2018-06-06 10:42:14 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2005-11-02 11:58:39 +08:00
|
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
|
|
* All Rights Reserved.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
#include "xfs.h"
|
2005-11-02 11:38:42 +08:00
|
|
|
#include "xfs_fs.h"
|
2013-10-23 07:36:05 +08:00
|
|
|
#include "xfs_shared.h"
|
2013-10-23 07:50:10 +08:00
|
|
|
#include "xfs_format.h"
|
2013-10-23 07:51:50 +08:00
|
|
|
#include "xfs_log_format.h"
|
2013-10-23 07:50:10 +08:00
|
|
|
#include "xfs_trans_resv.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "xfs_sb.h"
|
|
|
|
#include "xfs_mount.h"
|
2016-08-03 09:15:38 +08:00
|
|
|
#include "xfs_defer.h"
|
2013-10-23 07:50:10 +08:00
|
|
|
#include "xfs_trans.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "xfs_error.h"
|
2013-10-23 07:51:50 +08:00
|
|
|
#include "xfs_btree.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "xfs_alloc.h"
|
|
|
|
#include "xfs_fsops.h"
|
|
|
|
#include "xfs_trans_space.h"
|
|
|
|
#include "xfs_rtalloc.h"
|
2009-12-15 07:14:59 +08:00
|
|
|
#include "xfs_trace.h"
|
2013-10-23 07:50:10 +08:00
|
|
|
#include "xfs_log.h"
|
2018-05-14 14:10:08 +08:00
|
|
|
#include "xfs_ag.h"
|
2016-10-04 00:11:44 +08:00
|
|
|
#include "xfs_ag_resv.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
2018-05-14 14:10:08 +08:00
|
|
|
* growfs operations
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
xfs_growfs_data_private(
|
|
|
|
xfs_mount_t *mp, /* mount point for filesystem */
|
|
|
|
xfs_growfs_data_t *in) /* growfs data input struct */
|
|
|
|
{
|
|
|
|
xfs_buf_t *bp;
|
2018-05-14 14:10:07 +08:00
|
|
|
int error;
|
2005-04-17 06:20:36 +08:00
|
|
|
xfs_agnumber_t nagcount;
|
|
|
|
xfs_agnumber_t nagimax = 0;
|
|
|
|
xfs_rfsblock_t nb, nb_mod;
|
|
|
|
xfs_rfsblock_t new;
|
|
|
|
xfs_agnumber_t oagcount;
|
|
|
|
xfs_trans_t *tp;
|
2018-05-14 14:10:06 +08:00
|
|
|
struct aghdr_init_data id = {};
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
nb = in->newblocks;
|
2018-05-14 14:10:07 +08:00
|
|
|
if (nb < mp->m_sb.sb_dblocks)
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EINVAL;
|
2007-05-14 16:24:02 +08:00
|
|
|
if ((error = xfs_sb_validate_fsb_count(&mp->m_sb, nb)))
|
|
|
|
return error;
|
2014-10-02 07:05:32 +08:00
|
|
|
error = xfs_buf_read_uncached(mp->m_ddev_targp,
|
2010-09-22 08:47:20 +08:00
|
|
|
XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1),
|
2014-10-02 07:05:32 +08:00
|
|
|
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
|
|
|
|
if (error)
|
2012-11-12 19:54:02 +08:00
|
|
|
return error;
|
2005-04-17 06:20:36 +08:00
|
|
|
xfs_buf_relse(bp);
|
|
|
|
|
|
|
|
new = nb; /* use new as a temporary here */
|
|
|
|
nb_mod = do_div(new, mp->m_sb.sb_agblocks);
|
|
|
|
nagcount = new + (nb_mod != 0);
|
|
|
|
if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) {
|
|
|
|
nagcount--;
|
2009-05-24 03:30:12 +08:00
|
|
|
nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks;
|
2005-04-17 06:20:36 +08:00
|
|
|
if (nb < mp->m_sb.sb_dblocks)
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EINVAL;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
new = nb - mp->m_sb.sb_dblocks;
|
|
|
|
oagcount = mp->m_sb.sb_agcount;
|
2009-07-19 06:14:53 +08:00
|
|
|
|
2010-01-11 19:47:44 +08:00
|
|
|
/* allocate the new per-ag structures */
|
|
|
|
if (nagcount > oagcount) {
|
|
|
|
error = xfs_initialize_perag(mp, nagcount, &nagimax);
|
|
|
|
if (error)
|
|
|
|
return error;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2010-01-11 19:47:44 +08:00
|
|
|
|
2016-04-06 07:19:55 +08:00
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
|
|
|
|
XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
|
|
|
|
if (error)
|
2005-04-17 06:20:36 +08:00
|
|
|
return error;
|
|
|
|
|
2010-01-11 19:47:44 +08:00
|
|
|
/*
|
2018-05-14 14:10:06 +08:00
|
|
|
* Write new AG headers to disk. Non-transactional, but need to be
|
|
|
|
* written and completed prior to the growfs transaction being logged.
