_to_be64(addr[0] + start);
|
|
|
|
nfrags++;
|
|
|
|
} else {
|
2011-10-19 05:00:24 +08:00
|
|
|
sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
|
2010-04-01 23:28:24 +08:00
|
|
|
sgl->addr0 = cpu_to_be64(addr[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
|
|
|
|
if (likely(--nfrags == 0))
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Most of the complexity below deals with the possibility we hit the
|
|
|
|
* end of the queue in the middle of writing the SGL. For this case
|
|
|
|
* only we create the SGL in a temporary buffer and then copy it.
|
|
|
|
*/
|
|
|
|
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
|
|
|
|
|
|
|
|
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
|
2011-10-19 05:00:24 +08:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
|
|
|
to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
|
2010-04-01 23:28:24 +08:00
|
|
|
to->addr[0] = cpu_to_be64(addr[i]);
|
|
|
|
to->addr[1] = cpu_to_be64(addr[++i]);
|
|
|
|
}
|
|
|
|
if (nfrags) {
|
2011-10-19 05:00:24 +08:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
2010-04-01 23:28:24 +08:00
|
|
|
to->len[1] = cpu_to_be32(0);
|
|
|
|
to->addr[0] = cpu_to_be64(addr[i + 1]);
|
|
|
|
}
|
|
|
|
if (unlikely((u8 *)end > (u8 *)q->stat)) {
|
|
|
|
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
|
|
|
|
|
|
|
|
if (likely(part0))
|
|
|
|
memcpy(sgl->sge, buf, part0);
|
|
|
|
part1 = (u8 *)end - (u8 *)q->stat;
|
|
|
|
memcpy(q->desc, (u8 *)buf + part0, part1);
|
|
|
|
end = (void *)q->desc + part1;
|
|
|
|
}
|
|
|
|
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
|
2012-06-04 20:44:16 +08:00
|
|
|
*end = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2013-03-14 13:08:51 +08:00
|
|
|
/* This function copies 64 byte coalesced work request to
|
|
|
|
* memory mapped BAR2 space(user space writes).
|
|
|
|
* For coalesced WR SGE, fetches data from the FIFO instead of from Host.
|
|
|
|
*/
|
|
|
|
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
|
|
|
|
{
|
|
|
|
int count = 8;
|
|
|
|
|
|
|
|
while (count) {
|
|
|
|
writeq(*src, dst);
|
|
|
|
src++;
|
|
|
|
dst++;
|
|
|
|
count--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
|
|
|
* ring_tx_db - check and potentially ring a Tx queue's doorbell
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue
|
|
|
|
* @n: number of new descriptors to give to HW
|
|
|
|
*
|
|
|
|
* Ring the doorbel for a Tx queue.
|
|
|
|
*/
|
|
|
|
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
|
|
|
|
{
|
2013-03-14 13:08:51 +08:00
|
|
|
unsigned int *wr, index;
|
cxgb4/iw_cxgb4: Doorbell Drop Avoidance Bug Fixes
The current logic suffers from a slow response time to disable user DB
usage, and also fails to avoid DB FIFO drops under heavy load. This commit
fixes these deficiencies and makes the avoidance logic more optimal.
This is done by more efficiently notifying the ULDs of potential DB
problems, and implements a smoother flow control algorithm in iw_cxgb4,
which is the ULD that puts the most load on the DB fifo.
Design:
cxgb4:
Direct ULD callback from the DB FULL/DROP interrupt handler. This allows
the ULD to stop doing user DB writes as quickly as possible.
While user DB usage is disabled, the LLD will accumulate DB write events
for its queues. Then once DB usage is reenabled, a single DB write is
done for each queue with its accumulated write count. This reduces the
load put on the DB fifo when reenabling.
iw_cxgb4:
Instead of marking each qp to indicate DB writes are disabled, we create
a device-global status page that each user process maps. This allows
iw_cxgb4 to only set this single bit to disable all DB writes for all
user QPs vs traversing the idr of all the active QPs. If the libcxgb4
doesn't support this, then we fall back to the old approach of marking
each QP. Thus we allow the new driver to work with an older libcxgb4.
When the LLD upcalls iw_cxgb4 indicating DB FULL, we disable all DB writes
via the status page and transition the DB state to STOPPED. As user
processes see that DB writes are disabled, they call into iw_cxgb4
to submit their DB write events. Since the DB state is in STOPPED,
the QP trying to write gets enqueued on a new DB "flow control" list.
As subsequent DB writes are submitted for this flow controlled QP, the
amount of writes are accumulated for each QP on the flow control list.
So all the user QPs that are actively ringing the DB get put on this
list and the number of writes they request are accumulated.
When the LLD upcalls iw_cxgb4 indicating DB EMPTY, which is in a workq
context, we change the DB state to FLOW_CONTROL, and begin resuming all
the QPs that are on the flow control list. This logic runs on until
the flow control list is empty or we exit FLOW_CONTROL mode (due to
a DB DROP upcall, for example). QPs are removed from this list, and
their accumulated DB write counts written to the DB FIFO. Sets of QPs,
called chunks in the code, are removed at one time. The chunk size is 64.
So 64 QPs are resumed at a time, and before the next chunk is resumed, the
logic waits (blocks) for the DB FIFO to drain. This prevents resuming to
quickly and overflowing the FIFO. Once the flow control list is empty,
the db state transitions back to NORMAL and user QPs are again allowed
to write directly to the user DB register.
The algorithm is designed such that if the DB write load is high enough,
then all the DB writes get submitted by the kernel using this flow
controlled approach to avoid DB drops. As the load lightens though, we
resume to normal DB writes directly by user applications.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-15 00:22:08 +08:00
|
|
|
unsigned long flags;
|
2013-03-14 13:08:51 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
wmb(); /* write descriptors before telling HW */
|
cxgb4/iw_cxgb4: Doorbell Drop Avoidance Bug Fixes
The current logic suffers from a slow response time to disable user DB
usage, and also fails to avoid DB FIFO drops under heavy load. This commit
fixes these deficiencies and makes the avoidance logic more optimal.
This is done by more efficiently notifying the ULDs of potential DB
problems, and implements a smoother flow control algorithm in iw_cxgb4,
which is the ULD that puts the most load on the DB fifo.
Design:
cxgb4:
Direct ULD callback from the DB FULL/DROP interrupt handler. This allows
the ULD to stop doing user DB writes as quickly as possible.
While user DB usage is disabled, the LLD will accumulate DB write events
for its queues. Then once DB usage is reenabled, a single DB write is
done for each queue with its accumulated write count. This reduces the
load put on the DB fifo when reenabling.
iw_cxgb4:
Instead of marking each qp to indicate DB writes are disabled, we create
a device-global status page that each user process maps. This allows
iw_cxgb4 to only set this single bit to disable all DB writes for all
user QPs vs traversing the idr of all the active QPs. If the libcxgb4
doesn't support this, then we fall back to the old approach of marking
each QP. Thus we allow the new driver to work with an older libcxgb4.
When the LLD upcalls iw_cxgb4 indicating DB FULL, we disable all DB writes
via the status page and transition the DB state to STOPPED. As user
processes see that DB writes are disabled, they call into iw_cxgb4
to submit their DB write events. Since the DB state is in STOPPED,
the QP trying to write gets enqueued on a new DB "flow control" list.
As subsequent DB writes are submitted for this flow controlled QP, the
amount of writes are accumulated for each QP on the flow control list.
So all the user QPs that are actively ringing the DB get put on this
list and the number of writes they request are accumulated.
When the LLD upcalls iw_cxgb4 indicating DB EMPTY, which is in a workq
context, we change the DB state to FLOW_CONTROL, and begin resuming all
the QPs that are on the flow control list. This logic runs on until
the flow control list is empty or we exit FLOW_CONTROL mode (due to
a DB DROP upcall, for example). QPs are removed from this list, and
their accumulated DB write counts written to the DB FIFO. Sets of QPs,
called chunks in the code, are removed at one time. The chunk size is 64.
So 64 QPs are resumed at a time, and before the next chunk is resumed, the
logic waits (blocks) for the DB FIFO to drain. This prevents resuming to
quickly and overflowing the FIFO. Once the flow control list is empty,
the db state transitions back to NORMAL and user QPs are again allowed
to write directly to the user DB register.
The algorithm is designed such that if the DB write load is high enough,
then all the DB writes get submitted by the kernel using this flow
controlled approach to avoid DB drops. As the load lightens though, we
resume to normal DB writes directly by user applications.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-15 00:22:08 +08:00
|
|
|
spin_lock_irqsave(&q->db_lock, flags);
|
2012-05-18 17:59:26 +08:00
|
|
|
if (!q->db_disabled) {
|
2013-12-03 19:35:56 +08:00
|
|
|
if (is_t4(adap->params.chip)) {
|
2013-03-14 13:08:51 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
|
|
|
|
QID(q->cntxt_id) | PIDX(n));
|
|
|
|
} else {
|
|
|
|
if (n == 1) {
|
|
|
|
index = q->pidx ? (q->pidx - 1) : (q->size - 1);
|
|
|
|
wr = (unsigned int *)&q->desc[index];
|
|
|
|
cxgb_pio_copy((u64 __iomem *)
|
|
|
|
(adap->bar2 + q->udb + 64),
|
|
|
|
(u64 *)wr);
|
|
|
|
} else
|
|
|
|
writel(n, adap->bar2 + q->udb + 8);
|
|
|
|
wmb();
|
|
|
|
}
|
cxgb4/iw_cxgb4: Doorbell Drop Avoidance Bug Fixes
The current logic suffers from a slow response time to disable user DB
usage, and also fails to avoid DB FIFO drops under heavy load. This commit
fixes these deficiencies and makes the avoidance logic more optimal.
This is done by more efficiently notifying the ULDs of potential DB
problems, and implements a smoother flow control algorithm in iw_cxgb4,
which is the ULD that puts the most load on the DB fifo.
