OpenCloudOS-Kernel/drivers/block/Kconfig

414 lines
14 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
#
# Block device driver configuration
#
menuconfig BLK_DEV
bool "Block devices"
depends on BLOCK
default y
help
Say Y here to get to see options for various different block device
drivers. This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and disabled;
only do this if you know what you are doing.
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-10-01 02:45:40 +08:00
if BLK_DEV
source "drivers/block/null_blk/Kconfig"
config BLK_DEV_FD
tristate "Normal floppy disk support"
depends on ARCH_MAY_HAVE_PC_FDC
help
If you want to use the floppy disk drive(s) of your PC under Linux,
say Y. Information about this driver, especially important for IBM
Thinkpad users, is contained in
<file:Documentation/admin-guide/blockdev/floppy.rst>.
That file also contains the location of the Floppy driver FAQ as
well as location of the fdutils package used to configure additional
parameters of the driver at run time.
To compile this driver as a module, choose M here: the
module will be called floppy.
floppy: disable FDRAWCMD by default Minh Yuan reported a concurrency use-after-free issue in the floppy code between raw_cmd_ioctl and seek_interrupt. [ It turns out this has been around, and that others have reported the KASAN splats over the years, but Minh Yuan had a reproducer for it and so gets primary credit for reporting it for this fix - Linus ] The problem is, this driver tends to break very easily and nowadays, nobody is expected to use FDRAWCMD anyway since it was used to manipulate non-standard formats. The risk of breaking the driver is higher than the risk presented by this race, and accessing the device requires privileges anyway. Let's just add a config option to completely disable this ioctl and leave it disabled by default. Distros shouldn't use it, and only those running on antique hardware might need to enable it. Link: https://lore.kernel.org/all/000000000000b71cdd05d703f6bf@google.com/ Link: https://lore.kernel.org/lkml/CAKcFiNC=MfYVW-Jt9A3=FPJpTwCD2PL_ULNCpsCVE5s8ZeBQgQ@mail.gmail.com Link: https://lore.kernel.org/all/CAEAjamu1FRhz6StCe_55XY5s389ZP_xmCF69k987En+1z53=eg@mail.gmail.com Reported-by: Minh Yuan <yuanmingbuaa@gmail.com> Reported-by: syzbot+8e8958586909d62b6840@syzkaller.appspotmail.com Reported-by: cruise k <cruise4k@gmail.com> Reported-by: Kyungtae Kim <kt0755@gmail.com> Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Tested-by: Denis Efremov <efremov@linux.com> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-27 04:41:05 +08:00
config BLK_DEV_FD_RAWCMD
bool "Support for raw floppy disk commands (DEPRECATED)"
depends on BLK_DEV_FD
help
If you want to use actual physical floppies and expect to do
special low-level hardware accesses to them (access and use
non-standard formats, for example), then enable this.
Note that the code enabled by this option is rarely used and
might be unstable or insecure, and distros should not enable it.
Note: FDRAWCMD is deprecated and will be removed from the kernel
in the near future.
If unsure, say N.
config AMIGA_FLOPPY
tristate "Amiga floppy support"
depends on AMIGA
config ATARI_FLOPPY
tristate "Atari floppy support"
depends on ATARI
config MAC_FLOPPY
tristate "Support for PowerMac floppy"
depends on PPC_PMAC && !PPC_PMAC64
help
If you have a SWIM-3 (Super Woz Integrated Machine 3; from Apple)
floppy controller, say Y here. Most commonly found in PowerMacs.
config BLK_DEV_SWIM
tristate "Support for SWIM Macintosh floppy"
depends on M68K && MAC && !HIGHMEM
help
You should select this option if you want floppy support
and you don't have a II, IIfx, Q900, Q950 or AV series.
config AMIGA_Z2RAM
tristate "Amiga Zorro II ramdisk support"
depends on ZORRO
help
This enables support for using Chip RAM and Zorro II RAM as a
ramdisk or as a swap partition. Say Y if you want to include this
driver in the kernel.
To compile this driver as a module, choose M here: the
module will be called z2ram.
config N64CART
bool "N64 cart support"
depends on MACH_NINTENDO64
help
Support for the N64 cart.
config CDROM
tristate
config GDROM
tristate "SEGA Dreamcast GD-ROM drive"
depends on SH_DREAMCAST
select CDROM
help
A standard SEGA Dreamcast comes with a modified CD ROM drive called a
"GD-ROM" by SEGA to signify it is capable of reading special disks
with up to 1 GB of data. This drive will also read standard CD ROM
disks. Select this option to access any disks in your GD ROM drive.