|
|
|
|
* To do this, we use a delayed write buffer list and wait for
|
|
|
|
* submission and IO completion of the list as a whole. This allows the
|
|
|
|
* IO subsystem to merge all the AG headers in a single AG into a single
|
|
|
|
* IO and hide most of the latency of the IO from us.
|
|
|
|
*
|
|
|
|
* This also means that if we get an error whilst building the buffer
|
|
|
|
* list to write, we can cancel the entire list without having written
|
|
|
|
* anything.
|
2010-01-11 19:47:44 +08:00
|
|
|
*/
|
2018-05-14 14:10:06 +08:00
|
|
|
INIT_LIST_HEAD(&id.buffer_list);
|
|
|
|
for (id.agno = nagcount - 1;
|
|
|
|
id.agno >= oagcount;
|
|
|
|
id.agno--, new -= id.agsize) {
|
|
|
|
|
|
|
|
if (id.agno == nagcount - 1)
|
|
|
|
id.agsize = nb -
|
|
|
|
(id.agno * (xfs_rfsblock_t)mp->m_sb.sb_agblocks);
|
2005-04-17 06:20:36 +08:00
|
|
|
else
|
2018-05-14 14:10:06 +08:00
|
|
|
id.agsize = mp->m_sb.sb_agblocks;
|
2012-11-14 06:40:27 +08:00
|
|
|
|
2018-05-14 14:10:08 +08:00
|
|
|
error = xfs_ag_init_headers(mp, &id);
|
2018-05-14 14:10:06 +08:00
|
|
|
if (error) {
|
2018-05-14 14:10:06 +08:00
|
|
|
xfs_buf_delwri_cancel(&id.buffer_list);
|
2018-05-14 14:10:07 +08:00
|
|
|
goto out_trans_cancel;
|
2018-05-14 14:10:06 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2018-05-14 14:10:06 +08:00
|
|
|
error = xfs_buf_delwri_submit(&id.buffer_list);
|
2018-05-14 14:10:06 +08:00
|
|
|
if (error)
|
2018-05-14 14:10:07 +08:00
|
|
|
goto out_trans_cancel;
|
2018-05-14 14:10:06 +08:00
|
|
|
|
2018-05-14 14:10:06 +08:00
|
|
|
xfs_trans_agblocks_delta(tp, id.nfree);
|
2018-05-14 14:10:05 +08:00
|
|
|
|
2018-05-14 14:10:08 +08:00
|
|
|
/* If there are new blocks in the old last AG, extend it. */
|
2005-04-17 06:20:36 +08:00
|
|
|
if (new) {
|
2018-05-14 14:10:08 +08:00
|
|
|
error = xfs_ag_extend_space(mp, tp, &id, new);
|
2016-08-03 09:33:42 +08:00
|
|
|
if (error)
|
2018-05-14 14:10:07 +08:00
|
|
|
goto out_trans_cancel;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2010-01-11 19:47:44 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Update changed superblock fields transactionally. These are not
|
|
|
|
* seen by the rest of the world until the transaction commit applies
|
|
|
|
* them atomically to the superblock.
