OpenCloudOS-Kernel/mm/mempolicy.c

2680 lines
67 KiB
C
Raw Normal View History

/*
* Simple NUMA memory policy for the Linux kernel.
*
* Copyright 2003,2004 Andi Kleen, SuSE Labs.
* (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
* Subject to the GNU Public License, version 2.
*
* NUMA policy allows the user to give hints in which node(s) memory should
* be allocated.
*
* Support four policies per VMA and per process:
*
* The VMA policy has priority over the process policy for a page fault.
*
* interleave Allocate memory interleaved over a set of nodes,
* with normal fallback if it fails.
* For VMA based allocations this interleaves based on the
* offset into the backing object or offset into the mapping
* for anonymous memory. For process policy an process counter
* is used.
*
* bind Only allocate memory on a specific set of nodes,
* no fallback.
* FIXME: memory is allocated starting with the first node
* to the last. It would be better if bind would truly restrict
* the allocation to memory nodes instead
*
* preferred Try a specific node first before normal fallback.
* As a special case node -1 here means do the allocation
* on the local CPU. This is normally identical to default,
* but useful to set in a VMA when you have a non default
* process policy.
*
* default Allocate on the local node first, or when on a VMA
* use the process policy. This is what Linux always did
* in a NUMA aware kernel and still does by, ahem, default.
*
* The process policy is applied for most non interrupt memory allocations
* in that process' context. Interrupts ignore the policies and always
* try to allocate on the local CPU. The VMA policy is only applied for memory
* allocations for a VMA in the VM.
*
* Currently there are a few corner cases in swapping where the policy
* is not applied, but the majority should be handled. When process policy
* is used it is not remembered over swap outs/swap ins.
*
* Only the highest zone in the zone hierarchy gets policied. Allocations
* requesting a lower zone just use default policy. This implies that
* on systems with highmem kernel lowmem allocation don't get policied.
* Same with GFP_DMA allocations.
*
* For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
* all users and remembered even when nobody has memory mapped.
*/
/* Notebook:
fix mmap readahead to honour policy and enable policy for any page cache
object
statistics for bigpages
global policy for page cache? currently it uses process policy. Requires
first item above.
handle mremap for shared memory (currently ignored for the policy)
grows down?
make bind policy root only? It can trigger oom much faster and the
kernel is not always grateful with that.
*/
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/nodemask.h>
#include <linux/cpuset.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/nsproxy.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compat.h>
#include <linux/swap.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/migrate.h>
ksm: memory hotremove migration only The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:33 +08:00
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/security.h>
#include <linux/syscalls.h>
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
#include <linux/ctype.h>
#include <linux/mm_inline.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
vmscan: move isolate_lru_page() to vmscan.c On large memory systems, the VM can spend way too much time scanning through pages that it cannot (or should not) evict from memory. Not only does it use up CPU time, but it also provokes lock contention and can leave large systems under memory presure in a catatonic state. This patch series improves VM scalability by: 1) putting filesystem backed, swap backed and unevictable pages onto their own LRUs, so the system only scans the pages that it can/should evict from memory 2) switching to two handed clock replacement for the anonymous LRUs, so the number of pages that need to be scanned when the system starts swapping is bound to a reasonable number 3) keeping unevictable pages off the LRU completely, so the VM does not waste CPU time scanning them. ramfs, ramdisk, SHM_LOCKED shared memory segments and mlock()ed VMA pages are keept on the unevictable list. This patch: isolate_lru_page logically belongs to be in vmscan.c than migrate.c. It is tough, because we don't need that function without memory migration so there is a valid argument to have it in migrate.c. However a subsequent patch needs to make use of it in the core mm, so we can happily move it to vmscan.c. Also, make the function a little more generic by not requiring that it adds an isolated page to a given list. Callers can do that. Note that we now have '__isolate_lru_page()', that does something quite different, visible outside of vmscan.c for use with memory controller. Methinks we need to rationalize these names/purposes. --lts [akpm@linux-foundation.org: fix mm/memory_hotplug.c build] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:09 +08:00
#include "internal.h"
/* Internal flags */
#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
static struct kmem_cache *policy_cache;
static struct kmem_cache *sn_cache;
/* Highest zone. An specific allocation for a zone below that is not
policied. */
[PATCH] optional ZONE_DMA: deal with cases of ZONE_DMA meaning the first zone This patchset follows up on the earlier work in Andrew's tree to reduce the number of zones. The patches allow to go to a minimum of 2 zones. This one allows also to make ZONE_DMA optional and therefore the number of zones can be reduced to one. ZONE_DMA is usually used for ISA DMA devices. There are a number of reasons why we would not want to have ZONE_DMA 1. Some arches do not need ZONE_DMA at all. 2. With the advent of IOMMUs DMA zones are no longer needed. The necessity of DMA zones may drastically be reduced in the future. This patchset allows a compilation of a kernel without that overhead. 3. Devices that require ISA DMA get rare these days. All my systems do not have any need for ISA DMA. 4. The presence of an additional zone unecessarily complicates VM operations because it must be scanned and balancing logic must operate on its. 5. With only ZONE_NORMAL one can reach the situation where we have only one zone. This will allow the unrolling of many loops in the VM and allows the optimization of varous code paths in the VM. 6. Having only a single zone in a NUMA system results in a 1-1 correspondence between nodes and zones. Various additional optimizations to critical VM paths become possible. Many systems today can operate just fine with a single zone. If you look at what is in ZONE_DMA then one usually sees that nothing uses it. The DMA slabs are empty (Some arches use ZONE_DMA instead of ZONE_NORMAL, then ZONE_NORMAL will be empty instead). On all of my systems (i386, x86_64, ia64) ZONE_DMA is completely empty. Why constantly look at an empty zone in /proc/zoneinfo and empty slab in /proc/slabinfo? Non i386 also frequently have no need for ZONE_DMA and zones stay empty. The patchset was tested on i386 (UP / SMP), x86_64 (UP, NUMA) and ia64 (NUMA). The RFC posted earlier (see http://marc.theaimsgroup.com/?l=linux-kernel&m=115231723513008&w=2) had lots of #ifdefs in them. An effort has been made to minize the number of #ifdefs and make this as compact as possible. The job was made much easier by the ongoing efforts of others to extract common arch specific functionality. I have been running this for awhile now on my desktop and finally Linux is using all my available RAM instead of leaving the 16MB in ZONE_DMA untouched: christoph@pentium940:~$ cat /proc/zoneinfo Node 0, zone Normal pages free 4435 min 1448 low 1810 high 2172 active 241786 inactive 210170 scanned 0 (a: 0 i: 0) spanned 524224 present 524224 nr_anon_pages 61680 nr_mapped 14271 nr_file_pages 390264 nr_slab_reclaimable 27564 nr_slab_unreclaimable 1793 nr_page_table_pages 449 nr_dirty 39 nr_writeback 0 nr_unstable 0 nr_bounce 0 cpu: 0 pcp: 0 count: 156 high: 186 batch: 31 cpu: 0 pcp: 1 count: 9 high: 62 batch: 15 vm stats threshold: 20 cpu: 1 pcp: 0 count: 177 high: 186 batch: 31 cpu: 1 pcp: 1 count: 12 high: 62 batch: 15 vm stats threshold: 20 all_unreclaimable: 0 prev_priority: 12 temp_priority: 12 start_pfn: 0 This patch: In two places in the VM we use ZONE_DMA to refer to the first zone. If ZONE_DMA is optional then other zones may be first. So simply replace ZONE_DMA with zone 0. This also fixes ZONETABLE_PGSHIFT. If we have only a single zone then ZONES_PGSHIFT may become 0 because there is no need anymore to encode the zone number related to a pgdat. However, we still need a zonetable to index all the zones for each node if this is a NUMA system. Therefore define ZONETABLE_SHIFT unconditionally as the offset of the ZONE field in page flags. [apw@shadowen.org: fix mismerge] Acked-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Matthew Wilcox <willy@debian.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-10 17:43:07 +08:00
enum zone_type policy_zone = 0;
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
/*
* run-time system-wide default policy => local allocation
*/
struct mempolicy default_policy = {
.refcnt = ATOMIC_INIT(1), /* never free it */
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
.mode = MPOL_PREFERRED,
.flags = MPOL_F_LOCAL,
};
static const struct mempolicy_operations {
int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
/*
* If read-side task has no lock to protect task->mempolicy, write-side
* task will rebind the task->mempolicy by two step. The first step is
* setting all the newly nodes, and the second step is cleaning all the
* disallowed nodes. In this way, we can avoid finding no node to alloc
* page.