Design:
cxgb4:
Direct ULD callback from the DB FULL/DROP interrupt handler. This allows
the ULD to stop doing user DB writes as quickly as possible.
While user DB usage is disabled, the LLD will accumulate DB write events
for its queues. Then once DB usage is reenabled, a single DB write is
done for each queue with its accumulated write count. This reduces the
load put on the DB fifo when reenabling.
iw_cxgb4:
Instead of marking each qp to indicate DB writes are disabled, we create
a device-global status page that each user process maps. This allows
iw_cxgb4 to only set this single bit to disable all DB writes for all
user QPs vs traversing the idr of all the active QPs. If the libcxgb4
doesn't support this, then we fall back to the old approach of marking
each QP. Thus we allow the new driver to work with an older libcxgb4.
When the LLD upcalls iw_cxgb4 indicating DB FULL, we disable all DB writes
via the status page and transition the DB state to STOPPED. As user
processes see that DB writes are disabled, they call into iw_cxgb4
to submit their DB write events. Since the DB state is in STOPPED,
the QP trying to write gets enqueued on a new DB "flow control" list.
As subsequent DB writes are submitted for this flow controlled QP, the
amount of writes are accumulated for each QP on the flow control list.
So all the user QPs that are actively ringing the DB get put on this
list and the number of writes they request are accumulated.
When the LLD upcalls iw_cxgb4 indicating DB EMPTY, which is in a workq
context, we change the DB state to FLOW_CONTROL, and begin resuming all
the QPs that are on the flow control list. This logic runs on until
the flow control list is empty or we exit FLOW_CONTROL mode (due to
a DB DROP upcall, for example). QPs are removed from this list, and
their accumulated DB write counts written to the DB FIFO. Sets of QPs,
called chunks in the code, are removed at one time. The chunk size is 64.
So 64 QPs are resumed at a time, and before the next chunk is resumed, the
logic waits (blocks) for the DB FIFO to drain. This prevents resuming to
quickly and overflowing the FIFO. Once the flow control list is empty,
the db state transitions back to NORMAL and user QPs are again allowed
to write directly to the user DB register.
The algorithm is designed such that if the DB write load is high enough,
then all the DB writes get submitted by the kernel using this flow
controlled approach to avoid DB drops. As the load lightens though, we
resume to normal DB writes directly by user applications.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-15 00:22:08 +08:00
|
|
|
} else
|
|
|
|
q->db_pidx_inc += n;
|
2012-05-18 17:59:26 +08:00
|
|
|
q->db_pidx = q->pidx;
|
cxgb4/iw_cxgb4: Doorbell Drop Avoidance Bug Fixes
The current logic suffers from a slow response time to disable user DB
usage, and also fails to avoid DB FIFO drops under heavy load. This commit
fixes these deficiencies and makes the avoidance logic more optimal.
This is done by more efficiently notifying the ULDs of potential DB
problems, and implements a smoother flow control algorithm in iw_cxgb4,
which is the ULD that puts the most load on the DB fifo.
Design:
cxgb4:
Direct ULD callback from the DB FULL/DROP interrupt handler. This allows
the ULD to stop doing user DB writes as quickly as possible.
While user DB usage is disabled, the LLD will accumulate DB write events
for its queues. Then once DB usage is reenabled, a single DB write is
done for each queue with its accumulated write count. This reduces the
load put on the DB fifo when reenabling.
iw_cxgb4:
Instead of marking each qp to indicate DB writes are disabled, we create
a device-global status page that each user process maps. This allows
iw_cxgb4 to only set this single bit to disable all DB writes for all
user QPs vs traversing the idr of all the active QPs. If the libcxgb4
doesn't support this, then we fall back to the old approach of marking
each QP. Thus we allow the new driver to work with an older libcxgb4.
When the LLD upcalls iw_cxgb4 indicating DB FULL, we disable all DB writes
via the status page and transition the DB state to STOPPED. As user
processes see that DB writes are disabled, they call into iw_cxgb4
to submit their DB write events. Since the DB state is in STOPPED,
the QP trying to write gets enqueued on a new DB "flow control" list.
As subsequent DB writes are submitted for this flow controlled QP, the
amount of writes are accumulated for each QP on the flow control list.
So all the user QPs that are actively ringing the DB get put on this
list and the number of writes they request are accumulated.
When the LLD upcalls iw_cxgb4 indicating DB EMPTY, which is in a workq
context, we change the DB state to FLOW_CONTROL, and begin resuming all
the QPs that are on the flow control list. This logic runs on until
the flow control list is empty or we exit FLOW_CONTROL mode (due to
a DB DROP upcall, for example). QPs are removed from this list, and
their accumulated DB write counts written to the DB FIFO. Sets of QPs,
called chunks in the code, are removed at one time. The chunk size is 64.
So 64 QPs are resumed at a time, and before the next chunk is resumed, the
logic waits (blocks) for the DB FIFO to drain. This prevents resuming to
quickly and overflowing the FIFO. Once the flow control list is empty,
the db state transitions back to NORMAL and user QPs are again allowed
to write directly to the user DB register.
The algorithm is designed such that if the DB write load is high enough,
then all the DB writes get submitted by the kernel using this flow
controlled approach to avoid DB drops. As the load lightens though, we
resume to normal DB writes directly by user applications.
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-15 00:22:08 +08:00
|
|
|
spin_unlock_irqrestore(&q->db_lock, flags);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* inline_tx_skb - inline a packet's data into Tx descriptors
|
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue where the packet will be inlined
|
|
|
|
* @pos: starting position in the Tx queue where to inline the packet
|
|
|
|
*
|
|
|
|
* Inline a packet's contents directly into Tx descriptors, starting at
|
|
|
|
* the given position within the Tx DMA ring.
|
|
|
|
* Most of the complexity of this operation is dealing with wrap arounds
|
|
|
|
* in the middle of the packet we want to inline.
|
|
|
|
*/
|
|
|
|
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
|
|
|
|
void *pos)
|
|
|
|
{
|
|
|
|
u64 *p;
|
|
|
|
int left = (void *)q->stat - pos;
|
|
|
|
|
|
|
|
if (likely(skb->len <= left)) {
|
|
|
|
if (likely(!skb->data_len))
|
|
|
|
skb_copy_from_linear_data(skb, pos, skb->len);
|
|
|
|
else
|
|
|
|
skb_copy_bits(skb, 0, pos, skb->len);
|
|
|
|
pos += skb->len;
|
|
|
|
} else {
|
|
|
|
skb_copy_bits(skb, 0, pos, left);
|
|
|
|
skb_copy_bits(skb, left, q->desc, skb->len - left);
|
|
|
|
pos = (void *)q->desc + (skb->len - left);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8)
|
|
|
|
*p = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Figure out what HW csum a packet wants and return the appropriate control
|
|
|
|
* bits.
|
|
|
|
*/
|
|
|
|
static u64 hwcsum(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int csum_type;
|
|
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
|
|
|
|
if (iph->version == 4) {
|
|
|
|
if (iph->protocol == IPPROTO_TCP)
|
|
|
|
csum_type = TX_CSUM_TCPIP;
|
|
|
|
else if (iph->protocol == IPPROTO_UDP)
|
|
|
|
csum_type = TX_CSUM_UDPIP;
|
|
|
|
else {
|
|
|
|
nocsum: /*
|
|
|
|
* unknown protocol, disable HW csum
|
|
|
|
* and hope a bad packet is detected
|
|
|
|
*/
|
|
|
|
return TXPKT_L4CSUM_DIS;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* this doesn't work with extension headers
|
|
|
|
*/
|
|
|
|
const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
|
|
|
|
|
|
|
|
if (ip6h->nexthdr == IPPROTO_TCP)
|
|
|
|
csum_type = TX_CSUM_TCPIP6;
|
|
|
|
else if (ip6h->nexthdr == IPPROTO_UDP)
|
|
|
|
csum_type = TX_CSUM_UDPIP6;
|
|
|
|
else
|
|
|
|
goto nocsum;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (likely(csum_type >= TX_CSUM_TCPIP))
|
|
|
|
return TXPKT_CSUM_TYPE(csum_type) |
|
|
|
|
TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
|
|
|
|
TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
|
|
|
|
else {
|
|
|
|
int start = skb_transport_offset(skb);
|
|
|
|
|
|
|
|
return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
|
|
|
|
TXPKT_CSUM_LOC(start + skb->csum_offset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void eth_txq_stop(struct sge_eth_txq *q)
|
|
|
|
{
|
|
|
|
netif_tx_stop_queue(q->txq);
|
|
|
|
q->q.stops++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void txq_advance(struct sge_txq *q, unsigned int n)
|
|
|
|
{
|
|
|
|
q->in_use += n;
|
|
|
|
q->pidx += n;
|
|
|
|
if (q->pidx >= q->size)
|
|
|
|
q->pidx -= q->size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_eth_xmit - add a packet to an Ethernet Tx queue
|
|
|
|
* @skb: the packet
|
|
|
|
* @dev: the egress net device
|
|
|
|
*
|
|
|
|
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
|
|
|
|
*/
|
|
|
|
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
|
{
|
2014-02-18 20:26:14 +08:00
|
|
|
int len;
|
2010-04-01 23:28:24 +08:00
|
|
|
u32 wr_mid;
|
|
|
|
u64 cntrl, *end;
|
|
|
|
int qidx, credits;
|
|
|
|
unsigned int flits, ndesc;
|
|
|
|
struct adapter *adap;
|
|
|
|
struct sge_eth_txq *q;
|
|
|
|
const struct port_info *pi;
|
|
|
|
struct fw_eth_tx_pkt_wr *wr;
|
|
|
|
struct cpl_tx_pkt_core *cpl;
|
|
|
|
const struct skb_shared_info *ssi;
|
|
|
|
dma_addr_t addr[MAX_SKB_FRAGS + 1];
|
2014-02-18 20:26:14 +08:00
|
|
|
bool immediate = false;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The chip min packet length is 10 octets but play safe and reject
|
|
|
|
* anything shorter than an Ethernet header.