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
if (nagcount > oagcount)
|
|
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount);
|
|
|
|
if (nb > mp->m_sb.sb_dblocks)
|
|
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS,
|
|
|
|
nb - mp->m_sb.sb_dblocks);
|
2018-05-14 14:10:06 +08:00
|
|
|
if (id.nfree)
|
|
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree);
|
2015-02-05 08:13:21 +08:00
|
|
|
xfs_trans_set_sync(tp);
|
2015-06-04 11:48:08 +08:00
|
|
|
error = xfs_trans_commit(tp);
|
2010-01-11 19:47:44 +08:00
|
|
|
if (error)
|
2005-04-17 06:20:36 +08:00
|
|
|
return error;
|
2010-01-11 19:47:44 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* New allocation groups fully initialized, so update mount struct */
|
|
|
|
if (nagimax)
|
|
|
|
mp->m_maxagi = nagimax;
|
2011-01-04 08:35:03 +08:00
|
|
|
xfs_set_low_space_thresholds(mp);
|
2016-08-03 09:38:24 +08:00
|
|
|
mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
|
2010-01-11 19:47:44 +08:00
|
|
|
|
2017-01-04 10:39:33 +08:00
|
|
|
/*
|
|
|
|
* If we expanded the last AG, free the per-AG reservation
|
|
|
|
* so we can reinitialize it with the new size.
|
|
|
|
*/
|
|
|
|
if (new) {
|
|
|
|
struct xfs_perag *pag;
|
|
|
|
|
2018-05-14 14:10:06 +08:00
|
|
|
pag = xfs_perag_get(mp, id.agno);
|
2017-01-04 10:39:33 +08:00
|
|
|
error = xfs_ag_resv_free(pag);
|
|
|
|
xfs_perag_put(pag);
|
|
|
|
if (error)
|
2018-05-14 14:10:07 +08:00
|
|
|
return error;
|
2017-01-04 10:39:33 +08:00
|
|
|
}
|
|
|
|
|
2018-05-14 14:10:07 +08:00
|
|
|
/*
|
|
|
|
* Reserve AG metadata blocks. ENOSPC here does not mean there was a
|
|
|
|
* growfs failure, just that there still isn't space for new user data
|
|
|
|
* after the grow has been run.
|
|
|
|
*/
|
2016-10-04 00:11:44 +08:00
|
|
|
error = xfs_fs_reserve_ag_blocks(mp);
|
2018-05-14 14:10:07 +08:00
|
|
|
if (error == -ENOSPC)
|
|
|
|
error = 0;
|
|
|
|
return error;
|
|
|
|
|
|
|
|
out_trans_cancel:
|
|
|
|
xfs_trans_cancel(tp);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
xfs_growfs_log_private(
|
|
|
|
xfs_mount_t *mp, /* mount point for filesystem */
|
|
|
|
xfs_growfs_log_t *in) /* growfs log input struct */
|
|
|
|
{
|
|
|
|
xfs_extlen_t nb;
|
|
|
|
|
|
|
|
nb = in->newblocks;
|
|
|
|
if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES))
|
|
|
|
return -EINVAL;
|
|
|
|
if (nb == mp->m_sb.sb_logblocks &&
|
|
|
|
in->isint == (mp->m_sb.sb_logstart != 0))
|
|
|
|
return -EINVAL;
|
|
|
|
/*
|
|
|
|
* Moving the log is hard, need new interfaces to sync
|
|
|
|
* the log first, hold off all activity while moving it.
|
|
|
|
* Can have shorter or longer log in the same space,
|
|
|
|
* or transform internal to external log or vice versa.
