OpenCloudOS-Kernel/drivers/input/keyboard/tegra-kbc.c

820 lines
20 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 1 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 51 franklin street fifth floor boston ma 02110 1301 usa this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option [no]_[pad]_[ctrl] any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 51 franklin street fifth floor boston ma 02110 1301 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 176 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154040.652910950@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 21:51:31 +08:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
* keyboard controller
*
* Copyright (c) 2009-2011, NVIDIA Corporation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/input/matrix_keypad.h>
#include <linux/reset.h>
#include <linux/err.h>
#define KBC_MAX_KPENT 8
/* Maximum row/column supported by Tegra KBC yet is 16x8 */
#define KBC_MAX_GPIO 24
/* Maximum keys supported by Tegra KBC yet is 16 x 8*/
#define KBC_MAX_KEY (16 * 8)
#define KBC_MAX_DEBOUNCE_CNT 0x3ffu
/* KBC row scan time and delay for beginning the row scan. */
#define KBC_ROW_SCAN_TIME 16
#define KBC_ROW_SCAN_DLY 5
/* KBC uses a 32KHz clock so a cycle = 1/32Khz */
#define KBC_CYCLE_MS 32
/* KBC Registers */
/* KBC Control Register */
#define KBC_CONTROL_0 0x0
#define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14)
#define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4)
#define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3)
#define KBC_CONTROL_KEYPRESS_INT_EN (1 << 1)
#define KBC_CONTROL_KBC_EN (1 << 0)
/* KBC Interrupt Register */
#define KBC_INT_0 0x4
#define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2)
#define KBC_INT_KEYPRESS_INT_STATUS (1 << 0)
#define KBC_ROW_CFG0_0 0x8
#define KBC_COL_CFG0_0 0x18
#define KBC_TO_CNT_0 0x24
#define KBC_INIT_DLY_0 0x28
#define KBC_RPT_DLY_0 0x2c
#define KBC_KP_ENT0_0 0x30
#define KBC_KP_ENT1_0 0x34
#define KBC_ROW0_MASK_0 0x38
#define KBC_ROW_SHIFT 3
enum tegra_pin_type {
PIN_CFG_IGNORE,
PIN_CFG_COL,
PIN_CFG_ROW,
};
/* Tegra KBC hw support */
struct tegra_kbc_hw_support {
int max_rows;
int max_columns;
};
struct tegra_kbc_pin_cfg {
enum tegra_pin_type type;
unsigned char num;
};
struct tegra_kbc {
struct device *dev;
unsigned int debounce_cnt;
unsigned int repeat_cnt;
struct tegra_kbc_pin_cfg pin_cfg[KBC_MAX_GPIO];
const struct matrix_keymap_data *keymap_data;
bool wakeup;
void __iomem *mmio;
struct input_dev *idev;
int irq;
spinlock_t lock;
unsigned int repoll_dly;
unsigned long cp_dly_jiffies;
unsigned int cp_to_wkup_dly;
bool use_fn_map;
bool use_ghost_filter;
bool keypress_caused_wake;
unsigned short keycode[KBC_MAX_KEY * 2];
unsigned short current_keys[KBC_MAX_KPENT];
unsigned int num_pressed_keys;
u32 wakeup_key;
struct timer_list timer;
struct clk *clk;
struct reset_control *rst;
const struct tegra_kbc_hw_support *hw_support;
int max_keys;
int num_rows_and_columns;
};
static void tegra_kbc_report_released_keys(struct input_dev *input,
unsigned short old_keycodes[],
unsigned int old_num_keys,
unsigned short new_keycodes[],
unsigned int new_num_keys)
{
unsigned int i, j;
for (i = 0; i < old_num_keys; i++) {
for (j = 0; j < new_num_keys; j++)
if (old_keycodes[i] == new_keycodes[j])
break;
if (j == new_num_keys)
input_report_key(input, old_keycodes[i], 0);
}
}
static void tegra_kbc_report_pressed_keys(struct input_dev *input,
unsigned char scancodes[],
unsigned short keycodes[],
unsigned int num_pressed_keys)
{
unsigned int i;
for (i = 0; i < num_pressed_keys; i++) {
input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
input_report_key(input, keycodes[i], 1);
}
}
static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
{
unsigned char scancodes[KBC_MAX_KPENT];
unsigned short keycodes[KBC_MAX_KPENT];
u32 val = 0;
unsigned int i;
unsigned int num_down = 0;
bool fn_keypress = false;
bool key_in_same_row = false;
bool key_in_same_col = false;
for (i = 0; i < KBC_MAX_KPENT; i++) {
if ((i % 4) == 0)
val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
if (val & 0x80) {
unsigned int col = val & 0x07;
unsigned int row = (val >> 3) & 0x0f;
unsigned char scancode =
MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
scancodes[num_down] = scancode;
keycodes[num_down] = kbc->keycode[scancode];
/* If driver uses Fn map, do not report the Fn key. */
if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map)
fn_keypress = true;
else
num_down++;
}
val >>= 8;
}
/*
* Matrix keyboard designs are prone to keyboard ghosting.