|
|
|
|
*/
|
|
|
|
if (unlikely(skb->len < ETH_HLEN)) {
|
2014-03-16 07:29:49 +08:00
|
|
|
out_free: dev_kfree_skb_any(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
pi = netdev_priv(dev);
|
|
|
|
adap = pi->adapter;
|
|
|
|
qidx = skb_get_queue_mapping(skb);
|
|
|
|
q = &adap->sge.ethtxq[qidx + pi->first_qset];
|
|
|
|
|
|
|
|
reclaim_completed_tx(adap, &q->q, true);
|
|
|
|
|
|
|
|
flits = calc_tx_flits(skb);
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
|
|
|
|
if (unlikely(credits < 0)) {
|
|
|
|
eth_txq_stop(q);
|
|
|
|
dev_err(adap->pdev_dev,
|
|
|
|
"%s: Tx ring %u full while queue awake!\n",
|
|
|
|
dev->name, qidx);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
|
|
}
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (is_eth_imm(skb))
|
|
|
|
immediate = true;
|
|
|
|
|
|
|
|
if (!immediate &&
|
2010-04-01 23:28:24 +08:00
|
|
|
unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
|
|
|
|
q->mapping_err++;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
|
|
|
|
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
|
|
|
|
eth_txq_stop(q);
|
|
|
|
wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr = (void *)&q->q.desc[q->q.pidx];
|
|
|
|
wr->equiq_to_len16 = htonl(wr_mid);
|
|
|
|
wr->r3 = cpu_to_be64(0);
|
|
|
|
end = (u64 *)wr + flits;
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
len = immediate ? skb->len : 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
ssi = skb_shinfo(skb);
|
|
|
|
if (ssi->gso_size) {
|
2010-08-02 21:19:18 +08:00
|
|
|
struct cpl_tx_pkt_lso *lso = (void *)wr;
|
2010-04-01 23:28:24 +08:00
|
|
|
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
|
|
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
len += sizeof(*lso);
|
2010-04-01 23:28:24 +08:00
|
|
|
wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
|
2014-02-18 20:26:14 +08:00
|
|
|
FW_WR_IMMDLEN(len));
|
2010-08-02 21:19:18 +08:00
|
|
|
lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
|
|
|
|
LSO_FIRST_SLICE | LSO_LAST_SLICE |
|
|
|
|
LSO_IPV6(v6) |
|
|
|
|
LSO_ETHHDR_LEN(eth_xtra_len / 4) |
|
|
|
|
LSO_IPHDR_LEN(l3hdr_len / 4) |
|
|
|
|
LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
|
|
|
|
lso->c.ipid_ofst = htons(0);
|
|
|
|
lso->c.mss = htons(ssi->gso_size);
|
|
|
|
lso->c.seqno_offset = htonl(0);
|
|
|
|
lso->c.len = htonl(skb->len);
|
2010-04-01 23:28:24 +08:00
|
|
|
cpl = (void *)(lso + 1);
|
|
|
|
cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
|
|
|
|
TXPKT_IPHDR_LEN(l3hdr_len) |
|
|
|
|
TXPKT_ETHHDR_LEN(eth_xtra_len);
|
|
|
|
q->tso++;
|
|
|
|
q->tx_cso += ssi->gso_segs;
|
|
|
|
} else {
|
2014-03-13 23:20:50 +08:00
|
|
|
len += sizeof(*cpl);
|
2010-04-01 23:28:24 +08:00
|
|
|
wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
|
|
|
|
FW_WR_IMMDLEN(len));
|
|
|
|
cpl = (void *)(wr + 1);
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
|
|
cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
|
|
|
|
q->tx_cso++;
|
|
|
|
} else
|
|
|
|
cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vlan_tx_tag_present(skb)) {
|
|
|
|
q->vlan_ins++;
|
|
|
|
cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
|
|
|
|
}
|
|
|
|
|
|
|
|
cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
|
2010-08-24 01:21:00 +08:00
|
|
|
TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
|
2010-04-01 23:28:24 +08:00
|
|
|
cpl->pack = htons(0);
|
|
|
|
cpl->len = htons(skb->len);
|
|
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (immediate) {
|
2010-04-01 23:28:24 +08:00
|
|
|
inline_tx_skb(skb, &q->q, cpl + 1);
|
2014-03-16 07:29:49 +08:00
|
|
|
dev_consume_skb_any(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
} else {
|
|
|
|
int last_desc;
|
|
|
|
|
|
|
|
write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
|
|
|
|
addr);
|
|
|
|
skb_orphan(skb);
|
|
|
|
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
|
|
q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
|
|
|
|
ring_tx_db(adap, &q->q, ndesc);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
|
|
* @q: the SGE control Tx queue
|
|
|
|
*
|
|
|
|
* This is a variant of reclaim_completed_tx() that is used for Tx queues
|
|
|
|
* that send only immediate data (presently just the control queues) and
|
|
|
|
* thus do not have any sk_buffs to release.
|
|
|
|
*/
|
|
|
|
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
|
|
|
|
{
|
|
|
|
int hw_cidx = ntohs(q->stat->cidx);
|
|
|
|
int reclaim = hw_cidx - q->cidx;
|
|
|
|
|
|
|
|
if (reclaim < 0)
|
|
|
|
reclaim += q->size;
|
|
|
|
|
|
|
|
q->in_use -= reclaim;
|
|
|
|
q->cidx = hw_cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as a WR with immediate data.
|
|
|
|
*/
|
|
|
|
static inline int is_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->len <= MAX_CTRL_WR_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrlq_check_stop - check if a control queue is full and should stop
|
|
|
|
* @q: the queue
|
|
|
|
* @wr: most recent WR written to the queue
|
|
|
|
*
|
|
|
|
* Check if a control queue has become full and should be stopped.
|
|
|
|
* We clean up control queue descriptors very lazily, only when we are out.
|
|
|
|
* If the queue is still full after reclaiming any completed descriptors
|
|
|
|
* we suspend it and have the last WR wake it up.
|
|
|
|
*/
|
|
|
|
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
|
|
|
|
{
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
|
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
|
|
* @q: the control queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
|
|
* a control queue must fit entirely as immediate data.
|
|
|
|
*/
|
|
|
|
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int ndesc;
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
|
|
|
|
if (unlikely(!is_imm(skb))) {
|
|
|
|
WARN_ON(1);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
|
|
|
|
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
|
|
|
|
if (unlikely(q->full)) {
|
|
|
|
skb->priority = ndesc; /* save for restart */
|
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_CN;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
|
|
|
|
ring_tx_db(q->adap, &q->q, ndesc);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
kfree_skb(skb);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ctrlq - restart a suspended control queue
|
|
|
|
* @data: the control queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
|
|
*/
|
|
|
|
static void restart_ctrlq(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int written = 0;
|
|
|
|
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
|
|
|
|
|
|
|
|
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
unsigned int ndesc = skb->priority; /* previously saved */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write descriptors and free skbs outside the lock to limit
|
|
|
|
* wait times. q->full is still set so new skbs will be queued.
|
|
|
|
*/
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
|
|
kfree_skb(skb);
|
|
|
|
|
|
|
|
written += ndesc;
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
|
|
unsigned long old = q->q.stops;
|
|
|
|
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
if (q->q.stops != old) { /* suspended anew */
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
goto ringdb;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (written > 16) {
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
q->full = 0;
|
|
|
|
ringdb: if (written)
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_mgmt_tx - send a management message
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet containing the management message
|
|
|
|
*
|
|
|
|
* Send a management message through control queue 0.
|
|
|
|
*/
|
|
|
|
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ofld_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as an offload WR with immediate
|
|
|
|
* data. We currently use the same limit as for Ethernet packets.
|
|
|
|
*/
|
|
|
|
static inline int is_ofld_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->len <= MAX_IMM_TX_PKT_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits_ofld - calculate # of flits for an offload packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for the given offload packet.
|
|
|
|
* These packets are already fully constructed and no additional headers
|
|
|
|
* will be added.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits, cnt;
|
|
|
|
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
return DIV_ROUND_UP(skb->len, 8);
|
|
|
|
|
|
|
|
flits = skb_transport_offset(skb) / 8U; /* headers */
|
|
|
|
cnt = skb_shinfo(skb)->nr_frags;
|
2013-06-04 06:11:16 +08:00
|
|
|
if (skb_tail_pointer(skb) != skb_transport_header(skb))
|
2010-04-01 23:28:24 +08:00
|
|
|
cnt++;
|
|
|
|
return flits + sgl_len(cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the queue to stop
|
|
|
|
*
|
|
|
|
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
|
|
|
|
* inability to map packets. A periodic timer attempts to restart
|
|
|
|
* queues so marked.
|
|
|
|
*/
|
|
|
|
static void txq_stop_maperr(struct sge_ofld_txq *q)
|
|
|
|
{
|
|
|
|
q->mapping_err++;
|
|
|
|
q->q.stops++;
|
2010-08-24 01:20:58 +08:00
|
|
|
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
|
|
|
|
q->adap->sge.txq_maperr);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofldtxq_stop - stop an offload Tx queue that has become full
|
|
|
|
* @q: the queue to stop
|
|
|
|
* @skb: the packet causing the queue to become full
|
|
|
|
*
|
|
|
|
* Stops an offload Tx queue that has become full and modifies the packet
|
|
|
|
* being written to request a wakeup.