* If we have a lock to protect task->mempolicy in read-side, we do
* rebind directly.
*
* step:
* MPOL_REBIND_ONCE - do rebind work at once
* MPOL_REBIND_STEP1 - set all the newly nodes
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
*/
void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
enum mpol_rebind_step step);
} mpol_ops[MPOL_MAX];
/* Check that the nodemask contains at least one populated zone */
static int is_valid_nodemask(const nodemask_t *nodemask)
{
int nd, k;
for_each_node_mask(nd, *nodemask) {
struct zone *z;
for (k = 0; k <= policy_zone; k++) {
z = &NODE_DATA(nd)->node_zones[k];
if (z->present_pages > 0)
return 1;
}
}
return 0;
}
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
{
return pol->flags & MPOL_MODE_FLAGS;
}
static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
const nodemask_t *rel)
{
nodemask_t tmp;
nodes_fold(tmp, *orig, nodes_weight(*rel));
nodes_onto(*ret, tmp, *rel);
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
}
static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
{
if (nodes_empty(*nodes))
return -EINVAL;
pol->v.nodes = *nodes;
return 0;
}
static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
{
if (!nodes)
pol->flags |= MPOL_F_LOCAL; /* local allocation */
else if (nodes_empty(*nodes))
return -EINVAL; /* no allowed nodes */
else
pol->v.preferred_node = first_node(*nodes);
return 0;
}
static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
{
if (!is_valid_nodemask(nodes))
return -EINVAL;
pol->v.nodes = *nodes;
return 0;
}
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
/*
* mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
* any, for the new policy. mpol_new() has already validated the nodes
* parameter with respect to the policy mode and flags. But, we need to
* handle an empty nodemask with MPOL_PREFERRED here.
*
* Must be called holding task's alloc_lock to protect task's mems_allowed
* and mempolicy. May also be called holding the mmap_semaphore for write.
*/
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
static int mpol_set_nodemask(struct mempolicy *pol,
const nodemask_t *nodes, struct nodemask_scratch *nsc)
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
{
int ret;
/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
if (pol == NULL)
return 0;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
/* Check N_HIGH_MEMORY */
nodes_and(nsc->mask1,
cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
VM_BUG_ON(!nodes);
if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
nodes = NULL; /* explicit local allocation */
else {
if (pol->flags & MPOL_F_RELATIVE_NODES)
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
else
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
nodes_and(nsc->mask2, *nodes, nsc->mask1);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
if (mpol_store_user_nodemask(pol))
pol->w.user_nodemask = *nodes;
else
pol->w.cpuset_mems_allowed =
cpuset_current_mems_allowed;
}
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
if (nodes)
ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
else
ret = mpol_ops[pol->mode].create(pol, NULL);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
return ret;
}
/*
* This function just creates a new policy, does some check and simple
* initialization. You must invoke mpol_set_nodemask() to set nodes.
*/
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
struct mempolicy *policy;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
pr_debug("setting mode %d flags %d nodes[0] %lx\n",
mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
if (mode == MPOL_DEFAULT) {
if (nodes && !nodes_empty(*nodes))
return ERR_PTR(-EINVAL);
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
return NULL; /* simply delete any existing policy */
}
VM_BUG_ON(!nodes);
/*
* MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
* MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
* All other modes require a valid pointer to a non-empty nodemask.
*/
if (mode == MPOL_PREFERRED) {
if (nodes_empty(*nodes)) {
if (((flags & MPOL_F_STATIC_NODES) ||
(flags & MPOL_F_RELATIVE_NODES)))
return ERR_PTR(-EINVAL);
}
} else if (nodes_empty(*nodes))
return ERR_PTR(-EINVAL);
policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
if (!policy)
return ERR_PTR(-ENOMEM);
atomic_set(&policy->refcnt, 1);
policy->mode = mode;
policy->flags = flags;
return policy;
}
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
/* Slow path of a mpol destructor. */
void __mpol_put(struct mempolicy *p)
{
if (!atomic_dec_and_test(&p->refcnt))
return;
kmem_cache_free(policy_cache, p);
}
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
enum mpol_rebind_step step)
{
}
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
/*
* step:
* MPOL_REBIND_ONCE - do rebind work at once
* MPOL_REBIND_STEP1 - set all the newly nodes
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
*/
static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
enum mpol_rebind_step step)
{
nodemask_t tmp;
if (pol->flags & MPOL_F_STATIC_NODES)
nodes_and(tmp, pol->w.user_nodemask, *nodes);
else if (pol->flags & MPOL_F_RELATIVE_NODES)
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
else {
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
/*
* if step == 1, we use ->w.cpuset_mems_allowed to cache the
* result
*/
if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
nodes_remap(tmp, pol->v.nodes,
pol->w.cpuset_mems_allowed, *nodes);
pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
} else if (step == MPOL_REBIND_STEP2) {
tmp = pol->w.cpuset_mems_allowed;
pol->w.cpuset_mems_allowed = *nodes;
} else
BUG();
}
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
if (nodes_empty(tmp))
tmp = *nodes;
if (step == MPOL_REBIND_STEP1)
nodes_or(pol->v.nodes, pol->v.nodes, tmp);
else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
pol->v.nodes = tmp;
else
BUG();
if (!node_isset(current->il_next, tmp)) {
current->il_next = next_node(current->il_next, tmp);
if (current->il_next >= MAX_NUMNODES)
current->il_next = first_node(tmp);
if (current->il_next >= MAX_NUMNODES)
current->il_next = numa_node_id();
}
}
static void mpol_rebind_preferred(struct mempolicy *pol,
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
const nodemask_t *nodes,
enum mpol_rebind_step step)
{
nodemask_t tmp;
if (pol->flags & MPOL_F_STATIC_NODES) {
int node = first_node(pol->w.user_nodemask);
if (node_isset(node, *nodes)) {
pol->v.preferred_node = node;
pol->flags &= ~MPOL_F_LOCAL;
} else
pol->flags |= MPOL_F_LOCAL;
} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
pol->v.preferred_node = first_node(tmp);
} else if (!(pol->flags & MPOL_F_LOCAL)) {
pol->v.preferred_node = node_remap(pol->v.preferred_node,
pol->w.cpuset_mems_allowed,
*nodes);
pol->w.cpuset_mems_allowed = *nodes;
}
}
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
/*
* mpol_rebind_policy - Migrate a policy to a different set of nodes
*
* If read-side task has no lock to protect task->mempolicy, write-side
* task will rebind the task->mempolicy by two step. The first step is
* setting all the newly nodes, and the second step is cleaning all the
* disallowed nodes. In this way, we can avoid finding no node to alloc
* page.
* If we have a lock to protect task->mempolicy in read-side, we do
* rebind directly.
*
* step:
* MPOL_REBIND_ONCE - do rebind work at once
* MPOL_REBIND_STEP1 - set all the newly nodes
* MPOL_REBIND_STEP2 - clean all the disallowed nodes
*/
static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
enum mpol_rebind_step step)
{
if (!pol)
return;
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
if (!mpol_store_user_nodemask(pol) && step == 0 &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
return;
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
return;
if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
BUG();
if (step == MPOL_REBIND_STEP1)
pol->flags |= MPOL_F_REBINDING;
else if (step == MPOL_REBIND_STEP2)
pol->flags &= ~MPOL_F_REBINDING;
else if (step >= MPOL_REBIND_NSTEP)
BUG();
mpol_ops[pol->mode].rebind(pol, newmask, step);
}
/*
* Wrapper for mpol_rebind_policy() that just requires task
* pointer, and updates task mempolicy.
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
*
* Called with task's alloc_lock held.