* Ghosting occurs if there are 3 keys such that -
* any 2 of the 3 keys share a row, and any 2 of them share a column.
* If so ignore the key presses for this iteration.
*/
if (kbc->use_ghost_filter && num_down >= 3) {
for (i = 0; i < num_down; i++) {
unsigned int j;
u8 curr_col = scancodes[i] & 0x07;
u8 curr_row = scancodes[i] >> KBC_ROW_SHIFT;
/*
* Find 2 keys such that one key is in the same row
* and the other is in the same column as the i-th key.
*/
for (j = i + 1; j < num_down; j++) {
u8 col = scancodes[j] & 0x07;
u8 row = scancodes[j] >> KBC_ROW_SHIFT;
if (col == curr_col)
key_in_same_col = true;
if (row == curr_row)
key_in_same_row = true;
}
}
}
/*
* If the platform uses Fn keymaps, translate keys on a Fn keypress.
* Function keycodes are max_keys apart from the plain keycodes.
*/
if (fn_keypress) {
for (i = 0; i < num_down; i++) {
scancodes[i] += kbc->max_keys;
keycodes[i] = kbc->keycode[scancodes[i]];
}
}
/* Ignore the key presses for this iteration? */
if (key_in_same_col && key_in_same_row)
return;
tegra_kbc_report_released_keys(kbc->idev,
kbc->current_keys, kbc->num_pressed_keys,
keycodes, num_down);
tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
input_sync(kbc->idev);
memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
kbc->num_pressed_keys = num_down;
}
static void tegra_kbc_set_fifo_interrupt(struct tegra_kbc *kbc, bool enable)
{
u32 val;
val = readl(kbc->mmio + KBC_CONTROL_0);
if (enable)
val |= KBC_CONTROL_FIFO_CNT_INT_EN;
else
val &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
writel(val, kbc->mmio + KBC_CONTROL_0);
}
static void tegra_kbc_keypress_timer(struct timer_list *t)
{
struct tegra_kbc *kbc = from_timer(kbc, t, timer);
unsigned long flags;
u32 val;
unsigned int i;
spin_lock_irqsave(&kbc->lock, flags);
val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
if (val) {
unsigned long dly;
tegra_kbc_report_keys(kbc);
/*
* If more than one keys are pressed we need not wait
* for the repoll delay.
*/
dly = (val == 1) ? kbc->repoll_dly : 1;
mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
} else {
/* Release any pressed keys and exit the polling loop */
for (i = 0; i < kbc->num_pressed_keys; i++)
input_report_key(kbc->idev, kbc->current_keys[i], 0);
input_sync(kbc->idev);
kbc->num_pressed_keys = 0;
/* All keys are released so enable the keypress interrupt */
tegra_kbc_set_fifo_interrupt(kbc, true);
}
spin_unlock_irqrestore(&kbc->lock, flags);
}
static irqreturn_t tegra_kbc_isr(int irq, void *args)
{
struct tegra_kbc *kbc = args;
unsigned long flags;
u32 val;
spin_lock_irqsave(&kbc->lock, flags);
/*
* Quickly bail out & reenable interrupts if the fifo threshold
* count interrupt wasn't the interrupt source
*/
val = readl(kbc->mmio + KBC_INT_0);
writel(val, kbc->mmio + KBC_INT_0);
if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
/*
* Until all keys are released, defer further processing to
* the polling loop in tegra_kbc_keypress_timer.