|
|
|
|
*/
|
|
|
|
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
|
|
|
|
|
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
|
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* service_ofldq - restart a suspended offload queue
|
|
|
|
* @q: the offload queue
|
|
|
|
*
|
|
|
|
* Services an offload Tx queue by moving packets from its packet queue
|
|
|
|
* to the HW Tx ring. The function starts and ends with the queue locked.
|
|
|
|
*/
|
|
|
|
static void service_ofldq(struct sge_ofld_txq *q)
|
|
|
|
{
|
|
|
|
u64 *pos;
|
|
|
|
int credits;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int written = 0;
|
|
|
|
unsigned int flits, ndesc;
|
|
|
|
|
|
|
|
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
|
|
|
|
/*
|
|
|
|
* We drop the lock but leave skb on sendq, thus retaining
|
|
|
|
* exclusive access to the state of the queue.
|
|
|
|
*/
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
reclaim_completed_tx(q->adap, &q->q, false);
|
|
|
|
|
|
|
|
flits = skb->priority; /* previously saved */
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
BUG_ON(credits < 0);
|
|
|
|
if (unlikely(credits < TXQ_STOP_THRES))
|
|
|
|
ofldtxq_stop(q, skb);
|
|
|
|
|
|
|
|
pos = (u64 *)&q->q.desc[q->q.pidx];
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
inline_tx_skb(skb, &q->q, pos);
|
|
|
|
else if (map_skb(q->adap->pdev_dev, skb,
|
|
|
|
(dma_addr_t *)skb->head)) {
|
|
|
|
txq_stop_maperr(q);
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
int last_desc, hdr_len = skb_transport_offset(skb);
|
|
|
|
|
|
|
|
memcpy(pos, skb->data, hdr_len);
|
|
|
|
write_sgl(skb, &q->q, (void *)pos + hdr_len,
|
|
|
|
pos + flits, hdr_len,
|
|
|
|
(dma_addr_t *)skb->head);
|
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
|
|
skb->dev = q->adap->port[0];
|
|
|
|
skb->destructor = deferred_unmap_destructor;
|
|
|
|
#endif
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
written += ndesc;
|
|
|
|
if (unlikely(written > 32)) {
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
__skb_unlink(skb, &q->sendq);
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
kfree_skb(skb);
|
|
|
|
}
|
|
|
|
if (likely(written))
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofld_xmit - send a packet through an offload queue
|
|
|
|
* @q: the Tx offload queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send an offload packet through an SGE offload queue.
|
|
|
|
*/
|
|
|
|
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
if (q->sendq.qlen == 1)
|
|
|
|
service_ofldq(q);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ofldq - restart a suspended offload queue
|
|
|
|
* @data: the offload queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
|
|
*/
|
|
|
|
static void restart_ofldq(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
q->full = 0; /* the queue actually is completely empty now */
|
|
|
|
service_ofldq(q);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* skb_txq - return the Tx queue an offload packet should use
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the Tx queue an offload packet should use as indicated by bits
|
|
|
|
* 1-15 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int skb_txq(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping >> 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an offload packet should use an OFLD or a CTRL
|
|
|
|
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping & 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int idx = skb_txq(skb);
|
|
|
|
|
2014-02-18 20:26:11 +08:00
|
|
|
if (unlikely(is_ctrl_pkt(skb))) {
|
|
|
|
/* Single ctrl queue is a requirement for LE workaround path */
|
|
|
|
if (adap->tids.nsftids)
|
|
|
|
idx = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
|
2014-02-18 20:26:11 +08:00
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_ofld_send - send an offload packet
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. We use the packet queue_mapping to select the
|
|
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
|
|
* should be sent as regular or control, bits 1-15 select the queue.
|
|
|
|
*/
|
|
|
|
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = ofld_send(adap, skb);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_ofld_send - send an offload packet
|
|
|
|
* @dev: the net device
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. This is an exported version of @t4_ofld_send,
|
|
|
|
* intended for ULDs.
|
|
|
|
*/
|
|
|
|
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return t4_ofld_send(netdev2adap(dev), skb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_ofld_send);
|
|
|
|
|
2011-10-20 07:01:46 +08:00
|
|
|
static inline void copy_frags(struct sk_buff *skb,
|
2010-04-01 23:28:24 +08:00
|
|
|
const struct pkt_gl *gl, unsigned int offset)
|
|
|
|
{
|
2011-10-20 07:01:46 +08:00
|
|
|
int i;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* usually there's just one frag */
|
2011-10-20 07:01:46 +08:00
|
|
|
__skb_fill_page_desc(skb, 0, gl->frags[0].page,
|
|
|
|
gl->frags[0].offset + offset,
|
|
|
|
gl->frags[0].size - offset);
|
|
|
|
skb_shinfo(skb)->nr_frags = gl->nfrags;
|
|
|
|
for (i = 1; i < gl->nfrags; i++)
|
|
|
|
__skb_fill_page_desc(skb, i, gl->frags[i].page,
|
|
|
|
gl->frags[i].offset,
|
|
|
|
gl->frags[i].size);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* get a reference to the last page, we don't own it */
|
2011-10-20 07:01:46 +08:00
|
|
|
get_page(gl->frags[gl->nfrags - 1].page);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
* @skb_len: size of sk_buff main body if it carries fragments
|
|
|
|
* @pull_len: amount of data to move to the sk_buff's main body
|
|
|
|
*
|
|
|
|
* Builds an sk_buff from the given packet gather list. Returns the
|
|
|
|
* sk_buff or %NULL if sk_buff allocation failed.
|
|
|
|
*/
|
|
|
|
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
|
|
|
|
unsigned int skb_len, unsigned int pull_len)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
|
|
|
|
* size, which is expected since buffers are at least PAGE_SIZEd.
|
|
|
|
* In this case packets up to RX_COPY_THRES have only one fragment.
|
|
|
|
*/
|
|
|
|
if (gl->tot_len <= RX_COPY_THRES) {
|
|
|
|
skb = dev_alloc_skb(gl->tot_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, gl->tot_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
|
|
|
|
} else {
|
|
|
|
skb = dev_alloc_skb(skb_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, pull_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, pull_len);
|
|
|
|
|
2011-10-20 07:01:46 +08:00
|
|
|
copy_frags(skb, gl, pull_len);
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->len = gl->tot_len;
|
|
|
|
skb->data_len = skb->len - pull_len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
}
|
|
|
|
out: return skb;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_pktgl_free - free a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
*
|
|
|
|
* Releases the pages of a packet gather list. We do not own the last
|
|
|
|
* page on the list and do not free it.
|
|
|
|
*/
|
2010-04-21 16:59:17 +08:00
|
|
|
static void t4_pktgl_free(const struct pkt_gl *gl)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
int n;
|
2011-10-20 07:01:46 +08:00
|
|
|
const struct page_frag *p;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
|
|
|
|
put_page(p->page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an MPS trace packet. Give it an unused protocol number so it won't
|
|
|
|
* be delivered to anyone and send it to the stack for capture.
|
|
|
|
*/
|
|
|
|
static noinline int handle_trace_pkt(struct adapter *adap,
|
|
|
|
const struct pkt_gl *gl)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-12-03 19:35:56 +08:00
|
|
|
if (is_t4(adap->params.chip))
|
2013-03-14 13:08:49 +08:00
|
|
|
__skb_pull(skb, sizeof(struct cpl_trace_pkt));
|
|
|
|
else
|
|
|
|
__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb->protocol = htons(0xffff);
|
|
|
|
skb->dev = adap->port[0];
|
|
|
|
netif_receive_skb(skb);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
|
|
|
|
const struct cpl_rx_pkt *pkt)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct adapter *adapter = rxq->rspq.adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
int ret;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = napi_get_frags(&rxq->rspq.napi);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
copy_frags(skb, gl, s->pktshift);
|
|
|
|
skb->len = gl->tot_len - s->pktshift;
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->data_len = skb->len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb_record_rx_queue(skb, rxq->rspq.idx);
|
2010-04-28 07:22:42 +08:00
|
|
|
if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
|
2013-12-18 15:23:29 +08:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 10:04:30 +08:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.vlan_ex++;
|
|
|
|
}
|
|
|
|
ret = napi_gro_frags(&rxq->rspq.napi);
|
2010-10-21 19:29:56 +08:00
|
|
|
if (ret == GRO_HELD)
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.lro_pkts++;
|
|
|
|
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
|
|
|
|
rxq->stats.lro_merged++;
|
|
|
|
rxq->stats.pkts++;
|
|
|
|
rxq->stats.rx_cso++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_ethrx_handler - process an ingress ethernet packet
|
|
|
|
* @q: the response queue that received the packet
|
|
|
|
* @rsp: the response queue descriptor holding the RX_PKT message
|
|
|
|
* @si: the gather list of packet fragments
|
|
|
|
*
|
|
|
|
* Process an ingress ethernet packet and deliver it to the stack.