Most users will want to say "Y" here.
You can also build this as a module which will be called gdrom.
config PARIDE
tristate "Parallel port IDE device support"
depends on PARPORT_PC
help
There are many external CD-ROM and disk devices that connect through
your computer's parallel port. Most of them are actually IDE devices
using a parallel port IDE adapter. This option enables the PARIDE
subsystem which contains drivers for many of these external drives.
Read <file:Documentation/admin-guide/blockdev/paride.rst> for more information.
If you have said Y to the "Parallel-port support" configuration
option, you may share a single port between your printer and other
parallel port devices. Answer Y to build PARIDE support into your
kernel, or M if you would like to build it as a loadable module. If
your parallel port support is in a loadable module, you must build
PARIDE as a module. If you built PARIDE support into your kernel,
you may still build the individual protocol modules and high-level
drivers as loadable modules. If you build this support as a module,
it will be called paride.
To use the PARIDE support, you must say Y or M here and also to at
least one high-level driver (e.g. "Parallel port IDE disks",
"Parallel port ATAPI CD-ROMs", "Parallel port ATAPI disks" etc.) and
to at least one protocol driver (e.g. "ATEN EH-100 protocol",
"MicroSolutions backpack protocol", "DataStor Commuter protocol"
etc.).
source "drivers/block/paride/Kconfig"
source "drivers/block/mtip32xx/Kconfig"
zram: promote zram from staging Zram has lived in staging for a LONG LONG time and have been fixed/improved by many contributors so code is clean and stable now. Of course, there are lots of product using zram in real practice. The major TV companys have used zram as swap since two years ago and recently our production team released android smart phone with zram which is used as swap, too and recently Android Kitkat start to use zram for small memory smart phone. And there was a report Google released their ChromeOS with zram, too and cyanogenmod have been used zram long time ago. And I heard some disto have used zram block device for tmpfs. In addition, I saw many report from many other peoples. For example, Lubuntu start to use it. The benefit of zram is very clear. With my experience, one of the benefit was to remove jitter of video application with backgroud memory pressure. It would be effect of efficient memory usage by compression but more issue is whether swap is there or not in the system. Recent mobile platforms have used JAVA so there are many anonymous pages. But embedded system normally are reluctant to use eMMC or SDCard as swap because there is wear-leveling and latency issues so if we do not use swap, it means we can't reclaim anoymous pages and at last, we could encounter OOM kill. :( Although we have real storage as swap, it was a problem, too. Because it sometime ends up making system very unresponsible caused by slow swap storage performance. Quote from Luigi on Google "Since Chrome OS was mentioned: the main reason why we don't use swap to a disk (rotating or SSD) is because it doesn't degrade gracefully and leads to a bad interactive experience. Generally we prefer to manage RAM at a higher level, by transparently killing and restarting processes. But we noticed that zram is fast enough to be competitive with the latter, and it lets us make more efficient use of the available RAM. " and he announced. http://www.spinics.net/lists/linux-mm/msg57717.html Other uses case is to use zram for block device. Zram is block device so anyone can format the block device and mount on it so some guys on the internet start zram as /var/tmp. http://forums.gentoo.org/viewtopic-t-838198-start-0.html Let's promote zram and enhance/maintain it instead of removing. Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-31 07:45:52 +08:00
source "drivers/block/zram/Kconfig"
config BLK_DEV_UBD
bool "Virtual block device"
depends on UML
help
The User-Mode Linux port includes a driver called UBD which will let
you access arbitrary files on the host computer as block devices.
Unless you know that you do not need such virtual block devices say
Y here.
config BLK_DEV_UBD_SYNC
bool "Always do synchronous disk IO for UBD"
depends on BLK_DEV_UBD
help
Writes to the virtual block device are not immediately written to the
host's disk; this may cause problems if, for example, the User-Mode
Linux 'Virtual Machine' uses a journalling filesystem and the host
computer crashes.
Synchronous operation (i.e. always writing data to the host's disk
immediately) is configurable on a per-UBD basis by using a special
kernel command line option. Alternatively, you can say Y here to
turn on synchronous operation by default for all block devices.