*/
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
enum mpol_rebind_step step)
{
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
mpol_rebind_policy(tsk->mempolicy, new, step);
}
/*
* Rebind each vma in mm to new nodemask.
*
* Call holding a reference to mm. Takes mm->mmap_sem during call.
*/
void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
{
struct vm_area_struct *vma;
down_write(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next)
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
up_write(&mm->mmap_sem);
}
static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
[MPOL_DEFAULT] = {
.rebind = mpol_rebind_default,
},
[MPOL_INTERLEAVE] = {
.create = mpol_new_interleave,
.rebind = mpol_rebind_nodemask,
},
[MPOL_PREFERRED] = {
.create = mpol_new_preferred,
.rebind = mpol_rebind_preferred,
},
[MPOL_BIND] = {
.create = mpol_new_bind,
.rebind = mpol_rebind_nodemask,
},
};
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
static void gather_stats(struct page *, void *, int pte_dirty);
static void migrate_page_add(struct page *page, struct list_head *pagelist,
unsigned long flags);
/* Scan through pages checking if pages follow certain conditions. */
2005-10-30 09:16:12 +08:00
static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
{
pte_t *orig_pte;
pte_t *pte;
spinlock_t *ptl;
orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
do {
struct page *page;
int nid;
if (!pte_present(*pte))
continue;
page = vm_normal_page(vma, addr, *pte);
if (!page)
continue;
/*
ksm: memory hotremove migration only The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:33 +08:00
* vm_normal_page() filters out zero pages, but there might
* still be PageReserved pages to skip, perhaps in a VDSO.
* And we cannot move PageKsm pages sensibly or safely yet.
*/
ksm: memory hotremove migration only The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:33 +08:00
if (PageReserved(page) || PageKsm(page))
continue;
nid = page_to_nid(page);
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
continue;
if (flags & MPOL_MF_STATS)
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
gather_stats(page, private, pte_dirty(*pte));
else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
migrate_page_add(page, private, flags);
else
break;
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(orig_pte, ptl);
return addr != end;
}
2005-10-30 09:16:12 +08:00
static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
if (check_pte_range(vma, pmd, addr, next, nodes,
flags, private))
return -EIO;
} while (pmd++, addr = next, addr != end);
return 0;
}
2005-10-30 09:16:12 +08:00
static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
if (check_pmd_range(vma, pud, addr, next, nodes,
flags, private))
return -EIO;
} while (pud++, addr = next, addr != end);
return 0;
}
2005-10-30 09:16:12 +08:00
static inline int check_pgd_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
{
pgd_t *pgd;
unsigned long next;
2005-10-30 09:16:12 +08:00
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
if (check_pud_range(vma, pgd, addr, next, nodes,
flags, private))
return -EIO;
} while (pgd++, addr = next, addr != end);
return 0;
}
/*
* Check if all pages in a range are on a set of nodes.
* If pagelist != NULL then isolate pages from the LRU and
* put them on the pagelist.
*/
static struct vm_area_struct *
check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
const nodemask_t *nodes, unsigned long flags, void *private)
{
int err;
struct vm_area_struct *first, *vma, *prev;
first = find_vma(mm, start);
if (!first)
return ERR_PTR(-EFAULT);
prev = NULL;
for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
if (!(flags & MPOL_MF_DISCONTIG_OK)) {
if (!vma->vm_next && vma->vm_end < end)
return ERR_PTR(-EFAULT);
if (prev && prev->vm_end < vma->vm_start)
return ERR_PTR(-EFAULT);
}
if (!is_vm_hugetlb_page(vma) &&
((flags & MPOL_MF_STRICT) ||
((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
vma_migratable(vma)))) {
unsigned long endvma = vma->vm_end;
if (endvma > end)
endvma = end;
if (vma->vm_start > start)
start = vma->vm_start;
err = check_pgd_range(vma, start, endvma, nodes,
flags, private);
if (err) {
first = ERR_PTR(err);
break;
}
}
prev = vma;
}
return first;
}
/* Apply policy to a single VMA */
static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
{
int err = 0;
struct mempolicy *old = vma->vm_policy;
pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
vma->vm_start, vma->vm_end, vma->vm_pgoff,
vma->vm_ops, vma->vm_file,
vma->vm_ops ? vma->vm_ops->set_policy : NULL);
if (vma->vm_ops && vma->vm_ops->set_policy)
err = vma->vm_ops->set_policy(vma, new);
if (!err) {
mpol_get(new);
vma->vm_policy = new;
mpol_put(old);
}
return err;
}
/* Step 2: apply policy to a range and do splits. */
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
static int mbind_range(struct mm_struct *mm, unsigned long start,
unsigned long end, struct mempolicy *new_pol)
{
struct vm_area_struct *next;
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
struct vm_area_struct *prev;
struct vm_area_struct *vma;
int err = 0;
pgoff_t pgoff;
unsigned long vmstart;
unsigned long vmend;
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
vma = find_vma_prev(mm, start, &prev);
if (!vma || vma->vm_start > start)
return -EFAULT;
for (; vma && vma->vm_start < end; prev = vma, vma = next) {
next = vma->vm_next;
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
vmstart = max(start, vma->vm_start);
vmend = min(end, vma->vm_end);
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
vma->anon_vma, vma->vm_file, pgoff, new_pol);
if (prev) {
vma = prev;
next = vma->vm_next;
continue;
}
if (vma->vm_start != vmstart) {
err = split_vma(vma->vm_mm, vma, vmstart, 1);
if (err)
goto out;
}
if (vma->vm_end != vmend) {
err = split_vma(vma->vm_mm, vma, vmend, 0);
if (err)
goto out;
}
err = policy_vma(vma, new_pol);
if (err)
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
goto out;
}
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
out:
return err;
}
/*
* Update task->flags PF_MEMPOLICY bit: set iff non-default
* mempolicy. Allows more rapid checking of this (combined perhaps
* with other PF_* flag bits) on memory allocation hot code paths.
*
* If called from outside this file, the task 'p' should -only- be
* a newly forked child not yet visible on the task list, because
* manipulating the task flags of a visible task is not safe.
*
* The above limitation is why this routine has the funny name
* mpol_fix_fork_child_flag().
*
* It is also safe to call this with a task pointer of current,
* which the static wrapper mpol_set_task_struct_flag() does,
* for use within this file.
*/
void mpol_fix_fork_child_flag(struct task_struct *p)
{
if (p->mempolicy)
p->flags |= PF_MEMPOLICY;
else
p->flags &= ~PF_MEMPOLICY;
}
static void mpol_set_task_struct_flag(void)
{
mpol_fix_fork_child_flag(current);
}
/* Set the process memory policy */
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
static long do_set_mempolicy(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
struct mempolicy *new, *old;
struct mm_struct *mm = current->mm;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
NODEMASK_SCRATCH(scratch);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
int ret;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
if (!scratch)
return -ENOMEM;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
new = mpol_new(mode, flags, nodes);
if (IS_ERR(new)) {
ret = PTR_ERR(new);
goto out;
}
/*
* prevent changing our mempolicy while show_numa_maps()
* is using it.
* Note: do_set_mempolicy() can be called at init time
* with no 'mm'.