|
|
|
|
*/
|
|
|
|
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
|
|
const struct pkt_gl *si)
|
|
|
|
{
|
|
|
|
bool csum_ok;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
const struct cpl_rx_pkt *pkt;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &q->adap->sge;
|
2013-12-03 19:35:56 +08:00
|
|
|
int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
|
2013-03-14 13:08:49 +08:00
|
|
|
CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2013-03-14 13:08:49 +08:00
|
|
|
if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
|
2010-04-01 23:28:24 +08:00
|
|
|
return handle_trace_pkt(q->adap, si);
|
|
|
|
|
2010-04-28 07:22:42 +08:00
|
|
|
pkt = (const struct cpl_rx_pkt *)rsp;
|
2014-05-07 20:31:03 +08:00
|
|
|
csum_ok = pkt->csum_calc && !pkt->err_vec &&
|
|
|
|
(q->netdev->features & NETIF_F_RXCSUM);
|
2010-04-01 23:28:24 +08:00
|
|
|
if ((pkt->l2info & htonl(RXF_TCP)) &&
|
|
|
|
(q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
|
|
|
|
do_gro(rxq, si, pkt);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(si);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
__skb_pull(skb, s->pktshift); /* remove ethernet header padding */
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->protocol = eth_type_trans(skb, q->netdev);
|
|
|
|
skb_record_rx_queue(skb, q->idx);
|
2010-04-28 07:22:42 +08:00
|
|
|
if (skb->dev->features & NETIF_F_RXHASH)
|
2013-12-18 15:23:29 +08:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-28 07:22:42 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.pkts++;
|
|
|
|
|
2014-05-07 20:31:03 +08:00
|
|
|
if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
|
2010-08-02 21:19:17 +08:00
|
|
|
if (!pkt->ip_frag) {
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
2010-08-02 21:19:17 +08:00
|
|
|
rxq->stats.rx_cso++;
|
|
|
|
} else if (pkt->l2info & htonl(RXF_IP)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
__sum16 c = (__force __sum16)pkt->csum;
|
|
|
|
skb->csum = csum_unfold(c);
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
2010-08-02 21:19:17 +08:00
|
|
|
rxq->stats.rx_cso++;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
} else
|
2010-09-03 04:07:41 +08:00
|
|
|
skb_checksum_none_assert(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 10:04:30 +08:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.vlan_ex++;
|
2010-10-21 19:29:56 +08:00
|
|
|
}
|
|
|
|
netif_receive_skb(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restore_rx_bufs - put back a packet's Rx buffers
|
|
|
|
* @si: the packet gather list
|
|
|
|
* @q: the SGE free list
|
|
|
|
* @frags: number of FL buffers to restore
|
|
|
|
*
|
|
|
|
* Puts back on an FL the Rx buffers associated with @si. The buffers
|
|
|
|
* have already been unmapped and are left unmapped, we mark them so to
|
|
|
|
* prevent further unmapping attempts.
|
|
|
|
*
|
|
|
|
* This function undoes a series of @unmap_rx_buf calls when we find out
|
|
|
|
* that the current packet can't be processed right away afterall and we
|
|
|
|
* need to come back to it later. This is a very rare event and there's
|
|
|
|
* no effort to make this particularly efficient.
|
|
|
|
*/
|
|
|
|
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
|
|
|
|
int frags)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d;
|
|
|
|
|
|
|
|
while (frags--) {
|
|
|
|
if (q->cidx == 0)
|
|
|
|
q->cidx = q->size - 1;
|
|
|
|
else
|
|
|
|
q->cidx--;
|
|
|
|
d = &q->sdesc[q->cidx];
|
|
|
|
d->page = si->frags[frags].page;
|
|
|
|
d->dma_addr |= RX_UNMAPPED_BUF;
|
|
|
|
q->avail++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_new_response - check if a response is newly written
|
|
|
|
* @r: the response descriptor
|
|
|
|
* @q: the response queue
|
|
|
|
*
|
|
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
|
|
* response.
|
|
|
|
*/
|
|
|
|
static inline bool is_new_response(const struct rsp_ctrl *r,
|
|
|
|
const struct sge_rspq *q)
|
|
|
|
{
|
|
|
|
return RSPD_GEN(r->type_gen) == q->gen;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rspq_next - advance to the next entry in a response queue
|
|
|
|
* @q: the queue
|
|
|
|
*
|
|
|
|
* Updates the state of a response queue to advance it to the next entry.
|
|
|
|
*/
|
|
|
|
static inline void rspq_next(struct sge_rspq *q)
|
|
|
|
{
|
|
|
|
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
|
|
|
|
if (unlikely(++q->cidx == q->size)) {
|
|
|
|
q->cidx = 0;
|
|
|
|
q->gen ^= 1;
|
|
|
|
q->cur_desc = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* process_responses - process responses from an SGE response queue
|
|
|
|
* @q: the ingress queue to process
|
|
|
|
* @budget: how many responses can be processed in this round
|
|
|
|
*
|
|
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
|
|
* Responses include received packets as well as control messages from FW
|
|
|
|
* or HW.
|
|
|
|
*
|
|
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
|
|
* long delay to help recovery.
|
|
|
|
*/
|
|
|
|
static int process_responses(struct sge_rspq *q, int budget)
|
|
|
|
{
|
|
|
|
int ret, rsp_type;
|
|
|
|
int budget_left = budget;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2012-09-26 10:39:38 +08:00
|
|
|
struct adapter *adapter = q->adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
while (likely(budget_left)) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
|
|
if (!is_new_response(rc, q))
|
|
|
|
break;
|
|
|
|
|
|
|
|
rmb();
|
|
|
|
rsp_type = RSPD_TYPE(rc->type_gen);
|
|
|
|
if (likely(rsp_type == RSP_TYPE_FLBUF)) {
|
2011-10-20 07:01:46 +08:00
|
|
|
struct page_frag *fp;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct pkt_gl si;
|
|
|
|
const struct rx_sw_desc *rsd;
|
|
|
|
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
|
|
|
|
|
|
|
|
if (len & RSPD_NEWBUF) {
|
|
|
|
if (likely(q->offset > 0)) {
|
|
|
|
free_rx_bufs(q->adap, &rxq->fl, 1);
|
|
|
|
q->offset = 0;
|
|
|
|
}
|
2010-06-25 20:09:38 +08:00
|
|
|
len = RSPD_LEN(len);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
si.tot_len = len;
|
|
|
|
|
|
|
|
/* gather packet fragments */
|
|
|
|
for (frags = 0, fp = si.frags; ; frags++, fp++) {
|
|
|
|
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
|
2012-09-26 10:39:38 +08:00
|
|
|
bufsz = get_buf_size(adapter, rsd);
|
2010-04-01 23:28:24 +08:00
|
|
|
fp->page = rsd->page;
|
2011-10-20 07:01:46 +08:00
|
|
|
fp->offset = q->offset;
|
|
|
|
fp->size = min(bufsz, len);
|
|
|
|
len -= fp->size;
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!len)
|
|
|
|
break;
|
|
|
|
unmap_rx_buf(q->adap, &rxq->fl);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Last buffer remains mapped so explicitly make it
|
|
|
|
* coherent for CPU access.
|
|
|
|
*/
|
|
|
|
dma_sync_single_for_cpu(q->adap->pdev_dev,
|
|
|
|
get_buf_addr(rsd),
|
2011-10-20 07:01:46 +08:00
|
|
|
fp->size, DMA_FROM_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
si.va = page_address(si.frags[0].page) +
|
2011-10-20 07:01:46 +08:00
|
|
|
si.frags[0].offset;
|
2010-04-01 23:28:24 +08:00
|
|
|
prefetch(si.va);
|
|
|
|
|
|
|
|
si.nfrags = frags + 1;
|
|
|
|
ret = q->handler(q, q->cur_desc, &si);
|
|
|
|
if (likely(ret == 0))
|
2012-09-26 10:39:38 +08:00
|
|
|
q->offset += ALIGN(fp->size, s->fl_align);
|
2010-04-01 23:28:24 +08:00
|
|
|
else
|
|
|
|
restore_rx_bufs(&si, &rxq->fl, frags);
|
|
|
|
} else if (likely(rsp_type == RSP_TYPE_CPL)) {
|
|
|
|
ret = q->handler(q, q->cur_desc, NULL);
|
|
|
|
} else {
|
|
|
|
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(ret)) {
|
|
|
|
/* couldn't process descriptor, back off for recovery */
|
|
|
|
q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
budget_left--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
|
|
|
|
__refill_fl(q->adap, &rxq->fl);
|
|
|
|
return budget - budget_left;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* napi_rx_handler - the NAPI handler for Rx processing
|
|
|
|
* @napi: the napi instance
|
|
|
|
* @budget: how many packets we can process in this round
|
|
|
|
*
|
|
|
|
* Handler for new data events when using NAPI. This does not need any
|
|
|
|
* locking or protection from interrupts as data interrupts are off at
|
|
|
|
* this point and other adapter interrupts do not interfere (the latter
|
|
|
|
* in not a concern at all with MSI-X as non-data interrupts then have
|
|
|
|
* a separate handler).
|
|
|
|
*/
|
|
|
|
static int napi_rx_handler(struct napi_struct *napi, int budget)
|
|
|
|
{
|
|
|
|
unsigned int params;
|
|
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
|
|
|
int work_done = process_responses(q, budget);
|
|
|
|
|
|
|
|
if (likely(work_done < budget)) {
|
|
|
|
napi_complete(napi);
|
|
|
|
params = q->next_intr_params;
|
|
|
|
q->next_intr_params = q->intr_params;
|
|
|
|
} else
|
|
|
|
params = QINTR_TIMER_IDX(7);
|
|
|
|
|
|
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
|
|
|
|
INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
|
|
|
|
return work_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MSI-X interrupt handler for an SGE response queue.
|
|
|
|
*/
|
|
|
|
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct sge_rspq *q = cookie;
|
|
|
|
|
|
|
|
napi_schedule(&q->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the indirect interrupt entries in the interrupt queue and kick off
|
|
|
|
* NAPI for each queue that has generated an entry.
|
|
|
|
*/
|
|
|
|
static unsigned int process_intrq(struct adapter *adap)
|
|
|
|
{
|
|
|
|
unsigned int credits;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_rspq *q = &adap->sge.intrq;
|
|
|
|
|
|
|
|
spin_lock(&adap->sge.intrq_lock);
|
|
|
|
for (credits = 0; ; credits++) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
|
|
if (!is_new_response(rc, q))
|
|
|
|
break;
|
|
|
|
|
|
|
|
rmb();
|
|
|
|
if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
|
|
|
|
unsigned int qid = ntohl(rc->pldbuflen_qid);
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
qid -= adap->sge.ingr_start;
|
2010-04-01 23:28:24 +08:00
|
|
|
napi_schedule(&adap->sge.ingr_map[qid]->napi);
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
}
|
|
|
|
|
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
|
|
|
|
INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
|
|
|
|
spin_unlock(&adap->sge.intrq_lock);
|
|
|
|
return credits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MSI interrupt handler, which handles data events from SGE response queues
|
|
|
|
* as well as error and other async events as they all use the same MSI vector.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_msi(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
|
|
|
t4_slow_intr_handler(adap);
|
|
|
|
process_intrq(adap);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt handler for legacy INTx interrupts.