If you're running a journalling file system (like reiserfs, for
example) in your virtual machine, you will want to say Y here. If
you care for the safety of the data in your virtual machine, Y is a
wise choice too. In all other cases (for example, if you're just
playing around with User-Mode Linux) you can choose N.
config BLK_DEV_COW_COMMON
bool
default BLK_DEV_UBD
config BLK_DEV_LOOP
tristate "Loopback device support"
help
Saying Y here will allow you to use a regular file as a block
device; you can then create a file system on that block device and
mount it just as you would mount other block devices such as hard
drive partitions, CD-ROM drives or floppy drives. The loop devices
are block special device files with major number 7 and typically
called /dev/loop0, /dev/loop1 etc.
This is useful if you want to check an ISO 9660 file system before
burning the CD, or if you want to use floppy images without first
writing them to floppy. Furthermore, some Linux distributions avoid
the need for a dedicated Linux partition by keeping their complete
root file system inside a DOS FAT file using this loop device
driver.
To use the loop device, you need the losetup utility, found in the
util-linux package, see
<https://www.kernel.org/pub/linux/utils/util-linux/>.
The loop device driver can also be used to "hide" a file system in
a disk partition, floppy, or regular file, either using encryption
(scrambling the data) or steganography (hiding the data in the low
bits of, say, a sound file). This is also safe if the file resides
on a remote file server.
Note that this loop device has nothing to do with the loopback
device used for network connections from the machine to itself.
To compile this driver as a module, choose M here: the
module will be called loop.
Most users will answer N here.
config BLK_DEV_LOOP_MIN_COUNT
int "Number of loop devices to pre-create at init time"
depends on BLK_DEV_LOOP
default 8
help
Static number of loop devices to be unconditionally pre-created
at init time.
This default value can be overwritten on the kernel command
line or with module-parameter loop.max_loop.
The historic default is 8. If a late 2011 version of losetup(8)
is used, it can be set to 0, since needed loop devices can be
dynamically allocated with the /dev/loop-control interface.
source "drivers/block/drbd/Kconfig"
config BLK_DEV_NBD
tristate "Network block device support"
depends on NET
help
Saying Y here will allow your computer to be a client for network
block devices, i.e. it will be able to use block devices exported by
servers (mount file systems on them etc.). Communication between
client and server works over TCP/IP networking, but to the client
program this is hidden: it looks like a regular local file access to
a block device special file such as /dev/nd0.
Network block devices also allows you to run a block-device in
userland (making server and client physically the same computer,
communicating using the loopback network device).
Read <file:Documentation/admin-guide/blockdev/nbd.rst> for more information,
especially about where to find the server code, which runs in user
space and does not need special kernel support.
Note that this has nothing to do with the network file systems NFS
or Coda; you can say N here even if you intend to use NFS or Coda.
To compile this driver as a module, choose M here: the
module will be called nbd.
If unsure, say N.
config BLK_DEV_RAM
rewrite rd This is a rewrite of the ramdisk block device driver. The old one is really difficult because it effectively implements a block device which serves data out of its own buffer cache. It relies on the dirty bit being set, to pin its backing store in cache, however there are non trivial paths which can clear the dirty bit (eg. try_to_free_buffers()), which had recently lead to data corruption. And in general it is completely wrong for a block device driver to do this. The new one is more like a regular block device driver. It has no idea about vm/vfs stuff. It's backing store is similar to the buffer cache (a simple radix-tree of pages), but it doesn't know anything about page cache (the pages in the radix tree are not pagecache pages). There is one slight downside -- direct block device access and filesystem metadata access goes through an extra copy and gets stored in RAM twice. However, this downside is only slight, because the real buffercache of the device is now reclaimable (because we're not playing crazy games with it), so under memory intensive situations, footprint should effectively be the same -- maybe even a slight advantage to the new driver because it can also reclaim buffer heads. The fact that it now goes through all the regular vm/fs paths makes it much more useful for testing, too. text data bss dec hex filename 2837 849 384 4070 fe6 drivers/block/rd.o 3528 371 12 3911 f47 drivers/block/brd.o Text is larger, but data and bss are smaller, making total size smaller. A few other nice things about it: - Similar structure and layout to the new loop device handlinag. - Dynamic ramdisk creation. - Runtime flexible buffer head size (because it is no longer part of the ramdisk code). - Boot / load time flexible ramdisk size, which could easily be extended to a per-ramdisk runtime changeable size (eg. with an ioctl). - Can use highmem for the backing store. [akpm@linux-foundation.org: fix build] [byron.bbradley@gmail.com: make rd_size non-static] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Byron Bradley <byron.bbradley@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:19:49 +08:00
tristate "RAM block device support"
help
Saying Y here will allow you to use a portion of your RAM memory as
a block device, so that you can make file systems on it, read and
write to it and do all the other things that you can do with normal
block devices (such as hard drives). It is usually used to load and
store a copy of a minimal root file system off of a floppy into RAM
during the initial install of Linux.