*/
if (mm)
down_write(&mm->mmap_sem);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_lock(current);
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
ret = mpol_set_nodemask(new, nodes, scratch);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
if (ret) {
task_unlock(current);
if (mm)
up_write(&mm->mmap_sem);
mpol_put(new);
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
goto out;
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
}
old = current->mempolicy;
current->mempolicy = new;
mpol_set_task_struct_flag();
if (new && new->mode == MPOL_INTERLEAVE &&
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
nodes_weight(new->v.nodes))
current->il_next = first_node(new->v.nodes);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_unlock(current);
if (mm)
up_write(&mm->mmap_sem);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
mpol_put(old);
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
ret = 0;
out:
NODEMASK_SCRATCH_FREE(scratch);
return ret;
}
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
/*
* Return nodemask for policy for get_mempolicy() query
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
*
* Called with task's alloc_lock held
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
*/
static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
{
nodes_clear(*nodes);
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
if (p == &default_policy)
return;
switch (p->mode) {
case MPOL_BIND:
/* Fall through */
case MPOL_INTERLEAVE:
*nodes = p->v.nodes;
break;
case MPOL_PREFERRED:
if (!(p->flags & MPOL_F_LOCAL))
node_set(p->v.preferred_node, *nodes);
mempolicy: mPOL_PREFERRED cleanups for "local allocation" Here are a couple of "cleanups" for MPOL_PREFERRED behavior when v.preferred_node < 0 -- i.e., "local allocation": 1) [do_]get_mempolicy() calls the now renamed get_policy_nodemask() to fetch the nodemask associated with a policy. Currently, get_policy_nodemask() returns the set of nodes with memory, when the policy 'mode' is 'PREFERRED, and the preferred_node is < 0. Change to return an empty nodemask, as this is what was specified to achieve "local allocation". 2) When a task is moved into a [new] cpuset, mpol_rebind_policy() is called to adjust any task and vma policy nodes to be valid in the new cpuset. However, when the policy is MPOL_PREFERRED, and the preferred_node is <0, no rebind is necessary. The "local allocation" indication is valid in any cpuset. Existing code will "do the right thing" because node_remap() will just return the argument node when it is outside of the valid range of node ids. However, I think it is clearer and cleaner to skip the remap explicitly in this case. 3) mpol_to_str() produces a printable, "human readable" string from a struct mempolicy. For MPOL_PREFERRED with preferred_node <0, show "local", as this indicates local allocation, as the task migrates among nodes. Note that this matches the usage of "local allocation" in libnuma() and numactl. Without this change, I believe that node_set() [via set_bit()] will set bit 31, resulting in a misleading display. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:20 +08:00
/* else return empty node mask for local allocation */
break;
default:
BUG();
}
}
static int lookup_node(struct mm_struct *mm, unsigned long addr)
{
struct page *p;
int err;
err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
if (err >= 0) {
err = page_to_nid(p);
put_page(p);
}
return err;
}
/* Retrieve NUMA policy */
static long do_get_mempolicy(int *policy, nodemask_t *nmask,
unsigned long addr, unsigned long flags)
{
int err;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
struct mempolicy *pol = current->mempolicy;
if (flags &
~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
return -EINVAL;
if (flags & MPOL_F_MEMS_ALLOWED) {
if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
return -EINVAL;
*policy = 0; /* just so it's initialized */
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_lock(current);
*nmask = cpuset_current_mems_allowed;
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_unlock(current);
return 0;
}
if (flags & MPOL_F_ADDR) {
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
/*
* Do NOT fall back to task policy if the
* vma/shared policy at addr is NULL. We
* want to return MPOL_DEFAULT in this case.
*/
down_read(&mm->mmap_sem);
vma = find_vma_intersection(mm, addr, addr+1);
if (!vma) {
up_read(&mm->mmap_sem);
return -EFAULT;
}
if (vma->vm_ops && vma->vm_ops->get_policy)
pol = vma->vm_ops->get_policy(vma, addr);
else
pol = vma->vm_policy;
} else if (addr)
return -EINVAL;
if (!pol)
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
pol = &default_policy; /* indicates default behavior */
if (flags & MPOL_F_NODE) {
if (flags & MPOL_F_ADDR) {
err = lookup_node(mm, addr);
if (err < 0)
goto out;
*policy = err;
} else if (pol == current->mempolicy &&
pol->mode == MPOL_INTERLEAVE) {
*policy = current->il_next;
} else {
err = -EINVAL;
goto out;
}
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
} else {
*policy = pol == &default_policy ? MPOL_DEFAULT :
pol->mode;
/*
* Internal mempolicy flags must be masked off before exposing
* the policy to userspace.
*/
*policy |= (pol->flags & MPOL_MODE_FLAGS);
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
}
if (vma) {
up_read(&current->mm->mmap_sem);
vma = NULL;
}
err = 0;
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
if (nmask) {
if (mpol_store_user_nodemask(pol)) {
*nmask = pol->w.user_nodemask;
} else {
task_lock(current);
get_policy_nodemask(pol, nmask);
task_unlock(current);
}
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
}
out:
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
mpol_cond_put(pol);
if (vma)
up_read(&current->mm->mmap_sem);
return err;
}
#ifdef CONFIG_MIGRATION
/*
* page migration
*/
static void migrate_page_add(struct page *page, struct list_head *pagelist,
unsigned long flags)
{
/*
* Avoid migrating a page that is shared with others.
*/
vmscan: move isolate_lru_page() to vmscan.c On large memory systems, the VM can spend way too much time scanning through pages that it cannot (or should not) evict from memory. Not only does it use up CPU time, but it also provokes lock contention and can leave large systems under memory presure in a catatonic state. This patch series improves VM scalability by: 1) putting filesystem backed, swap backed and unevictable pages onto their own LRUs, so the system only scans the pages that it can/should evict from memory 2) switching to two handed clock replacement for the anonymous LRUs, so the number of pages that need to be scanned when the system starts swapping is bound to a reasonable number 3) keeping unevictable pages off the LRU completely, so the VM does not waste CPU time scanning them. ramfs, ramdisk, SHM_LOCKED shared memory segments and mlock()ed VMA pages are keept on the unevictable list. This patch: isolate_lru_page logically belongs to be in vmscan.c than migrate.c. It is tough, because we don't need that function without memory migration so there is a valid argument to have it in migrate.c. However a subsequent patch needs to make use of it in the core mm, so we can happily move it to vmscan.c. Also, make the function a little more generic by not requiring that it adds an isolated page to a given list. Callers can do that. Note that we now have '__isolate_lru_page()', that does something quite different, visible outside of vmscan.c for use with memory controller. Methinks we need to rationalize these names/purposes. --lts [akpm@linux-foundation.org: fix mm/memory_hotplug.c build] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:09 +08:00
if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
if (!isolate_lru_page(page)) {
list_add_tail(&page->lru, pagelist);
inc_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
vmscan: move isolate_lru_page() to vmscan.c On large memory systems, the VM can spend way too much time scanning through pages that it cannot (or should not) evict from memory. Not only does it use up CPU time, but it also provokes lock contention and can leave large systems under memory presure in a catatonic state. This patch series improves VM scalability by: 1) putting filesystem backed, swap backed and unevictable pages onto their own LRUs, so the system only scans the pages that it can/should evict from memory 2) switching to two handed clock replacement for the anonymous LRUs, so the number of pages that need to be scanned when the system starts swapping is bound to a reasonable number 3) keeping unevictable pages off the LRU completely, so the VM does not waste CPU time scanning them. ramfs, ramdisk, SHM_LOCKED shared memory segments and mlock()ed VMA pages are keept on the unevictable list. This patch: isolate_lru_page logically belongs to be in vmscan.c than migrate.c. It is tough, because we don't need that function without memory migration so there is a valid argument to have it in migrate.c. However a subsequent patch needs to make use of it in the core mm, so we can happily move it to vmscan.c. Also, make the function a little more generic by not requiring that it adds an isolated page to a given list. Callers can do that. Note that we now have '__isolate_lru_page()', that does something quite different, visible outside of vmscan.c for use with memory controller. Methinks we need to rationalize these names/purposes. --lts [akpm@linux-foundation.org: fix mm/memory_hotplug.c build] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:09 +08:00
}
}
}
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
{
return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
}
/*
* Migrate pages from one node to a target node.
* Returns error or the number of pages not migrated.
*/
static int migrate_to_node(struct mm_struct *mm, int source, int dest,
int flags)
{
nodemask_t nmask;
LIST_HEAD(pagelist);
int err = 0;
nodes_clear(nmask);
node_set(source, nmask);
mm: consider the entire user address space during node migration Use mm->task_size instead of TASK_SIZE to ensure that the entire user address space is migrated. mm->task_size is independent of the calling task context. TASK SIZE may be dependant on the address space size of the calling process. Usage of TASK_SIZE can lead to partial address space migration if the calling process was 32 bit and the migrating process was 64 bit. Here is the test script used on 64 system with a 32 bit echo process: mount -t cgroup none /cgroup -o cpuset cd /cgroup mkdir 0 echo 1 > 0/cpuset.cpus echo 0 > 0/cpuset.mems echo 1 > 0/cpuset.memory_migrate mkdir 1 echo 1 > 1/cpuset.cpus echo 1 > 1/cpuset.mems echo 1 > 1/cpuset.memory_migrate echo $$ > 0/tasks 64_bit_process & pid=$! echo $pid > 1/tasks # This does not migrate all process pages without # this patch. If 64 bit echo is used or this patch is # applied, then the full address space of $pid is # migrated. To check memory migration, I watched: grep MemUsed /sys/devices/system/node/node*/meminfo Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:33 +08:00
check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
if (!list_empty(&pagelist)) {
ksm: memory hotremove migration only The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:33 +08:00
err = migrate_pages(&pagelist, new_node_page, dest, 0);
if (err)
putback_lru_pages(&pagelist);
}
return err;
}
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
/*
* Move pages between the two nodesets so as to preserve the physical
* layout as much as possible.