|
|
|
|
*/
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
xfs_growfs_imaxpct(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
__u32 imaxpct)
|
|
|
|
{
|
|
|
|
struct xfs_trans *tp;
|
|
|
|
int dpct;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (imaxpct > 100)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
|
|
|
|
XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
|
|
|
dpct = imaxpct - mp->m_sb.sb_imax_pct;
|
|
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct);
|
|
|
|
xfs_trans_set_sync(tp);
|
|
|
|
return xfs_trans_commit(tp);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* protected versions of growfs function acquire and release locks on the mount
|
|
|
|
* point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG,
|
|
|
|
* XFS_IOC_FSGROWFSRT
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_growfs_data(
|
2018-05-14 14:10:07 +08:00
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xfs_growfs_data *in)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2018-05-14 14:10:07 +08:00
|
|
|
int error = 0;
|
2008-11-26 11:20:06 +08:00
|
|
|
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EPERM;
|
2007-08-30 15:21:54 +08:00
|
|
|
if (!mutex_trylock(&mp->m_growlock))
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EWOULDBLOCK;
|
2018-05-14 14:10:07 +08:00
|
|
|
|
|
|
|
/* update imaxpct separately to the physical grow of the filesystem */
|
|
|
|
if (in->imaxpct != mp->m_sb.sb_imax_pct) {
|
|
|
|
error = xfs_growfs_imaxpct(mp, in->imaxpct);
|
|
|
|
if (error)
|
|
|
|
goto out_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (in->newblocks != mp->m_sb.sb_dblocks) {
|
|
|
|
error = xfs_growfs_data_private(mp, in);
|
|
|
|
if (error)
|
|
|
|
goto out_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Post growfs calculations needed to reflect new state in operations */
|
|
|
|
if (mp->m_sb.sb_imax_pct) {
|
|
|
|
uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct;
|
|
|
|
do_div(icount, 100);
|
2018-12-13 00:46:24 +08:00
|
|
|
mp->m_maxicount = XFS_FSB_TO_INO(mp, icount);
|
2018-05-14 14:10:07 +08:00
|
|
|
} else
|
|
|
|
mp->m_maxicount = 0;
|
|
|
|
|
2018-05-14 14:10:07 +08:00
|
|
|
/* Update secondary superblocks now the physical grow has completed */
|
2018-05-14 14:10:08 +08:00
|
|
|
error = xfs_update_secondary_sbs(mp);
|
2018-05-14 14:10:07 +08:00
|
|
|
|
2018-05-14 14:10:07 +08:00
|
|
|
out_error:
|
2015-02-16 08:49:23 +08:00
|
|
|
/*
|
|
|
|
* Increment the generation unconditionally, the error could be from
|
|
|
|
* updating the secondary superblocks, in which case the new size
|
|
|
|
* is live already.
|
|
|
|
*/
|
|
|
|
mp->m_generation++;
|
2007-08-30 15:21:54 +08:00
|
|
|
mutex_unlock(&mp->m_growlock);
|
2005-04-17 06:20:36 +08:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_growfs_log(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_growfs_log_t *in)
|
|
|
|
{
|
|
|
|
int error;
|
2008-11-26 11:20:06 +08:00
|
|
|
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EPERM;
|
2007-08-30 15:21:54 +08:00
|
|
|
if (!mutex_trylock(&mp->m_growlock))
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EWOULDBLOCK;
|
2005-04-17 06:20:36 +08:00
|
|
|
error = xfs_growfs_log_private(mp, in);
|
2007-08-30 15:21:54 +08:00
|
|
|
mutex_unlock(&mp->m_growlock);
|
2005-04-17 06:20:36 +08:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* exported through ioctl XFS_IOC_FSCOUNTS
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_fs_counts(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_fsop_counts_t *cnt)
|
|
|
|
{
|
2015-02-23 18:19:28 +08:00
|
|
|
cnt->allocino = percpu_counter_read_positive(&mp->m_icount);
|
2015-02-23 18:19:53 +08:00
|
|
|
cnt->freeino = percpu_counter_read_positive(&mp->m_ifree);
|
2015-02-23 18:22:03 +08:00
|
|
|
cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) -
|
2016-08-03 09:38:24 +08:00
|
|
|
mp->m_alloc_set_aside;
|
2015-02-23 18:19:28 +08:00
|
|
|
|
2007-10-11 15:42:32 +08:00
|
|
|
spin_lock(&mp->m_sb_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
cnt->freertx = mp->m_sb.sb_frextents;
|
2007-10-11 15:42:32 +08:00
|
|
|
spin_unlock(&mp->m_sb_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS
|
|
|
|
*
|
|
|
|
* xfs_reserve_blocks is called to set m_resblks
|
|
|
|
* in the in-core mount table. The number of unused reserved blocks
|
2006-03-29 06:55:14 +08:00
|
|
|
* is kept in m_resblks_avail.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
* Reserve the requested number of blocks if available. Otherwise return
|
|
|
|
* as many as possible to satisfy the request. The actual number
|
|
|
|
* reserved are returned in outval
|
|
|
|
*
|
|
|
|
* A null inval pointer indicates that only the current reserved blocks
|
|
|
|
* available should be returned no settings are changed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_reserve_blocks(
|
|
|
|
xfs_mount_t *mp,
|
2017-06-17 02:00:05 +08:00
|
|
|
uint64_t *inval,
|
2005-04-17 06:20:36 +08:00
|
|
|
xfs_fsop_resblks_t *outval)
|
|
|
|
{
|
2017-06-17 02:00:05 +08:00
|
|
|
int64_t lcounter, delta;
|
|
|
|
int64_t fdblks_delta = 0;
|
|
|
|
uint64_t request;
|
|
|
|
int64_t free;
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
int error = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* If inval is null, report current values and return */
|
2017-06-17 02:00:05 +08:00
|
|
|
if (inval == (uint64_t *)NULL) {
|
2007-06-18 14:50:27 +08:00
|
|
|
if (!outval)
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EINVAL;
|
2005-04-17 06:20:36 +08:00
|
|
|
outval->resblks = mp->m_resblks;
|
|
|
|
outval->resblks_avail = mp->m_resblks_avail;
|
2006-01-15 09:37:08 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
request = *inval;
|
2007-02-10 15:36:17 +08:00
|
|
|
|
|
|
|
/*
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
* With per-cpu counters, this becomes an interesting problem. we need
|
|
|
|
* to work out if we are freeing or allocation blocks first, then we can
|
|
|
|
* do the modification as necessary.