*/
tegra_kbc_set_fifo_interrupt(kbc, false);
mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
} else if (val & KBC_INT_KEYPRESS_INT_STATUS) {
/* We can be here only through system resume path */
kbc->keypress_caused_wake = true;
}
spin_unlock_irqrestore(&kbc->lock, flags);
return IRQ_HANDLED;
}
static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
{
int i;
unsigned int rst_val;
/* Either mask all keys or none. */
rst_val = (filter && !kbc->wakeup) ? ~0 : 0;
for (i = 0; i < kbc->hw_support->max_rows; i++)
writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
}
static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
{
int i;
for (i = 0; i < KBC_MAX_GPIO; i++) {
u32 r_shft = 5 * (i % 6);
u32 c_shft = 4 * (i % 8);
u32 r_mask = 0x1f << r_shft;
u32 c_mask = 0x0f << c_shft;
u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
u32 row_cfg = readl(kbc->mmio + r_offs);
u32 col_cfg = readl(kbc->mmio + c_offs);
row_cfg &= ~r_mask;
col_cfg &= ~c_mask;
switch (kbc->pin_cfg[i].type) {
case PIN_CFG_ROW:
row_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << r_shft;
break;
case PIN_CFG_COL:
col_cfg |= ((kbc->pin_cfg[i].num << 1) | 1) << c_shft;
break;
case PIN_CFG_IGNORE:
break;
}
writel(row_cfg, kbc->mmio + r_offs);
writel(col_cfg, kbc->mmio + c_offs);
}
}
static int tegra_kbc_start(struct tegra_kbc *kbc)
{
unsigned int debounce_cnt;
u32 val = 0;
int ret;
ret = clk_prepare_enable(kbc->clk);
if (ret)
return ret;
/* Reset the KBC controller to clear all previous status.*/
reset_control_assert(kbc->rst);
udelay(100);
reset_control_deassert(kbc->rst);
udelay(100);
tegra_kbc_config_pins(kbc);
tegra_kbc_setup_wakekeys(kbc, false);
writel(kbc->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
/* Keyboard debounce count is maximum of 12 bits. */
debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */
val |= KBC_CONTROL_KBC_EN; /* enable */
writel(val, kbc->mmio + KBC_CONTROL_0);
/*
* Compute the delay(ns) from interrupt mode to continuous polling
* mode so the timer routine is scheduled appropriately.
*/
val = readl(kbc->mmio + KBC_INIT_DLY_0);
kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
kbc->num_pressed_keys = 0;
/*
* Atomically clear out any remaining entries in the key FIFO
* and enable keyboard interrupts.