Note that the kernel command line option "ramdisk=XX" is now obsolete.
For details, read <file:Documentation/admin-guide/blockdev/ramdisk.rst>.
To compile this driver as a module, choose M here: the
module will be called brd. An alias "rd" has been defined
for historical reasons.
Most normal users won't need the RAM disk functionality, and can
thus say N here.
config BLK_DEV_RAM_COUNT
int "Default number of RAM disks"
default "16"
depends on BLK_DEV_RAM
help
The default value is 16 RAM disks. Change this if you know what you
are doing. If you boot from a filesystem that needs to be extracted
in memory, you will need at least one RAM disk (e.g. root on cramfs).
config BLK_DEV_RAM_SIZE
int "Default RAM disk size (kbytes)"
depends on BLK_DEV_RAM
default "4096"
help
The default value is 4096 kilobytes. Only change this if you know
what you are doing.
config CDROM_PKTCDVD
tristate "Packet writing on CD/DVD media (DEPRECATED)"
depends on !UML
depends on SCSI
select CDROM
help
Note: This driver is deprecated and will be removed from the
kernel in the near future!
If you have a CDROM/DVD drive that supports packet writing, say
Y to include support. It should work with any MMC/Mt Fuji
compliant ATAPI or SCSI drive, which is just about any newer
DVD/CD writer.
Currently only writing to CD-RW, DVD-RW, DVD+RW and DVDRAM discs
is possible.
DVD-RW disks must be in restricted overwrite mode.
See the file <file:Documentation/cdrom/packet-writing.rst>
for further information on the use of this driver.
To compile this driver as a module, choose M here: the
module will be called pktcdvd.
config CDROM_PKTCDVD_BUFFERS
int "Free buffers for data gathering"
depends on CDROM_PKTCDVD
default "8"
help
This controls the maximum number of active concurrent packets. More
concurrent packets can increase write performance, but also require
more memory. Each concurrent packet will require approximately 64Kb
of non-swappable kernel memory, memory which will be allocated when
a disc is opened for writing.
config CDROM_PKTCDVD_WCACHE
bool "Enable write caching"
depends on CDROM_PKTCDVD
help
If enabled, write caching will be set for the CD-R/W device. For now
this option is dangerous unless the CD-RW media is known good, as we
don't do deferred write error handling yet.
config ATA_OVER_ETH
tristate "ATA over Ethernet support"
depends on NET
help
This driver provides Support for ATA over Ethernet block
devices like the Coraid EtherDrive (R) Storage Blade.
config SUNVDC
tristate "Sun Virtual Disk Client support"
depends on SUN_LDOMS
help
Support for virtual disk devices as a client under Sun
Logical Domains.
source "drivers/s390/block/Kconfig"
config XEN_BLKDEV_FRONTEND
tristate "Xen virtual block device support"
depends on XEN
default y
select XEN_XENBUS_FRONTEND
help
This driver implements the front-end of the Xen virtual
block device driver. It communicates with a back-end driver
in another domain which drives the actual block device.
config XEN_BLKDEV_BACKEND
tristate "Xen block-device backend driver"
depends on XEN_BACKEND
help
The block-device backend driver allows the kernel to export its
block devices to other guests via a high-performance shared-memory
interface.
The corresponding Linux frontend driver is enabled by the
CONFIG_XEN_BLKDEV_FRONTEND configuration option.
The backend driver attaches itself to a any block device specified
in the XenBus configuration. There are no limits to what the block
device as long as it has a major and minor.