|
2007-02-10 15:36:17 +08:00
|
|
|
*
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
* We do this under the m_sb_lock so that if we are near ENOSPC, we will
|
|
|
|
* hold out any changes while we work out what to do. This means that
|
|
|
|
* the amount of free space can change while we do this, so we need to
|
|
|
|
* retry if we end up trying to reserve more space than is available.
|
2007-02-10 15:36:17 +08:00
|
|
|
*/
|
2007-10-11 15:42:32 +08:00
|
|
|
spin_lock(&mp->m_sb_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If our previous reservation was larger than the current value,
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
* then move any unused blocks back to the free pool. Modify the resblks
|
|
|
|
* counters directly since we shouldn't have any problems unreserving
|
|
|
|
* space.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
if (mp->m_resblks > request) {
|
|
|
|
lcounter = mp->m_resblks_avail - request;
|
|
|
|
if (lcounter > 0) { /* release unused blocks */
|
2007-02-10 15:36:17 +08:00
|
|
|
fdblks_delta = lcounter;
|
2005-04-17 06:20:36 +08:00
|
|
|
mp->m_resblks_avail -= lcounter;
|
|
|
|
}
|
|
|
|
mp->m_resblks = request;
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
if (fdblks_delta) {
|
|
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
error = xfs_mod_fdblocks(mp, fdblks_delta, 0);
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
goto out;
|
|
|
|
}
|
2006-09-07 12:26:50 +08:00
|
|
|
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
/*
|
|
|
|
* If the request is larger than the current reservation, reserve the
|
|
|
|
* blocks before we update the reserve counters. Sample m_fdblocks and
|
|
|
|
* perform a partial reservation if the request exceeds free space.
|
|
|
|
*/
|
|
|
|
error = -ENOSPC;
|
|
|
|
do {
|
2015-02-23 18:22:03 +08:00
|
|
|
free = percpu_counter_sum(&mp->m_fdblocks) -
|
2016-08-03 09:38:24 +08:00
|
|
|
mp->m_alloc_set_aside;
|
2018-06-22 14:26:56 +08:00
|
|
|
if (free <= 0)
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
break;
|
2007-02-10 15:36:17 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
delta = request - mp->m_resblks;
|
2006-09-07 12:26:50 +08:00
|
|
|
lcounter = free - delta;
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
if (lcounter < 0)
|
2005-04-17 06:20:36 +08:00
|
|
|
/* We can't satisfy the request, just get what we can */
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
fdblks_delta = free;
|
|
|
|
else
|
|
|
|
fdblks_delta = delta;
|
2007-02-10 15:36:17 +08:00
|
|
|
|
|
|
|
/*
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
* We'll either succeed in getting space from the free block
|
|
|
|
* count or we'll get an ENOSPC. If we get a ENOSPC, it means
|
|
|
|
* things changed while we were calculating fdblks_delta and so
|
|
|
|
* we should try again to see if there is anything left to
|
|
|
|
* reserve.
|
2007-02-10 15:36:17 +08:00
|
|
|
*
|
|
|
|
* Don't set the reserved flag here - we don't want to reserve
|
|
|
|
* the extra reserve blocks from the reserve.....