|
|
|
|
* Handles data events from SGE response queues as well as error and other
|
|
|
|
* async events as they all use the same interrupt line.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_intx(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
|
|
|
t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
|
|
|
|
if (t4_slow_intr_handler(adap) | process_intrq(adap))
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
return IRQ_NONE; /* probably shared interrupt */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_intr_handler - select the top-level interrupt handler
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Selects the top-level interrupt handler based on the type of interrupts
|
|
|
|
* (MSI-X, MSI, or INTx).
|
|
|
|
*/
|
|
|
|
irq_handler_t t4_intr_handler(struct adapter *adap)
|
|
|
|
{
|
|
|
|
if (adap->flags & USING_MSIX)
|
|
|
|
return t4_sge_intr_msix;
|
|
|
|
if (adap->flags & USING_MSI)
|
|
|
|
return t4_intr_msi;
|
|
|
|
return t4_intr_intx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sge_rx_timer_cb(unsigned long data)
|
|
|
|
{
|
|
|
|
unsigned long m;
|
2014-03-13 23:20:48 +08:00
|
|
|
unsigned int i, idma_same_state_cnt[2];
|
2010-04-01 23:28:24 +08:00
|
|
|
struct adapter *adap = (struct adapter *)data;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
|
|
|
|
for (m = s->starving_fl[i]; m; m &= m - 1) {
|
|
|
|
struct sge_eth_rxq *rxq;
|
|
|
|
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
|
|
|
|
struct sge_fl *fl = s->egr_map[id];
|
|
|
|
|
|
|
|
clear_bit(id, s->starving_fl);
|
2014-03-18 01:06:10 +08:00
|
|
|
smp_mb__after_atomic();
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (fl_starving(fl)) {
|
|
|
|
rxq = container_of(fl, struct sge_eth_rxq, fl);
|
|
|
|
if (napi_reschedule(&rxq->rspq.napi))
|
|
|
|
fl->starving++;
|
|
|
|
else
|
|
|
|
set_bit(id, s->starving_fl);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
|
2014-03-13 23:20:48 +08:00
|
|
|
idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
|
|
|
|
idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
|
|
|
|
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
|
|
u32 debug0, debug11;
|
|
|
|
|
|
|
|
/* If the Ingress DMA Same State Counter ("timer") is less
|
|
|
|
* than 1s, then we can reset our synthesized Stall Timer and
|
|
|
|
* continue. If we have previously emitted warnings about a
|
|
|
|
* potential stalled Ingress Queue, issue a note indicating
|
|
|
|
* that the Ingress Queue has resumed forward progress.
|
|
|
|
*/
|
|
|
|
if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
|
|
|
|
if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
|
|
|
|
CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
|
|
|
|
i, s->idma_qid[i],
|
|
|
|
s->idma_stalled[i]/HZ);
|
|
|
|
s->idma_stalled[i] = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
|
|
|
|
* domain. The first time we get here it'll be because we
|
|
|
|
* passed the 1s Threshold; each additional time it'll be
|
|
|
|
* because the RX Timer Callback is being fired on its regular
|
|
|
|
* schedule.
|
|
|
|
*
|
|
|
|
* If the stall is below our Potential Hung Ingress Queue
|
|
|
|
* Warning Threshold, continue.
|
|
|
|
*/
|
|
|
|
if (s->idma_stalled[i] == 0)
|
|
|
|
s->idma_stalled[i] = HZ;
|
|
|
|
else
|
|
|
|
s->idma_stalled[i] += RX_QCHECK_PERIOD;
|
|
|
|
|
|
|
|
if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
|
|
|
|
if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Read and save the SGE IDMA State and Queue ID information.
|
|
|
|
* We do this every time in case it changes across time ...
|
|
|
|
*/
|
|
|
|
t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
|
|
|
|
debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
|
|
|
|
s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
|
|
|
|
|
|
|
|
t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
|
|
|
|
debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
|
|
|
|
s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
|
|
|
|
|
|
|
|
CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
|
|
|
|
i, s->idma_qid[i], s->idma_state[i],
|
|
|
|
s->idma_stalled[i]/HZ, debug0, debug11);
|
|
|
|
t4_sge_decode_idma_state(adap, s->idma_state[i]);
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sge_tx_timer_cb(unsigned long data)
|
|
|
|
{
|
|
|
|
unsigned long m;
|
|
|
|
unsigned int i, budget;
|
|
|
|
struct adapter *adap = (struct adapter *)data;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
|
|
|
|
for (m = s->txq_maperr[i]; m; m &= m - 1) {
|
|
|
|
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
|
|
|
|
struct sge_ofld_txq *txq = s->egr_map[id];
|
|
|
|
|
|
|
|
clear_bit(id, s->txq_maperr);
|
|
|
|
tasklet_schedule(&txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
|
|
|
|
budget = MAX_TIMER_TX_RECLAIM;
|
|
|
|
i = s->ethtxq_rover;
|
|
|
|
do {
|
|
|
|
struct sge_eth_txq *q = &s->ethtxq[i];
|
|
|
|
|
|
|
|
if (q->q.in_use &&
|
|
|
|
time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
|
|
|
|
__netif_tx_trylock(q->txq)) {
|
|
|
|
int avail = reclaimable(&q->q);
|
|
|
|
|
|
|
|
if (avail) {
|
|
|
|
if (avail > budget)
|
|
|
|
avail = budget;
|
|
|
|
|
|
|
|
free_tx_desc(adap, &q->q, avail, true);
|
|
|
|
q->q.in_use -= avail;
|
|
|
|
budget -= avail;
|
|
|
|
}
|
|
|
|
__netif_tx_unlock(q->txq);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (++i >= s->ethqsets)
|
|
|
|
i = 0;
|
|
|
|
} while (budget && i != s->ethtxq_rover);
|
|
|
|
s->ethtxq_rover = i;
|
|
|
|
mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
|
|
|
|
struct net_device *dev, int intr_idx,
|
|
|
|
struct sge_fl *fl, rspq_handler_t hnd)
|
|
|
|
{
|
|
|
|
int ret, flsz = 0;
|
|
|
|
struct fw_iq_cmd c;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Size needs to be multiple of 16, including status entry. */
|
|
|
|
iq->size = roundup(iq->size, 16);
|
|
|
|
|
|
|
|
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
|
2010-12-15 05:36:55 +08:00
|
|
|
&iq->phys_addr, NULL, 0, NUMA_NO_NODE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!iq->desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
|
|
|
|
FW_CMD_WRITE | FW_CMD_EXEC |
|
2010-08-02 21:19:21 +08:00
|
|
|
FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
|
|
|
|
FW_LEN16(c));
|
|
|
|
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
|
|
|
|
FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
|
|
|
|
FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
|
|
|
|
FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
|
|
|
|
-intr_idx - 1));
|
|
|
|
c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
|
|
|
|
FW_IQ_CMD_IQGTSMODE |
|
|
|
|
FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
|
|
|
|
FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
|
|
|
|
c.iqsize = htons(iq->size);
|
|
|
|
c.iqaddr = cpu_to_be64(iq->phys_addr);
|
|
|
|
|
|
|
|
if (fl) {
|
|
|
|
fl->size = roundup(fl->size, 8);
|
|
|
|
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
|
|
|
|
sizeof(struct rx_sw_desc), &fl->addr,
|
2012-09-26 10:39:38 +08:00
|
|
|
&fl->sdesc, s->stat_len, NUMA_NO_NODE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!fl->desc)
|
|
|
|
goto fl_nomem;
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
|
2012-11-16 01:11:17 +08:00
|
|
|
c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
|
2010-12-15 05:36:44 +08:00
|
|
|
FW_IQ_CMD_FL0FETCHRO(1) |
|
|
|
|
FW_IQ_CMD_FL0DATARO(1) |
|
2012-11-16 01:11:17 +08:00
|
|
|
FW_IQ_CMD_FL0PADEN(1));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
|
|
|
|
FW_IQ_CMD_FL0FBMAX(3));
|
|
|
|
c.fl0size = htons(flsz);
|
|
|
|
c.fl0addr = cpu_to_be64(fl->addr);
|
|
|
|
}
|
|
|
|
|
2010-08-02 21:19:21 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
|
|
|
|
iq->cur_desc = iq->desc;
|
|
|
|
iq->cidx = 0;
|
|
|
|
iq->gen = 1;
|
|
|
|
iq->next_intr_params = iq->intr_params;
|
|
|
|
iq->cntxt_id = ntohs(c.iqid);
|
|
|
|
iq->abs_id = ntohs(c.physiqid);
|
|
|
|
iq->size--; /* subtract status entry */
|
|
|
|
iq->netdev = dev;
|
|
|
|
iq->handler = hnd;
|
|
|
|
|
|
|
|
/* set offset to -1 to distinguish ingress queues without FL */
|
|
|
|
iq->offset = fl ? 0 : -1;
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (fl) {
|
2010-04-21 16:09:21 +08:00
|
|
|
fl->cntxt_id = ntohs(c.fl0id);
|
2010-04-01 23:28:24 +08:00
|
|
|
fl->avail = fl->pend_cred = 0;
|
|
|
|
fl->pidx = fl->cidx = 0;
|
|
|
|
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
|
2010-04-01 23:28:24 +08:00
|
|
|
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fl_nomem:
|
|
|
|
ret = -ENOMEM;
|
|
|
|
err:
|
|
|
|
if (iq->desc) {
|
|
|
|
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
|
|
|
|
iq->desc, iq->phys_addr);
|
|
|
|
iq->desc = NULL;
|
|
|
|
}
|
|
|
|
if (fl && fl->desc) {
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
|
|
|
|
fl->desc, fl->addr);
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
|
|
|
|
{
|
2013-03-14 13:08:51 +08:00
|
|
|
q->cntxt_id = id;
|
2013-12-03 19:35:56 +08:00
|
|
|
if (!is_t4(adap->params.chip)) {
|
2013-03-14 13:08:51 +08:00
|
|
|
unsigned int s_qpp;
|
|
|
|
unsigned short udb_density;
|
|
|
|
unsigned long qpshift;
|
|
|
|
int page;
|
|
|
|
|
|
|
|
s_qpp = QUEUESPERPAGEPF1 * adap->fn;
|
|
|
|
udb_density = 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap,
|
|
|
|
SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp));
|
|
|
|
qpshift = PAGE_SHIFT - ilog2(udb_density);
|
|
|
|
q->udb = q->cntxt_id << qpshift;
|
|
|
|
q->udb &= PAGE_MASK;
|
|
|
|
page = q->udb / PAGE_SIZE;
|
|
|
|
q->udb += (q->cntxt_id - (page * udb_density)) * 128;
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
q->in_use = 0;
|
|
|
|
q->cidx = q->pidx = 0;
|
|
|
|
q->stops = q->restarts = 0;
|
|
|
|
q->stat = (void *)&q->desc[q->size];
|
2012-05-18 17:59:26 +08:00
|
|
|
spin_lock_init(&q->db_lock);
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.egr_map[id - adap->sge.egr_start] = q;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
|
|
|
|
struct net_device *dev, struct netdev_queue *netdevq,
|
|
|
|