*/
while (1) {
val = readl(kbc->mmio + KBC_INT_0);
val >>= 4;
if (!val)
break;
val = readl(kbc->mmio + KBC_KP_ENT0_0);
val = readl(kbc->mmio + KBC_KP_ENT1_0);
}
writel(0x7, kbc->mmio + KBC_INT_0);
enable_irq(kbc->irq);
return 0;
}
static void tegra_kbc_stop(struct tegra_kbc *kbc)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&kbc->lock, flags);
val = readl(kbc->mmio + KBC_CONTROL_0);
val &= ~1;
writel(val, kbc->mmio + KBC_CONTROL_0);
spin_unlock_irqrestore(&kbc->lock, flags);
disable_irq(kbc->irq);
del_timer_sync(&kbc->timer);
clk_disable_unprepare(kbc->clk);
}
static int tegra_kbc_open(struct input_dev *dev)
{
struct tegra_kbc *kbc = input_get_drvdata(dev);
return tegra_kbc_start(kbc);
}
static void tegra_kbc_close(struct input_dev *dev)
{
struct tegra_kbc *kbc = input_get_drvdata(dev);
return tegra_kbc_stop(kbc);
}
static bool tegra_kbc_check_pin_cfg(const struct tegra_kbc *kbc,
unsigned int *num_rows)
{
int i;
*num_rows = 0;
for (i = 0; i < KBC_MAX_GPIO; i++) {
const struct tegra_kbc_pin_cfg *pin_cfg = &kbc->pin_cfg[i];
switch (pin_cfg->type) {
case PIN_CFG_ROW:
if (pin_cfg->num >= kbc->hw_support->max_rows) {
dev_err(kbc->dev,
"pin_cfg[%d]: invalid row number %d\n",
i, pin_cfg->num);
return false;
}
(*num_rows)++;
break;
case PIN_CFG_COL:
if (pin_cfg->num >= kbc->hw_support->max_columns) {
dev_err(kbc->dev,
"pin_cfg[%d]: invalid column number %d\n",
i, pin_cfg->num);
return false;
}
break;
case PIN_CFG_IGNORE:
break;
default:
dev_err(kbc->dev,
"pin_cfg[%d]: invalid entry type %d\n",
pin_cfg->type, pin_cfg->num);
return false;
}
}
return true;
}
static int tegra_kbc_parse_dt(struct tegra_kbc *kbc)
{
struct device_node *np = kbc->dev->of_node;
u32 prop;
int i;
u32 num_rows = 0;
u32 num_cols = 0;
u32 cols_cfg[KBC_MAX_GPIO];
u32 rows_cfg[KBC_MAX_GPIO];
int proplen;
int ret;
if (!of_property_read_u32(np, "nvidia,debounce-delay-ms", &prop))
kbc->debounce_cnt = prop;
if (!of_property_read_u32(np, "nvidia,repeat-delay-ms", &prop))
kbc->repeat_cnt = prop;
if (of_find_property(np, "nvidia,needs-ghost-filter", NULL))
kbc->use_ghost_filter = true;
if (of_property_read_bool(np, "wakeup-source") ||
of_property_read_bool(np, "nvidia,wakeup-source")) /* legacy */
kbc->wakeup = true;
if (!of_get_property(np, "nvidia,kbc-row-pins", &proplen)) {
dev_err(kbc->dev, "property nvidia,kbc-row-pins not found\n");
return -ENOENT;
}
num_rows = proplen / sizeof(u32);
if (!of_get_property(np, "nvidia,kbc-col-pins", &proplen)) {
dev_err(kbc->dev, "property nvidia,kbc-col-pins not found\n");
return -ENOENT;
}
num_cols = proplen / sizeof(u32);
if (num_rows > kbc->hw_support->max_rows) {
dev_err(kbc->dev,
"Number of rows is more than supported by hardware\n");
return -EINVAL;
}
if (num_cols > kbc->hw_support->max_columns) {
dev_err(kbc->dev,
"Number of cols is more than supported by hardware\n");
return -EINVAL;
}
if (!of_get_property(np, "linux,keymap", &proplen)) {
dev_err(kbc->dev, "property linux,keymap not found\n");
return -ENOENT;
}
if (!num_rows || !num_cols || ((num_rows + num_cols) > KBC_MAX_GPIO)) {
dev_err(kbc->dev,