|
|
|
|
*/
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
error = xfs_mod_fdblocks(mp, -fdblks_delta, 0);
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
|
|
} while (error == -ENOSPC);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update the reserve counters if blocks have been successfully
|
|
|
|
* allocated.
|
|
|
|
*/
|
|
|
|
if (!error && fdblks_delta) {
|
|
|
|
mp->m_resblks += fdblks_delta;
|
|
|
|
mp->m_resblks_avail += fdblks_delta;
|
2007-02-10 15:36:17 +08:00
|
|
|
}
|
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly
xfs_reserve_blocks() is responsible to update the XFS reserved block
pool count at mount time or based on user request. When the caller
requests to increase the reserve pool, blocks must be allocated from
the global counters such that they are no longer available for
general purpose use. If the requested reserve pool size is too
large, XFS reserves what blocks are available. The implementation
requires looking at the percpu counters and making an educated guess
as to how many blocks to try and allocate from xfs_mod_fdblocks(),
which can return -ENOSPC if the guess was not accurate due to
counters being modified in parallel.
xfs_reserve_blocks() retries the guess in this scenario until the
allocation succeeds or it is determined that there is no space
available in the fs. While not easily reproducible in the current
form, the retry code doesn't actually work correctly if
xfs_mod_fdblocks() actually fails. The problem is that the percpu
calculations use the m_resblks counter to determine how many blocks
to allocate, but unconditionally update m_resblks before the block
allocation has actually succeeded. Therefore, if xfs_mod_fdblocks()
fails, the code jumps to the retry label and uses the already
updated m_resblks value to determine how many blocks to try and
allocate. If the percpu counters previously suggested that the
entire request was available, fdblocks_delta could end up set to 0.
In that case, m_resblks is updated to the requested value, yet no
blocks have been reserved at all.
Refactor xfs_reserve_blocks() to use an explicit loop and make the
code easier to follow. Since we have to drop the spinlock across the
xfs_mod_fdblocks() call, use a delta value for m_resblks as well and
only apply the delta once allocation succeeds.
[dchinner: convert to do {} while() loop]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
|
|
|
|
|
|
|
out:
|
|
|
|
if (outval) {
|
|
|
|
outval->resblks = mp->m_resblks;
|
|
|
|
outval->resblks_avail = mp->m_resblks_avail;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
return error;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_fs_goingdown(
|
|
|
|
xfs_mount_t *mp,
|
2017-06-17 02:00:05 +08:00
|
|
|
uint32_t inflags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
switch (inflags) {
|
|
|
|
case XFS_FSOP_GOING_FLAGS_DEFAULT: {
|
2007-08-30 15:21:30 +08:00
|
|
|
struct super_block *sb = freeze_bdev(mp->m_super->s_bdev);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-11-25 13:41:47 +08:00
|
|
|
if (sb && !IS_ERR(sb)) {
|
2006-06-09 12:58:38 +08:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
|
2005-04-17 06:20:36 +08:00
|
|
|
thaw_bdev(sb->s_bdev, sb);
|
|
|
|
}
|
2008-05-21 14:58:55 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case XFS_FSOP_GOING_FLAGS_LOGFLUSH:
|
2006-06-09 12:58:38 +08:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH:
|
2006-06-09 12:58:38 +08:00
|
|
|
xfs_force_shutdown(mp,
|
|
|
|
SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR);
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
default:
|
2014-06-25 12:58:08 +08:00
|
|
|
return -EINVAL;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2012-04-23 13:59:03 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Force a shutdown of the filesystem instantly while keeping the filesystem
|
|
|
|
* consistent. We don't do an unmount here; just shutdown the shop, make sure
|
|
|
|
* that absolutely nothing persistent happens to this filesystem after this
|
|
|
|
* point.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_do_force_shutdown(
|
2018-10-18 14:20:39 +08:00
|
|
|
struct xfs_mount *mp,
|
2012-04-23 13:59:03 +08:00
|
|
|
int flags,
|
|
|
|
char *fname,
|
|
|
|
int lnnum)
|
|
|
|
{
|
2018-10-18 14:20:39 +08:00
|
|
|
bool logerror = flags & SHUTDOWN_LOG_IO_ERROR;
|
2012-04-23 13:59:03 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* No need to duplicate efforts.