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
*
* Returns the number of page that could not be moved.
*/
int do_migrate_pages(struct mm_struct *mm,
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
{
int busy = 0;
int err;
nodemask_t tmp;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
err = migrate_prep();
if (err)
return err;
mempolicy: mPOL_PREFERRED cleanups for "local allocation" Here are a couple of "cleanups" for MPOL_PREFERRED behavior when v.preferred_node < 0 -- i.e., "local allocation": 1) [do_]get_mempolicy() calls the now renamed get_policy_nodemask() to fetch the nodemask associated with a policy. Currently, get_policy_nodemask() returns the set of nodes with memory, when the policy 'mode' is 'PREFERRED, and the preferred_node is < 0. Change to return an empty nodemask, as this is what was specified to achieve "local allocation". 2) When a task is moved into a [new] cpuset, mpol_rebind_policy() is called to adjust any task and vma policy nodes to be valid in the new cpuset. However, when the policy is MPOL_PREFERRED, and the preferred_node is <0, no rebind is necessary. The "local allocation" indication is valid in any cpuset. Existing code will "do the right thing" because node_remap() will just return the argument node when it is outside of the valid range of node ids. However, I think it is clearer and cleaner to skip the remap explicitly in this case. 3) mpol_to_str() produces a printable, "human readable" string from a struct mempolicy. For MPOL_PREFERRED with preferred_node <0, show "local", as this indicates local allocation, as the task migrates among nodes. Note that this matches the usage of "local allocation" in libnuma() and numactl. Without this change, I believe that node_set() [via set_bit()] will set bit 31, resulting in a misleading display. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:20 +08:00
down_read(&mm->mmap_sem);
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
err = migrate_vmas(mm, from_nodes, to_nodes, flags);
if (err)
goto out;
/*
* Find a 'source' bit set in 'tmp' whose corresponding 'dest'
* bit in 'to' is not also set in 'tmp'. Clear the found 'source'
* bit in 'tmp', and return that <source, dest> pair for migration.
* The pair of nodemasks 'to' and 'from' define the map.
*
* If no pair of bits is found that way, fallback to picking some
* pair of 'source' and 'dest' bits that are not the same. If the
* 'source' and 'dest' bits are the same, this represents a node
* that will be migrating to itself, so no pages need move.
*
* If no bits are left in 'tmp', or if all remaining bits left
* in 'tmp' correspond to the same bit in 'to', return false
* (nothing left to migrate).
*
* This lets us pick a pair of nodes to migrate between, such that
* if possible the dest node is not already occupied by some other
* source node, minimizing the risk of overloading the memory on a
* node that would happen if we migrated incoming memory to a node
* before migrating outgoing memory source that same node.
*
* A single scan of tmp is sufficient. As we go, we remember the
* most recent <s, d> pair that moved (s != d). If we find a pair
* that not only moved, but what's better, moved to an empty slot
* (d is not set in tmp), then we break out then, with that pair.
* Otherwise when we finish scannng from_tmp, we at least have the
* most recent <s, d> pair that moved. If we get all the way through
* the scan of tmp without finding any node that moved, much less
* moved to an empty node, then there is nothing left worth migrating.
*/
tmp = *from_nodes;
while (!nodes_empty(tmp)) {
int s,d;
int source = -1;
int dest = 0;
for_each_node_mask(s, tmp) {
d = node_remap(s, *from_nodes, *to_nodes);
if (s == d)
continue;
source = s; /* Node moved. Memorize */
dest = d;
/* dest not in remaining from nodes? */
if (!node_isset(dest, tmp))
break;
}
if (source == -1)
break;
node_clear(source, tmp);
err = migrate_to_node(mm, source, dest, flags);
if (err > 0)
busy += err;
if (err < 0)
break;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
}
out:
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
up_read(&mm->mmap_sem);
if (err < 0)
return err;
return busy;
}
Migration: find correct vma in new_vma_page() We hit the BUG_ON() in mm/rmap.c:vma_address() when trying to migrate via mbind(MPOL_MF_MOVE) a non-anon region that spans multiple vmas. For anon-regions, we just fail to migrate any pages beyond the 1st vma in the range. This occurs because do_mbind() collects a list of pages to migrate by calling check_range(). check_range() walks the task's mm, spanning vmas as necessary, to collect the migratable pages into a list. Then, do_mbind() calls migrate_pages() passing the list of pages, a function to allocate new pages based on vma policy [new_vma_page()], and a pointer to the first vma of the range. For each page in the list, new_vma_page() calls page_address_in_vma() passing the page and the vma [first in range] to obtain the address to get for alloc_page_vma(). The page address is needed to get interleaving policy correct. If the pages in the list come from multiple vmas, eventually, new_page_address() will pass that page to page_address_in_vma() with the incorrect vma. For !PageAnon pages, this will result in a bug check in rmap.c:vma_address(). For anon pages, vma_address() will just return EFAULT and fail the migration. This patch modifies new_vma_page() to check the return value from page_address_in_vma(). If the return value is EFAULT, new_vma_page() searchs forward via vm_next for the vma that maps the page--i.e., that does not return EFAULT. This assumes that the pages in the list handed to migrate_pages() is in address order. This is currently case. The patch documents this assumption in a new comment block for new_vma_page(). If new_vma_page() cannot locate the vma mapping the page in a forward search in the mm, it will pass a NULL vma to alloc_page_vma(). This will result in the allocation using the task policy, if any, else system default policy. This situation is unlikely, but the patch documents this behavior with a comment. Note, this patch results in restarting from the first vma in a multi-vma range each time new_vma_page() is called. If this is not acceptable, we can make the vma argument a pointer, both in new_vma_page() and it's caller unmap_and_move() so that the value held by the loop in migrate_pages() always passes down the last vma in which a page was found. This will require changes to all new_page_t functions passed to migrate_pages(). Is this necessary? For this patch to work, we can't bug check in vma_address() for pages outside the argument vma. This patch removes the BUG_ON(). All other callers [besides new_vma_page()] already check the return status. Tested on x86_64, 4 node NUMA platform. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-15 08:59:10 +08:00
/*
* Allocate a new page for page migration based on vma policy.
* Start assuming that page is mapped by vma pointed to by @private.
* Search forward from there, if not. N.B., this assumes that the
* list of pages handed to migrate_pages()--which is how we get here--
* is in virtual address order.