"keypad rows/columns not properly specified\n");
return -EINVAL;
}
/* Set all pins as non-configured */
for (i = 0; i < kbc->num_rows_and_columns; i++)
kbc->pin_cfg[i].type = PIN_CFG_IGNORE;
ret = of_property_read_u32_array(np, "nvidia,kbc-row-pins",
rows_cfg, num_rows);
if (ret < 0) {
dev_err(kbc->dev, "Rows configurations are not proper\n");
return -EINVAL;
}
ret = of_property_read_u32_array(np, "nvidia,kbc-col-pins",
cols_cfg, num_cols);
if (ret < 0) {
dev_err(kbc->dev, "Cols configurations are not proper\n");
return -EINVAL;
}
for (i = 0; i < num_rows; i++) {
kbc->pin_cfg[rows_cfg[i]].type = PIN_CFG_ROW;
kbc->pin_cfg[rows_cfg[i]].num = i;
}
for (i = 0; i < num_cols; i++) {
kbc->pin_cfg[cols_cfg[i]].type = PIN_CFG_COL;
kbc->pin_cfg[cols_cfg[i]].num = i;
}
return 0;
}
static const struct tegra_kbc_hw_support tegra20_kbc_hw_support = {
.max_rows = 16,
.max_columns = 8,
};
static const struct tegra_kbc_hw_support tegra11_kbc_hw_support = {
.max_rows = 11,
.max_columns = 8,
};
static const struct of_device_id tegra_kbc_of_match[] = {
{ .compatible = "nvidia,tegra114-kbc", .data = &tegra11_kbc_hw_support},
{ .compatible = "nvidia,tegra30-kbc", .data = &tegra20_kbc_hw_support},
{ .compatible = "nvidia,tegra20-kbc", .data = &tegra20_kbc_hw_support},
{ },
};
MODULE_DEVICE_TABLE(of, tegra_kbc_of_match);
static int tegra_kbc_probe(struct platform_device *pdev)
{
struct tegra_kbc *kbc;
int err;
int num_rows = 0;
unsigned int debounce_cnt;
unsigned int scan_time_rows;
unsigned int keymap_rows;
const struct of_device_id *match;
match = of_match_device(tegra_kbc_of_match, &pdev->dev);
kbc = devm_kzalloc(&pdev->dev, sizeof(*kbc), GFP_KERNEL);
if (!kbc) {
dev_err(&pdev->dev, "failed to alloc memory for kbc\n");
return -ENOMEM;
}
kbc->dev = &pdev->dev;
kbc->hw_support = match->data;
kbc->max_keys = kbc->hw_support->max_rows *
kbc->hw_support->max_columns;
kbc->num_rows_and_columns = kbc->hw_support->max_rows +
kbc->hw_support->max_columns;
keymap_rows = kbc->max_keys;
spin_lock_init(&kbc->lock);
err = tegra_kbc_parse_dt(kbc);
if (err)
return err;
if (!tegra_kbc_check_pin_cfg(kbc, &num_rows))
return -EINVAL;
kbc->irq = platform_get_irq(pdev, 0);
if (kbc->irq < 0)
return -ENXIO;
kbc->idev = devm_input_allocate_device(&pdev->dev);
if (!kbc->idev) {
dev_err(&pdev->dev, "failed to allocate input device\n");
return -ENOMEM;
}
timer_setup(&kbc->timer, tegra_kbc_keypress_timer, 0);
kbc->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(kbc->mmio))
return PTR_ERR(kbc->mmio);
kbc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(kbc->clk)) {
dev_err(&pdev->dev, "failed to get keyboard clock\n");
return PTR_ERR(kbc->clk);
}
kbc->rst = devm_reset_control_get(&pdev->dev, "kbc");
if (IS_ERR(kbc->rst)) {
dev_err(&pdev->dev, "failed to get keyboard reset\n");
return PTR_ERR(kbc->rst);
}
/*
* The time delay between two consecutive reads of the FIFO is
* the sum of the repeat time and the time taken for scanning
* the rows. There is an additional delay before the row scanning
* starts. The repoll delay is computed in milliseconds.