|
|
|
|
*/
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp) && !logerror)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This flags XFS_MOUNT_FS_SHUTDOWN, makes sure that we don't
|
|
|
|
* queue up anybody new on the log reservations, and wakes up
|
|
|
|
* everybody who's sleeping on log reservations to tell them
|
|
|
|
* the bad news.
|
|
|
|
*/
|
|
|
|
if (xfs_log_force_umount(mp, logerror))
|
|
|
|
return;
|
|
|
|
|
2018-10-18 14:20:39 +08:00
|
|
|
if (flags & SHUTDOWN_FORCE_UMOUNT) {
|
|
|
|
xfs_alert(mp,
|
|
|
|
"User initiated shutdown received. Shutting down filesystem");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
xfs_notice(mp,
|
|
|
|
"%s(0x%x) called from line %d of file %s. Return address = "PTR_FMT,
|
|
|
|
__func__, flags, lnnum, fname, __return_address);
|
|
|
|
|
2012-04-23 13:59:03 +08:00
|
|
|
if (flags & SHUTDOWN_CORRUPT_INCORE) {
|
|
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_CORRUPT,
|
2018-10-18 14:20:39 +08:00
|
|
|
"Corruption of in-memory data detected. Shutting down filesystem");
|
2012-04-23 13:59:03 +08:00
|
|
|
if (XFS_ERRLEVEL_HIGH <= xfs_error_level)
|
|
|
|
xfs_stack_trace();
|
2018-10-18 14:20:39 +08:00
|
|
|
} else if (logerror) {
|
|
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_LOGERROR,
|
|
|
|
"Log I/O Error Detected. Shutting down filesystem");
|
|
|
|
} else if (flags & SHUTDOWN_DEVICE_REQ) {
|
|
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR,
|
|
|
|
"All device paths lost. Shutting down filesystem");
|
|
|
|
} else if (!(flags & SHUTDOWN_REMOTE_REQ)) {
|
|
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR,
|
|
|
|
"I/O Error Detected. Shutting down filesystem");
|
2012-04-23 13:59:03 +08:00
|
|
|
}
|
2018-10-18 14:20:39 +08:00
|
|
|
|
|
|
|
xfs_alert(mp,
|
|
|
|
"Please unmount the filesystem and rectify the problem(s)");
|
2012-04-23 13:59:03 +08:00
|
|
|
}
|
2016-10-04 00:11:44 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Reserve free space for per-AG metadata.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_fs_reserve_ag_blocks(
|
|
|
|
struct xfs_mount *mp)
|
|
|
|
{
|
|
|
|
xfs_agnumber_t agno;
|
|
|
|
struct xfs_perag *pag;
|
|
|
|
int error = 0;
|
|
|
|
int err2;
|
|
|
|
|
2019-02-14 03:46:16 +08:00
|
|
|
mp->m_finobt_nores = false;
|
2016-10-04 00:11:44 +08:00
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
|
|
pag = xfs_perag_get(mp, agno);
|
2018-07-30 13:37:08 +08:00
|
|
|
err2 = xfs_ag_resv_init(pag, NULL);
|
2016-10-04 00:11:44 +08:00
|
|
|
xfs_perag_put(pag);
|
|
|
|
if (err2 && !error)
|
|
|
|
error = err2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (error && error != -ENOSPC) {
|
|
|
|
xfs_warn(mp,
|
|
|
|
"Error %d reserving per-AG metadata reserve pool.", error);
|
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
|
|
}
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free space reserved for per-AG metadata.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_fs_unreserve_ag_blocks(
|
|
|
|
struct xfs_mount *mp)
|
|
|
|
{
|
|
|
|
xfs_agnumber_t agno;
|
|
|
|
struct xfs_perag *pag;
|
|
|
|
int error = 0;
|
|
|
|
int err2;
|
|
|
|
|
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
|
|
pag = xfs_perag_get(mp, agno);
|
|
|
|
err2 = xfs_ag_resv_free(pag);
|
|
|
|
xfs_perag_put(pag);
|
|
|
|
if (err2 && !error)
|
|
|
|
error = err2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (error)
|
|
|
|
xfs_warn(mp,
|
|
|
|
"Error %d freeing per-AG metadata reserve pool.", error);
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|