*/
[PATCH] page migration: sys_move_pages(): support moving of individual pages move_pages() is used to move individual pages of a process. The function can be used to determine the location of pages and to move them onto the desired node. move_pages() returns status information for each page. long move_pages(pid, number_of_pages_to_move, addresses_of_pages[], nodes[] or NULL, status[], flags); The addresses of pages is an array of void * pointing to the pages to be moved. The nodes array contains the node numbers that the pages should be moved to. If a NULL is passed instead of an array then no pages are moved but the status array is updated. The status request may be used to determine the page state before issuing another move_pages() to move pages. The status array will contain the state of all individual page migration attempts when the function terminates. The status array is only valid if move_pages() completed successfullly. Possible page states in status[]: 0..MAX_NUMNODES The page is now on the indicated node. -ENOENT Page is not present -EACCES Page is mapped by multiple processes and can only be moved if MPOL_MF_MOVE_ALL is specified. -EPERM The page has been mlocked by a process/driver and cannot be moved. -EBUSY Page is busy and cannot be moved. Try again later. -EFAULT Invalid address (no VMA or zero page). -ENOMEM Unable to allocate memory on target node. -EIO Unable to write back page. The page must be written back in order to move it since the page is dirty and the filesystem does not provide a migration function that would allow the moving of dirty pages. -EINVAL A dirty page cannot be moved. The filesystem does not provide a migration function and has no ability to write back pages. The flags parameter indicates what types of pages to move: MPOL_MF_MOVE Move pages that are only mapped by the process. MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes. Requires sufficient capabilities. Possible return codes from move_pages() -ENOENT No pages found that would require moving. All pages are either already on the target node, not present, had an invalid address or could not be moved because they were mapped by multiple processes. -EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt to migrate pages in a kernel thread. -EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges. or an attempt to move a process belonging to another user. -EACCES One of the target nodes is not allowed by the current cpuset. -ENODEV One of the target nodes is not online. -ESRCH Process does not exist. -E2BIG Too many pages to move. -ENOMEM Not enough memory to allocate control array. -EFAULT Parameters could not be accessed. A test program for move_pages() may be found with the patches on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3 From: Christoph Lameter <clameter@sgi.com> Detailed results for sys_move_pages() Pass a pointer to an integer to get_new_page() that may be used to indicate where the completion status of a migration operation should be placed. This allows sys_move_pags() to report back exactly what happened to each page. Wish there would be a better way to do this. Looks a bit hacky. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Jes Sorensen <jes@trained-monkey.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andi Kleen <ak@muc.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:55 +08:00
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
{
struct vm_area_struct *vma = (struct vm_area_struct *)private;
Migration: find correct vma in new_vma_page() We hit the BUG_ON() in mm/rmap.c:vma_address() when trying to migrate via mbind(MPOL_MF_MOVE) a non-anon region that spans multiple vmas. For anon-regions, we just fail to migrate any pages beyond the 1st vma in the range. This occurs because do_mbind() collects a list of pages to migrate by calling check_range(). check_range() walks the task's mm, spanning vmas as necessary, to collect the migratable pages into a list. Then, do_mbind() calls migrate_pages() passing the list of pages, a function to allocate new pages based on vma policy [new_vma_page()], and a pointer to the first vma of the range. For each page in the list, new_vma_page() calls page_address_in_vma() passing the page and the vma [first in range] to obtain the address to get for alloc_page_vma(). The page address is needed to get interleaving policy correct. If the pages in the list come from multiple vmas, eventually, new_page_address() will pass that page to page_address_in_vma() with the incorrect vma. For !PageAnon pages, this will result in a bug check in rmap.c:vma_address(). For anon pages, vma_address() will just return EFAULT and fail the migration. This patch modifies new_vma_page() to check the return value from page_address_in_vma(). If the return value is EFAULT, new_vma_page() searchs forward via vm_next for the vma that maps the page--i.e., that does not return EFAULT. This assumes that the pages in the list handed to migrate_pages() is in address order. This is currently case. The patch documents this assumption in a new comment block for new_vma_page(). If new_vma_page() cannot locate the vma mapping the page in a forward search in the mm, it will pass a NULL vma to alloc_page_vma(). This will result in the allocation using the task policy, if any, else system default policy. This situation is unlikely, but the patch documents this behavior with a comment. Note, this patch results in restarting from the first vma in a multi-vma range each time new_vma_page() is called. If this is not acceptable, we can make the vma argument a pointer, both in new_vma_page() and it's caller unmap_and_move() so that the value held by the loop in migrate_pages() always passes down the last vma in which a page was found. This will require changes to all new_page_t functions passed to migrate_pages(). Is this necessary? For this patch to work, we can't bug check in vma_address() for pages outside the argument vma. This patch removes the BUG_ON(). All other callers [besides new_vma_page()] already check the return status. Tested on x86_64, 4 node NUMA platform. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-15 08:59:10 +08:00
unsigned long uninitialized_var(address);
Migration: find correct vma in new_vma_page() We hit the BUG_ON() in mm/rmap.c:vma_address() when trying to migrate via mbind(MPOL_MF_MOVE) a non-anon region that spans multiple vmas. For anon-regions, we just fail to migrate any pages beyond the 1st vma in the range. This occurs because do_mbind() collects a list of pages to migrate by calling check_range(). check_range() walks the task's mm, spanning vmas as necessary, to collect the migratable pages into a list. Then, do_mbind() calls migrate_pages() passing the list of pages, a function to allocate new pages based on vma policy [new_vma_page()], and a pointer to the first vma of the range. For each page in the list, new_vma_page() calls page_address_in_vma() passing the page and the vma [first in range] to obtain the address to get for alloc_page_vma(). The page address is needed to get interleaving policy correct. If the pages in the list come from multiple vmas, eventually, new_page_address() will pass that page to page_address_in_vma() with the incorrect vma. For !PageAnon pages, this will result in a bug check in rmap.c:vma_address(). For anon pages, vma_address() will just return EFAULT and fail the migration. This patch modifies new_vma_page() to check the return value from page_address_in_vma(). If the return value is EFAULT, new_vma_page() searchs forward via vm_next for the vma that maps the page--i.e., that does not return EFAULT. This assumes that the pages in the list handed to migrate_pages() is in address order. This is currently case. The patch documents this assumption in a new comment block for new_vma_page(). If new_vma_page() cannot locate the vma mapping the page in a forward search in the mm, it will pass a NULL vma to alloc_page_vma(). This will result in the allocation using the task policy, if any, else system default policy. This situation is unlikely, but the patch documents this behavior with a comment. Note, this patch results in restarting from the first vma in a multi-vma range each time new_vma_page() is called. If this is not acceptable, we can make the vma argument a pointer, both in new_vma_page() and it's caller unmap_and_move() so that the value held by the loop in migrate_pages() always passes down the last vma in which a page was found. This will require changes to all new_page_t functions passed to migrate_pages(). Is this necessary? For this patch to work, we can't bug check in vma_address() for pages outside the argument vma. This patch removes the BUG_ON(). All other callers [besides new_vma_page()] already check the return status. Tested on x86_64, 4 node NUMA platform. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-15 08:59:10 +08:00
while (vma) {
address = page_address_in_vma(page, vma);
if (address != -EFAULT)
break;
vma = vma->vm_next;
}
/*
* if !vma, alloc_page_vma() will use task or system default policy
*/
return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
}
#else
static void migrate_page_add(struct page *page, struct list_head *pagelist,
unsigned long flags)
{
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
}
int do_migrate_pages(struct mm_struct *mm,
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
{
return -ENOSYS;
}