*/
debounce_cnt = min(kbc->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + kbc->repeat_cnt;
kbc->repoll_dly = DIV_ROUND_UP(kbc->repoll_dly, KBC_CYCLE_MS);
kbc->idev->name = pdev->name;
kbc->idev->id.bustype = BUS_HOST;
kbc->idev->dev.parent = &pdev->dev;
kbc->idev->open = tegra_kbc_open;
kbc->idev->close = tegra_kbc_close;
if (kbc->keymap_data && kbc->use_fn_map)
keymap_rows *= 2;
err = matrix_keypad_build_keymap(kbc->keymap_data, NULL,
keymap_rows,
kbc->hw_support->max_columns,
kbc->keycode, kbc->idev);
if (err) {
dev_err(&pdev->dev, "failed to setup keymap\n");
return err;
}
__set_bit(EV_REP, kbc->idev->evbit);
input_set_capability(kbc->idev, EV_MSC, MSC_SCAN);
input_set_drvdata(kbc->idev, kbc);
err = devm_request_irq(&pdev->dev, kbc->irq, tegra_kbc_isr,
IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
pdev->name, kbc);
if (err) {
dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
return err;
}
err = input_register_device(kbc->idev);
if (err) {
dev_err(&pdev->dev, "failed to register input device\n");
return err;
}
platform_set_drvdata(pdev, kbc);
device_init_wakeup(&pdev->dev, kbc->wakeup);
return 0;
}
static void tegra_kbc_set_keypress_interrupt(struct tegra_kbc *kbc, bool enable)
{
u32 val;
val = readl(kbc->mmio + KBC_CONTROL_0);
if (enable)
val |= KBC_CONTROL_KEYPRESS_INT_EN;
else
val &= ~KBC_CONTROL_KEYPRESS_INT_EN;
writel(val, kbc->mmio + KBC_CONTROL_0);
}
static int tegra_kbc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_kbc *kbc = platform_get_drvdata(pdev);
mutex_lock(&kbc->idev->mutex);
if (device_may_wakeup(&pdev->dev)) {
disable_irq(kbc->irq);
del_timer_sync(&kbc->timer);
tegra_kbc_set_fifo_interrupt(kbc, false);
/* Forcefully clear the interrupt status */
writel(0x7, kbc->mmio + KBC_INT_0);
/*
* Store the previous resident time of continuous polling mode.
* Force the keyboard into interrupt mode.
*/
kbc->cp_to_wkup_dly = readl(kbc->mmio + KBC_TO_CNT_0);
writel(0, kbc->mmio + KBC_TO_CNT_0);
tegra_kbc_setup_wakekeys(kbc, true);
msleep(30);
kbc->keypress_caused_wake = false;
/* Enable keypress interrupt before going into suspend. */
tegra_kbc_set_keypress_interrupt(kbc, true);
enable_irq(kbc->irq);
enable_irq_wake(kbc->irq);
} else {
if (input_device_enabled(kbc->idev))
tegra_kbc_stop(kbc);
}
mutex_unlock(&kbc->idev->mutex);
return 0;
}
static int tegra_kbc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_kbc *kbc = platform_get_drvdata(pdev);
int err = 0;
mutex_lock(&kbc->idev->mutex);
if (device_may_wakeup(&pdev->dev)) {
disable_irq_wake(kbc->irq);
tegra_kbc_setup_wakekeys(kbc, false);
/* We will use fifo interrupts for key detection. */
tegra_kbc_set_keypress_interrupt(kbc, false);
/* Restore the resident time of continuous polling mode. */
writel(kbc->cp_to_wkup_dly, kbc->mmio + KBC_TO_CNT_0);
tegra_kbc_set_fifo_interrupt(kbc, true);
if (kbc->keypress_caused_wake && kbc->wakeup_key) {
/*
* We can't report events directly from the ISR
* because timekeeping is stopped when processing
* wakeup request and we get a nasty warning when
* we try to call do_gettimeofday() in evdev
* handler.
*/
input_report_key(kbc->idev, kbc->wakeup_key, 1);
input_sync(kbc->idev);
input_report_key(kbc->idev, kbc->wakeup_key, 0);
input_sync(kbc->idev);
}
} else {
if (input_device_enabled(kbc->idev))
err = tegra_kbc_start(kbc);
}
mutex_unlock(&kbc->idev->mutex);
return err;
}
static DEFINE_SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops,
tegra_kbc_suspend, tegra_kbc_resume);
static struct platform_driver tegra_kbc_driver = {
.probe = tegra_kbc_probe,
.driver = {
.name = "tegra-kbc",
.pm = pm_sleep_ptr(&tegra_kbc_pm_ops),
.of_match_table = tegra_kbc_of_match,
},
};
module_platform_driver(tegra_kbc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
MODULE_ALIAS("platform:tegra-kbc");