If you are compiling a kernel to run in a Xen block backend driver
domain (often this is domain 0) you should say Y here. To
compile this driver as a module, chose M here: the module
will be called xen-blkback.
config VIRTIO_BLK
tristate "Virtio block driver"
depends on VIRTIO
virtio-blk: avoid preallocating big SGL for data No need to pre-allocate a big buffer for the IO SGL anymore. If a device has lots of deep queues, preallocation for the sg list can consume substantial amounts of memory. For HW virtio-blk device, nr_hw_queues can be 64 or 128 and each queue's depth might be 128. This means the resulting preallocation for the data SGLs is big. Switch to runtime allocation for SGL for lists longer than 2 entries. This is the approach used by NVMe drivers so it should be reasonable for virtio block as well. Runtime SGL allocation has always been the case for the legacy I/O path so this is nothing new. The preallocated small SGL depends on SG_CHAIN so if the ARCH doesn't support SG_CHAIN, use only runtime allocation for the SGL. Re-organize the setup of the IO request to fit the new sg chain mechanism. No performance degradation was seen (fio libaio engine with 16 jobs and 128 iodepth): IO size IOPs Rand Read (before/after) IOPs Rand Write (before/after) -------- --------------------------------- ---------------------------------- 512B 318K/316K 329K/325K 4KB 323K/321K 353K/349K 16KB 199K/208K 250K/275K 128KB 36K/36.1K 39.2K/41.7K Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Israel Rukshin <israelr@nvidia.com> Link: https://lore.kernel.org/r/20210901131434.31158-1-mgurtovoy@nvidia.com Reviewed-by: Feng Li <lifeng1519@gmail.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Tested-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> # kconfig fixups Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2021-09-01 21:14:34 +08:00
select SG_POOL
help
This is the virtual block driver for virtio. It can be used with
QEMU based VMMs (like KVM or Xen). Say Y or M.
config BLK_DEV_RBD
tristate "Rados block device (RBD)"
depends on INET && BLOCK
select CEPH_LIB
select LIBCRC32C
select CRYPTO_AES
select CRYPTO
help
Say Y here if you want include the Rados block device, which stripes
a block device over objects stored in the Ceph distributed object
store.
More information at http://ceph.newdream.net/.
If unsure, say N.
ublk_drv: add io_uring based userspace block driver This is the driver part of userspace block driver(ublk driver), the other part is userspace daemon part(ublksrv)[1]. The two parts communicate by io_uring's IORING_OP_URING_CMD with one shared cmd buffer for storing io command, and the buffer is read only for ublksrv, each io command is indexed by io request tag directly, and is written by ublk driver. For example, when one READ io request is submitted to ublk block driver, ublk driver stores the io command into cmd buffer first, then completes one IORING_OP_URING_CMD for notifying ublksrv, and the URING_CMD is issued to ublk driver beforehand by ublksrv for getting notification of any new io request, and each URING_CMD is associated with one io request by tag. After ublksrv gets the io command, it translates and handles the ublk io request, such as, for the ublk-loop target, ublksrv translates the request into same request on another file or disk, like the kernel loop block driver. In ublksrv's implementation, the io is still handled by io_uring, and share same ring with IORING_OP_URING_CMD command. When the target io request is done, the same IORING_OP_URING_CMD is issued to ublk driver for both committing io request result and getting future notification of new io request. Another thing done by ublk driver is to copy data between kernel io request and ublksrv's io buffer: 1) before ubsrv handles WRITE request, copy the request's data into ublksrv's userspace io buffer, so that ublksrv can handle the write request 2) after ubsrv handles READ request, copy ublksrv's userspace io buffer into this READ request, then ublk driver can complete the READ request Zero copy may be switched if mm is ready to support it. ublk driver doesn't handle any logic of the specific user space driver, so it is small/simple enough. [1] ublksrv https://github.com/ming1/ubdsrv Signed-off-by: Ming Lei <ming.lei@redhat.com> Link: https://lore.kernel.org/r/20220713140711.97356-2-ming.lei@redhat.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-07-13 22:07:10 +08:00
config BLK_DEV_UBLK
tristate "Userspace block driver (Experimental)"
select IO_URING
help
io_uring based userspace block driver. Together with ublk server, ublk
has been working well, but interface with userspace or command data
definition isn't finalized yet, and might change according to future
requirement, so mark is as experimental now.
source "drivers/block/rnbd/Kconfig"
endif # BLK_DEV