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
{
return NULL;
}
#endif
static long do_mbind(unsigned long start, unsigned long len,
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
unsigned short mode, unsigned short mode_flags,
nodemask_t *nmask, unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
struct mempolicy *new;
unsigned long end;
int err;
LIST_HEAD(pagelist);
if (flags & ~(unsigned long)(MPOL_MF_STRICT |
MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
if (start & ~PAGE_MASK)
return -EINVAL;
if (mode == MPOL_DEFAULT)
flags &= ~MPOL_MF_STRICT;
len = (len + PAGE_SIZE - 1) & PAGE_MASK;
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
new = mpol_new(mode, mode_flags, nmask);
if (IS_ERR(new))
return PTR_ERR(new);
/*
* If we are using the default policy then operation
* on discontinuous address spaces is okay after all
*/
if (!new)
flags |= MPOL_MF_DISCONTIG_OK;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
start, start + len, mode, mode_flags,
nmask ? nodes_addr(*nmask)[0] : -1);
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
err = migrate_prep();
if (err)
goto mpol_out;
}
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
{
NODEMASK_SCRATCH(scratch);
if (scratch) {
down_write(&mm->mmap_sem);
task_lock(current);
err = mpol_set_nodemask(new, nmask, scratch);
task_unlock(current);
if (err)
up_write(&mm->mmap_sem);
} else
err = -ENOMEM;
NODEMASK_SCRATCH_FREE(scratch);
}
if (err)
goto mpol_out;
vma = check_range(mm, start, end, nmask,
flags | MPOL_MF_INVERT, &pagelist);
err = PTR_ERR(vma);
if (!IS_ERR(vma)) {
int nr_failed = 0;
mm: fix mbind vma merge problem Strangely, current mbind() doesn't merge vma with neighbor vma although it's possible. Unfortunately, many vma can reduce performance... This patch fixes it. reproduced program ---------------------------------------------------------------- #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; char buf[128]; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) perror("mmap "), exit(1); fprintf(stderr, "pid = %d \n" "addr = %p\n", getpid(), addr); /* make page populate */ memset(addr, 0, pagesize*3); /* first mbind */ err = mbind(addr+pagesize, pagesize, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) error("mbind1 "); /* second mbind */ err = mbind(addr, pagesize*3, MPOL_DEFAULT, NULL, 0, 0); if (err) error("mbind2 "); sprintf(buf, "cat /proc/%d/maps", getpid()); system(buf); return 0; } ---------------------------------------------------------------- result without this patch addr = 0x7fe26ef09000 [snip] 7fe26ef09000-7fe26ef0a000 rw-p 00000000 00:00 0 7fe26ef0a000-7fe26ef0b000 rw-p 00000000 00:00 0 7fe26ef0b000-7fe26ef0c000 rw-p 00000000 00:00 0 7fe26ef0c000-7fe26ef0d000 rw-p 00000000 00:00 0 => 0x7fe26ef09000-0x7fe26ef0c000 have three vmas. result with this patch addr = 0x7fc9ebc76000 [snip] 7fc9ebc76000-7fc9ebc7a000 rw-p 00000000 00:00 0 7fffbe690000-7fffbe6a5000 rw-p 00000000 00:00 0 [stack] => 0x7fc9ebc76000-0x7fc9ebc7a000 have only one vma. [minchan.kim@gmail.com: fix file offset passed to vma_merge()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 05:41:57 +08:00
err = mbind_range(mm, start, end, new);
if (!list_empty(&pagelist)) {
nr_failed = migrate_pages(&pagelist, new_vma_page,
ksm: memory hotremove migration only The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:33 +08:00
(unsigned long)vma, 0);
if (nr_failed)
putback_lru_pages(&pagelist);
}
if (!err && nr_failed && (flags & MPOL_MF_STRICT))
err = -EIO;
mbind(): fix leak of never putback pages If mbind() receives an invalid address, do_mbind leaks a page. The following test program detects this leak. This patch fixes it. migrate_efault.c ======================================= #include <numaif.h> #include <numa.h> #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static unsigned long pagesize; static void* make_hole_mapping(void) { void* addr; addr = mmap(NULL, pagesize*3, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0); if (addr == MAP_FAILED) return NULL; /* make page populate */ memset(addr, 0, pagesize*3); /* make memory hole */ munmap(addr+pagesize, pagesize); return addr; } int main(int argc, char** argv) { void* addr; int ch; int node; struct bitmask *nmask = numa_allocate_nodemask(); int err; int node_set = 0; while ((ch = getopt(argc, argv, "n:")) != -1){ switch (ch){ case 'n': node = strtol(optarg, NULL, 0); numa_bitmask_setbit(nmask, node); node_set = 1; break; default: ; } } argc -= optind; argv += optind; if (!node_set) numa_bitmask_setbit(nmask, 0); pagesize = getpagesize(); addr = make_hole_mapping(); err = mbind(addr, pagesize*3, MPOL_BIND, nmask->maskp, nmask->size, MPOL_MF_MOVE_ALL); if (err) perror("mbind "); return 0; } ======================================= Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-27 07:49:58 +08:00
} else
putback_lru_pages(&pagelist);
up_write(&mm->mmap_sem);
mpol_out:
mpol_put(new);
return err;
}
/*
* User space interface with variable sized bitmaps for nodelists.
*/
/* Copy a node mask from user space. */
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
unsigned long maxnode)
{
unsigned long k;
unsigned long nlongs;
unsigned long endmask;
--maxnode;
nodes_clear(*nodes);
if (maxnode == 0 || !nmask)
return 0;
if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
return -EINVAL;
nlongs = BITS_TO_LONGS(maxnode);
if ((maxnode % BITS_PER_LONG) == 0)
endmask = ~0UL;
else
endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
/* When the user specified more nodes than supported just check
if the non supported part is all zero. */
if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
if (nlongs > PAGE_SIZE/sizeof(long))
return -EINVAL;
for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
unsigned long t;
if (get_user(t, nmask + k))
return -EFAULT;
if (k == nlongs - 1) {
if (t & endmask)
return -EINVAL;
} else if (t)
return -EINVAL;
}
nlongs = BITS_TO_LONGS(MAX_NUMNODES);
endmask = ~0UL;
}
if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
return -EFAULT;
nodes_addr(*nodes)[nlongs-1] &= endmask;
return 0;
}
/* Copy a kernel node mask to user space */
static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
nodemask_t *nodes)
{
unsigned long copy = ALIGN(maxnode-1, 64) / 8;
const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
if (copy > nbytes) {
if (copy > PAGE_SIZE)
return -EINVAL;
if (clear_user((char __user *)mask + nbytes, copy - nbytes))
return -EFAULT;
copy = nbytes;
}
return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
}
SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
unsigned long, mode, unsigned long __user *, nmask,
unsigned long, maxnode, unsigned, flags)
{
nodemask_t nodes;
int err;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
unsigned short mode_flags;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
mode_flags = mode & MPOL_MODE_FLAGS;
mode &= ~MPOL_MODE_FLAGS;
if (mode >= MPOL_MAX)
return -EINVAL;
if ((mode_flags & MPOL_F_STATIC_NODES) &&
(mode_flags & MPOL_F_RELATIVE_NODES))
return -EINVAL;
err = get_nodes(&nodes, nmask, maxnode);
if (err)
return err;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
return do_mbind(start, len, mode, mode_flags, &nodes, flags);
}
/* Set the process memory policy */
SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
unsigned long, maxnode)
{
int err;
nodemask_t nodes;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
unsigned short flags;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
flags = mode & MPOL_MODE_FLAGS;
mode &= ~MPOL_MODE_FLAGS;
if ((unsigned int)mode >= MPOL_MAX)
return -EINVAL;
if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
return -EINVAL;
err = get_nodes(&nodes, nmask, maxnode);
if (err)
return err;
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
return do_set_mempolicy(mode, flags, &nodes);
}
SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
const unsigned long __user *, old_nodes,
const unsigned long __user *, new_nodes)
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
{
const struct cred *cred = current_cred(), *tcred;
struct mm_struct *mm = NULL;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
struct task_struct *task;
nodemask_t task_nodes;
int err;
nodemask_t *old;
nodemask_t *new;
NODEMASK_SCRATCH(scratch);
if (!scratch)
return -ENOMEM;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
old = &scratch->mask1;
new = &scratch->mask2;
err = get_nodes(old, old_nodes, maxnode);
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
if (err)
goto out;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
err = get_nodes(new, new_nodes, maxnode);
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
if (err)
goto out;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
/* Find the mm_struct */
read_lock(&tasklist_lock);
task = pid ? find_task_by_vpid(pid) : current;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
if (!task) {
read_unlock(&tasklist_lock);
err = -ESRCH;
goto out;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
}
mm = get_task_mm(task);
read_unlock(&tasklist_lock);
err = -EINVAL;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
if (!mm)
goto out;
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
/*
* Check if this process has the right to modify the specified
* process. The right exists if the process has administrative
* capabilities, superuser privileges or the same
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
* userid as the target process.