unsigned int iqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_eth_cmd c;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 10:39:38 +08:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
2012-09-26 10:39:38 +08:00
|
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
2010-12-15 05:36:55 +08:00
|
|
|
netdev_queue_numa_node_read(netdevq));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
|
|
|
|
FW_CMD_WRITE | FW_CMD_EXEC |
|
2010-08-02 21:19:21 +08:00
|
|
|
FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
|
|
|
|
FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
|
|
|
|
c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
|
|
|
|
c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
|
|
|
|
FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
|
2010-12-15 05:36:44 +08:00
|
|
|
FW_EQ_ETH_CMD_FETCHRO(1) |
|
2010-04-01 23:28:24 +08:00
|
|
|
FW_EQ_ETH_CMD_IQID(iqid));
|
|
|
|
c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
|
|
|
|
FW_EQ_ETH_CMD_FBMAX(3) |
|
|
|
|
FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
|
|
|
|
FW_EQ_ETH_CMD_EQSIZE(nentries));
|
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2010-08-02 21:19:21 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
txq->q.sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
|
|
|
|
txq->txq = netdevq;
|
|
|
|
txq->tso = txq->tx_cso = txq->vlan_ins = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid,
|
|
|
|
unsigned int cmplqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_ctrl_cmd c;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 10:39:38 +08:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
|
|
|
|
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
|
2010-12-15 05:36:55 +08:00
|
|
|
NULL, 0, NUMA_NO_NODE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
|
|
|
|
FW_CMD_WRITE | FW_CMD_EXEC |
|
2010-08-02 21:19:21 +08:00
|
|
|
FW_EQ_CTRL_CMD_PFN(adap->fn) |
|
|
|
|
FW_EQ_CTRL_CMD_VFN(0));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
|
|
|
|
FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
|
|
|
|
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
|
|
|
|
c.physeqid_pkd = htonl(0);
|
|
|
|
c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
|
|
|
|
FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
|
2010-12-15 05:36:44 +08:00
|
|
|
FW_EQ_CTRL_CMD_FETCHRO |
|
2010-04-01 23:28:24 +08:00
|
|
|
FW_EQ_CTRL_CMD_IQID(iqid));
|
|
|
|
c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
|
|
|
|
FW_EQ_CTRL_CMD_FBMAX(3) |
|
|
|
|
FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
|
|
|
|
FW_EQ_CTRL_CMD_EQSIZE(nentries));
|
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2010-08-02 21:19:21 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
|
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_ofld_cmd c;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 10:39:38 +08:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
2012-09-26 10:39:38 +08:00
|
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
2010-12-15 05:36:55 +08:00
|
|
|
NUMA_NO_NODE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
|
|
|
|
FW_CMD_WRITE | FW_CMD_EXEC |
|
2010-08-02 21:19:21 +08:00
|
|
|
FW_EQ_OFLD_CMD_PFN(adap->fn) |
|
|
|
|
FW_EQ_OFLD_CMD_VFN(0));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
|
|
|
|
FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
|
|
|
|
c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
|
|
|
|
FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
|
2010-12-15 05:36:44 +08:00
|
|
|
FW_EQ_OFLD_CMD_FETCHRO(1) |
|
2010-04-01 23:28:24 +08:00
|
|
|
FW_EQ_OFLD_CMD_IQID(iqid));
|
|
|
|
c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
|
|
|
|
FW_EQ_OFLD_CMD_FBMAX(3) |
|
|
|
|
FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
|
|
|
|
FW_EQ_OFLD_CMD_EQSIZE(nentries));
|
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2010-08-02 21:19:21 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
txq->q.sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
|
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_txq(struct adapter *adap, struct sge_txq *q)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev,
|
2012-09-26 10:39:38 +08:00
|
|
|
q->size * sizeof(struct tx_desc) + s->stat_len,
|
2010-04-01 23:28:24 +08:00
|
|
|
q->desc, q->phys_addr);
|
|
|
|
q->cntxt_id = 0;
|
|
|
|
q->sdesc = NULL;
|
|
|
|
q->desc = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
|
|
|
|
struct sge_fl *fl)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
|
2010-08-02 21:19:21 +08:00
|
|
|
t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
|
|
|
|
rq->cntxt_id, fl_id, 0xffff);
|
2010-04-01 23:28:24 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
|
|
|
|
rq->desc, rq->phys_addr);
|
|
|
|
netif_napi_del(&rq->napi);
|
|
|
|
rq->netdev = NULL;
|
|
|
|
rq->cntxt_id = rq->abs_id = 0;
|
|
|
|
rq->desc = NULL;
|
|
|
|
|
|
|
|
if (fl) {
|
|
|
|
free_rx_bufs(adap, fl, fl->avail);
|
2012-09-26 10:39:38 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
|
2010-04-01 23:28:24 +08:00
|
|
|
fl->desc, fl->addr);
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
fl->cntxt_id = 0;
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_free_sge_resources - free SGE resources
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Frees resources used by the SGE queue sets.
|
|
|
|
*/
|
|
|
|
void t4_free_sge_resources(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct sge_eth_rxq *eq = adap->sge.ethrxq;
|
|
|
|
struct sge_eth_txq *etq = adap->sge.ethtxq;
|
|
|
|
struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
|
|
|
|
|
|
|
|
/* clean up Ethernet Tx/Rx queues */
|
|
|
|
for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
|
|
|
|
if (eq->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &eq->rspq, &eq->fl);
|
|
|
|
if (etq->q.desc) {
|
2010-08-02 21:19:21 +08:00
|
|
|
t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
|
|
|
|
etq->q.cntxt_id);
|
2010-04-01 23:28:24 +08:00
|
|
|
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
|
|
|
|
kfree(etq->q.sdesc);
|
|
|
|
free_txq(adap, &etq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up RDMA and iSCSI Rx queues */
|
|
|
|
for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
|
|
|
|
if (oq->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &oq->rspq, &oq->fl);
|
|
|
|
}
|
|
|
|
for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
|
|
|
|
if (oq->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &oq->rspq, &oq->fl);
|
|
|
|
}
|
2014-06-07 00:10:42 +08:00
|
|
|
for (i = 0, oq = adap->sge.rdmaciq; i < adap->sge.rdmaciqs; i++, oq++) {
|
|
|
|
if (oq->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &oq->rspq, &oq->fl);
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* clean up offload Tx queues */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
|
|
|
|
struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
|
|
|
|
|
|
|
|
if (q->q.desc) {
|
|
|
|
tasklet_kill(&q->qresume_tsk);
|
2010-08-02 21:19:21 +08:00
|
|
|
t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
|
|
|
|
q->q.cntxt_id);
|
2010-04-01 23:28:24 +08:00
|
|
|
free_tx_desc(adap, &q->q, q->q.in_use, false);
|
|
|
|
kfree(q->q.sdesc);
|
|
|
|
__skb_queue_purge(&q->sendq);
|
|
|
|
free_txq(adap, &q->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up control Tx queues */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc) {
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
2010-08-02 21:19:21 +08:00
|
|
|
t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
|
|
|
|
cq->q.cntxt_id);
|
2010-04-01 23:28:24 +08:00
|
|
|
__skb_queue_purge(&cq->sendq);
|
|
|
|
free_txq(adap, &cq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adap->sge.fw_evtq.desc)
|
|
|
|
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
|
|
|
|
|
|
|
|
if (adap->sge.intrq.desc)
|
|
|
|
free_rspq_fl(adap, &adap->sge.intrq, NULL);
|
|
|
|
|
|
|
|
/* clear the reverse egress queue map */
|
|
|
|
memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
|
|
|
|
}
|
|
|
|
|
|
|
|
void t4_sge_start(struct adapter *adap)
|
|
|
|
{
|
|
|
|
adap->sge.ethtxq_rover = 0;
|
|
|
|
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_sge_stop - disable SGE operation
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Stop tasklets and timers associated with the DMA engine. Note that
|
|
|
|
* this is effective only if measures have been taken to disable any HW
|
|
|
|
* events that may restart them.
|
|
|
|
*/
|
|
|
|
void t4_sge_stop(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
if (in_interrupt()) /* actions below require waiting */
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (s->rx_timer.function)
|
|
|
|
del_timer_sync(&s->rx_timer);
|
|
|
|
if (s->tx_timer.function)
|
|
|
|
del_timer_sync(&s->tx_timer);
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
|
|
|
|
struct sge_ofld_txq *q = &s->ofldtxq[i];
|
|
|
|
|
|
|
|
if (q->q.desc)
|
|
|
|
tasklet_kill(&q->qresume_tsk);
|
|
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &s->ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc)
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_sge_init - initialize SGE
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Performs SGE initialization needed every time after a chip reset.
|
|
|
|
* We do not initialize any of the queues here, instead the driver
|
|
|
|
* top-level must request them individually.
|
2012-09-26 10:39:38 +08:00
|
|
|
*
|
|
|
|
* Called in two different modes:
|
|
|
|
*
|
|
|
|
* 1. Perform actual hardware initialization and record hard-coded
|
|
|
|
* parameters which were used. This gets used when we're the
|
|
|
|
* Master PF and the Firmware Configuration File support didn't
|
|
|
|
* work for some reason.
|
|
|
|
*
|
|
|
|
* 2. We're not the Master PF or initialization was performed with
|
|
|
|
* a Firmware Configuration File. In this case we need to grab
|
|
|
|
* any of the SGE operating parameters that we need to have in
|
|
|
|
* order to do our job and make sure we can live with them ...
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
static int t4_sge_init_soft(struct adapter *adap)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2012-09-26 10:39:38 +08:00
|
|
|
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
|
|
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
|
|
u32 ingress_rx_threshold;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
/*
|
|
|
|
* Verify that CPL messages are going to the Ingress Queue for
|
|
|
|
* process_responses() and that only packet data is going to the
|
|
|
|
* Free Lists.
|
|
|
|
*/
|
|
|
|
if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
|
|
|
|
RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
|
|
|
|
dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate the Host Buffer Register Array indices that we want to
|
|
|
|
* use ...
|
|
|
|
*
|
|
|
|
* XXX Note that we should really read through the Host Buffer Size
|
|
|
|
* XXX register array and find the indices of the Buffer Sizes which
|
|
|
|
* XXX meet our needs!
|
|
|
|
*/
|
|
|
|
#define READ_FL_BUF(x) \
|
|
|
|
t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
|
|
|
|
|
|
|
|
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
|
|
|
|
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
|
|
|
|
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
|
|
|
|
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
|
|
|
|
|
2014-03-13 23:20:46 +08:00
|
|
|
/* We only bother using the Large Page logic if the Large Page Buffer
|
|
|
|
* is larger than our Page Size Buffer.
|
|
|
|
*/
|
|
|
|
if (fl_large_pg <= fl_small_pg)
|
|
|
|
fl_large_pg = 0;
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
#undef READ_FL_BUF
|
|
|
|
|
2014-03-13 23:20:46 +08:00
|
|
|
/* The Page Size Buffer must be exactly equal to our Page Size and the
|
|
|
|
* Large Page Size Buffer should be 0 (per above) or a power of 2.
|
|
|
|
*/
|
2012-09-26 10:39:38 +08:00
|
|
|
if (fl_small_pg != PAGE_SIZE ||
|
2014-03-13 23:20:46 +08:00
|
|
|
(fl_large_pg & (fl_large_pg-1)) != 0) {
|
2012-09-26 10:39:38 +08:00
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
|
|
|
|
fl_small_pg, fl_large_pg);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (fl_large_pg)
|
|
|
|
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
|
|
|
|
fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
|
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
|
|
|
|
fl_small_mtu, fl_large_mtu);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Retrieve our RX interrupt holdoff timer values and counter
|
|
|
|
* threshold values from the SGE parameters.
|
|
|
|
*/
|
|
|
|
timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
|
|
|
|
timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
|
|
|
|
timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
|
|
|
|
s->timer_val[0] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE0_GET(timer_value_0_and_1));
|
|
|
|
s->timer_val[1] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE1_GET(timer_value_0_and_1));
|
|
|
|
s->timer_val[2] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE2_GET(timer_value_2_and_3));
|
|
|
|
s->timer_val[3] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE3_GET(timer_value_2_and_3));
|
|
|
|
s->timer_val[4] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE4_GET(timer_value_4_and_5));
|
|
|
|
s->timer_val[5] = core_ticks_to_us(adap,
|
|
|
|
TIMERVALUE5_GET(timer_value_4_and_5));
|
|
|
|
|
|
|
|
ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
|
|
|
|
s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
|
|
|
|
s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
|
|
|
|
s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
|
|
|
|
s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int t4_sge_init_hard(struct adapter *adap)
|
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up our basic SGE mode to deliver CPL messages to our Ingress
|
|
|
|
* Queue and Packet Date to the Free List.
|
|
|
|
*/
|
|
|
|
t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
|
|
|
|
RXPKTCPLMODE_MASK);
|
2010-08-02 21:19:21 +08:00
|
|
|
|
2012-05-18 17:59:26 +08:00
|
|
|
/*
|
|
|
|
* Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
|
|
|
|
* and generate an interrupt when this occurs so we can recover.
|
|
|
|
*/
|
2013-12-03 19:35:56 +08:00
|
|
|
if (is_t4(adap->params.chip)) {
|
2013-03-14 13:08:49 +08:00
|
|
|
t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
|
|
|
|
V_HP_INT_THRESH(M_HP_INT_THRESH) |
|
|
|
|
V_LP_INT_THRESH(M_LP_INT_THRESH),
|
|
|
|
V_HP_INT_THRESH(dbfifo_int_thresh) |
|
|
|
|
V_LP_INT_THRESH(dbfifo_int_thresh));
|
|
|
|
} else {
|
|
|
|
t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
|
|
|
|
V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
|
|
|
|
V_LP_INT_THRESH_T5(dbfifo_int_thresh));
|
|
|
|
t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
|
|
|
|
V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
|
|
|
|
V_HP_INT_THRESH_T5(dbfifo_int_thresh));
|
|
|
|
}
|
2012-05-18 17:59:24 +08:00
|
|
|
t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
|
|
|
|
F_ENABLE_DROP);
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
/*
|
|
|
|
* SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
|
|
|
|
* t4_fixup_host_params().
|
|
|
|
*/
|
|
|
|
s->fl_pg_order = FL_PG_ORDER;
|
|
|
|
if (s->fl_pg_order)
|
|
|
|
t4_write_reg(adap,
|
|
|
|
SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
|
|
|
|
PAGE_SIZE << FL_PG_ORDER);
|
|
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
|
|
|
|
FL_MTU_SMALL_BUFSIZE(adap));
|
|
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
|
|
|
|
FL_MTU_LARGE_BUFSIZE(adap));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that the SGE Ingress Packet Count Interrupt Threshold and
|
|
|
|
* Timer Holdoff values must be supplied by our caller.
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
|
|
|
|
THRESHOLD_0(s->counter_val[0]) |
|
|
|
|
THRESHOLD_1(s->counter_val[1]) |
|
|
|
|
THRESHOLD_2(s->counter_val[2]) |
|
|
|
|
THRESHOLD_3(s->counter_val[3]));
|
|
|
|
t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
|
|
|
|
TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
|
|
|
|
TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
|
|
|
|
t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
|
2012-09-26 10:39:38 +08:00
|
|
|
TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
|
|
|
|
TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
|
2010-04-01 23:28:24 +08:00
|
|
|
t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
|
2012-09-26 10:39:38 +08:00
|
|
|
TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
|
|
|
|
TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_init(struct adapter *adap)
|
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2014-03-13 23:20:49 +08:00
|
|
|
u32 sge_control, sge_conm_ctrl;
|
|
|
|
int ret, egress_threshold;
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Ingress Padding Boundary and Egress Status Page Size are set up by
|
|
|
|
* t4_fixup_host_params().
|
|
|
|
*/
|
|
|
|
sge_control = t4_read_reg(adap, SGE_CONTROL);
|
|
|
|
s->pktshift = PKTSHIFT_GET(sge_control);
|
|
|
|
s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
|
|
|
|
s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
|
|
|
|
X_INGPADBOUNDARY_SHIFT);
|
|
|
|
|
|
|
|
if (adap->flags & USING_SOFT_PARAMS)
|
|
|
|
ret = t4_sge_init_soft(adap);
|
|
|
|
else
|
|
|
|
ret = t4_sge_init_hard(adap);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A FL with <= fl_starve_thres buffers is starving and a periodic
|
|
|
|
* timer will attempt to refill it. This needs to be larger than the
|
|
|
|
* SGE's Egress Congestion Threshold. If it isn't, then we can get
|
|
|
|
* stuck waiting for new packets while the SGE is waiting for us to
|
|
|
|
* give it more Free List entries. (Note that the SGE's Egress
|
2014-03-13 23:20:49 +08:00
|
|
|
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
|
|
|
|
* there was only a single field to control this. For T5 there's the
|
|
|
|
* original field which now only applies to Unpacked Mode Free List
|
|
|
|
* buffers and a new field which only applies to Packed Mode Free List
|
|
|
|
* buffers.
|
2012-09-26 10:39:38 +08:00
|
|
|
*/
|
2014-03-13 23:20:49 +08:00
|
|
|
sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
|
|
|
|
if (is_t4(adap->params.chip))
|
|
|
|
egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
|
|
|
|
else
|
|
|
|
egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
|
|
|
|
s->fl_starve_thres = 2*egress_threshold + 1;
|
2012-09-26 10:39:38 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
|
|
|
|
setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
|
2014-03-13 23:20:48 +08:00
|
|
|
s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
|
|
|
|
s->idma_stalled[0] = 0;
|
|
|
|
s->idma_stalled[1] = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_lock_init(&s->intrq_lock);
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
return 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|