*/
rcu_read_lock();
tcred = __task_cred(task);
if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
cred->uid != tcred->suid && cred->uid != tcred->uid &&
!capable(CAP_SYS_NICE)) {
rcu_read_unlock();
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
err = -EPERM;
goto out;
}
rcu_read_unlock();
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
task_nodes = cpuset_mems_allowed(task);
/* Is the user allowed to access the target nodes? */
if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
err = -EPERM;
goto out;
}
if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
err = -EINVAL;
goto out;
}
err = security_task_movememory(task);
if (err)
goto out;
err = do_migrate_pages(mm, old, new,
capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
out:
if (mm)
mmput(mm);
NODEMASK_SCRATCH_FREE(scratch);
[PATCH] Swap Migration V5: sys_migrate_pages interface sys_migrate_pages implementation using swap based page migration This is the original API proposed by Ray Bryant in his posts during the first half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org. The intent of sys_migrate is to migrate memory of a process. A process may have migrated to another node. Memory was allocated optimally for the prior context. sys_migrate_pages allows to shift the memory to the new node. sys_migrate_pages is also useful if the processes available memory nodes have changed through cpuset operations to manually move the processes memory. Paul Jackson is working on an automated mechanism that will allow an automatic migration if the cpuset of a process is changed. However, a user may decide to manually control the migration. This implementation is put into the policy layer since it uses concepts and functions that are also needed for mbind and friends. The patch also provides a do_migrate_pages function that may be useful for cpusets to automatically move memory. sys_migrate_pages does not modify policies in contrast to Ray's implementation. The current code here is based on the swap based page migration capability and thus is not able to preserve the physical layout relative to it containing nodeset (which may be a cpuset). When direct page migration becomes available then the implementation needs to be changed to do a isomorphic move of pages between different nodesets. The current implementation simply evicts all pages in source nodeset that are not in the target nodeset. Patch supports ia64, i386 and x86_64. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:00:51 +08:00
return err;
}
/* Retrieve NUMA policy */
SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
unsigned long __user *, nmask, unsigned long, maxnode,
unsigned long, addr, unsigned long, flags)
{
int err;
int uninitialized_var(pval);
nodemask_t nodes;
if (nmask != NULL && maxnode < MAX_NUMNODES)
return -EINVAL;
err = do_get_mempolicy(&pval, &nodes, addr, flags);
if (err)
return err;
if (policy && put_user(pval, policy))
return -EFAULT;
if (nmask)
err = copy_nodes_to_user(nmask, maxnode, &nodes);
return err;
}
#ifdef CONFIG_COMPAT
asmlinkage long compat_sys_get_mempolicy(int __user *policy,
compat_ulong_t __user *nmask,
compat_ulong_t maxnode,
compat_ulong_t addr, compat_ulong_t flags)
{
long err;
unsigned long __user *nm = NULL;
unsigned long nr_bits, alloc_size;
DECLARE_BITMAP(bm, MAX_NUMNODES);
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
if (nmask)
nm = compat_alloc_user_space(alloc_size);
err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
if (!err && nmask) {
err = copy_from_user(bm, nm, alloc_size);
/* ensure entire bitmap is zeroed */
err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
err |= compat_put_bitmap(nmask, bm, nr_bits);
}
return err;
}
asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
compat_ulong_t maxnode)
{
long err = 0;
unsigned long __user *nm = NULL;
unsigned long nr_bits, alloc_size;
DECLARE_BITMAP(bm, MAX_NUMNODES);
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
if (nmask) {
err = compat_get_bitmap(bm, nmask, nr_bits);
nm = compat_alloc_user_space(alloc_size);
err |= copy_to_user(nm, bm, alloc_size);
}
if (err)
return -EFAULT;
return sys_set_mempolicy(mode, nm, nr_bits+1);
}
asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
compat_ulong_t mode, compat_ulong_t __user *nmask,
compat_ulong_t maxnode, compat_ulong_t flags)
{
long err = 0;
unsigned long __user *nm = NULL;
unsigned long nr_bits, alloc_size;
nodemask_t bm;
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
if (nmask) {
err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
nm = compat_alloc_user_space(alloc_size);
err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
}
if (err)
return -EFAULT;
return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
}
#endif
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
/*
* get_vma_policy(@task, @vma, @addr)
* @task - task for fallback if vma policy == default
* @vma - virtual memory area whose policy is sought
* @addr - address in @vma for shared policy lookup
*
* Returns effective policy for a VMA at specified address.
* Falls back to @task or system default policy, as necessary.
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* Current or other task's task mempolicy and non-shared vma policies
* are protected by the task's mmap_sem, which must be held for read by
* the caller.
* Shared policies [those marked as MPOL_F_SHARED] require an extra reference
* count--added by the get_policy() vm_op, as appropriate--to protect against
* freeing by another task. It is the caller's responsibility to free the
* extra reference for shared policies.
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
*/
static struct mempolicy *get_vma_policy(struct task_struct *task,
struct vm_area_struct *vma, unsigned long addr)
{
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
struct mempolicy *pol = task->mempolicy;
if (vma) {
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
if (vma->vm_ops && vma->vm_ops->get_policy) {
struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
addr);
if (vpol)
pol = vpol;
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
} else if (vma->vm_policy)
pol = vma->vm_policy;
}
if (!pol)
pol = &default_policy;
return pol;
}
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
/*
* Return a nodemask representing a mempolicy for filtering nodes for
* page allocation
*/
static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
{
/* Lower zones don't get a nodemask applied for MPOL_BIND */
if (unlikely(policy->mode == MPOL_BIND) &&
gfp_zone(gfp) >= policy_zone &&
cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
return &policy->v.nodes;
return NULL;
}
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
/* Return a zonelist indicated by gfp for node representing a mempolicy */
static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
{
int nd = numa_node_id();
switch (policy->mode) {
case MPOL_PREFERRED:
if (!(policy->flags & MPOL_F_LOCAL))
nd = policy->v.preferred_node;
break;
case MPOL_BIND:
/*
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* Normally, MPOL_BIND allocations are node-local within the
* allowed nodemask. However, if __GFP_THISNODE is set and the
* current node isn't part of the mask, we use the zonelist for
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* the first node in the mask instead.
*/
if (unlikely(gfp & __GFP_THISNODE) &&
unlikely(!node_isset(nd, policy->v.nodes)))
nd = first_node(policy->v.nodes);
break;
default:
BUG();
}
return node_zonelist(nd, gfp);
}
/* Do dynamic interleaving for a process */
static unsigned interleave_nodes(struct mempolicy *policy)
{
unsigned nid, next;
struct task_struct *me = current;
nid = me->il_next;
next = next_node(nid, policy->v.nodes);
if (next >= MAX_NUMNODES)
next = first_node(policy->v.nodes);
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
if (next < MAX_NUMNODES)
me->il_next = next;
return nid;
}
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
/*
* Depending on the memory policy provide a node from which to allocate the
* next slab entry.
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* @policy must be protected by freeing by the caller. If @policy is
* the current task's mempolicy, this protection is implicit, as only the
* task can change it's policy. The system default policy requires no
* such protection.
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
*/
unsigned slab_node(struct mempolicy *policy)
{
if (!policy || policy->flags & MPOL_F_LOCAL)
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
return numa_node_id();
switch (policy->mode) {
case MPOL_PREFERRED:
/*
* handled MPOL_F_LOCAL above
*/
return policy->v.preferred_node;
[PATCH] GFP_THISNODE for the slab allocator This patch insures that the slab node lists in the NUMA case only contain slabs that belong to that specific node. All slab allocations use GFP_THISNODE when calling into the page allocator. If an allocation fails then we fall back in the slab allocator according to the zonelists appropriate for a certain context. This allows a replication of the behavior of alloc_pages and alloc_pages node in the slab layer. Currently allocations requested from the page allocator may be redirected via cpusets to other nodes. This results in remote pages on nodelists and that in turn results in interrupt latency issues during cache draining. Plus the slab is handing out memory as local when it is really remote. Fallback for slab memory allocations will occur within the slab allocator and not in the page allocator. This is necessary in order to be able to use the existing pools of objects on the nodes that we fall back to before adding more pages to a slab. The fallback function insures that the nodes we fall back to obey cpuset restrictions of the current context. We do not allocate objects from outside of the current cpuset context like before. Note that the implementation of locality constraints within the slab allocator requires importing logic from the page allocator. This is a mischmash that is not that great. Other allocators (uncached allocator, vmalloc, huge pages) face similar problems and have similar minimal reimplementations of the basic fallback logic of the page allocator. There is another way of implementing a slab by avoiding per node lists (see modular slab) but this wont work within the existing slab. V1->V2: - Use NUMA_BUILD to avoid #ifdef CONFIG_NUMA - Exploit GFP_THISNODE being 0 in the NON_NUMA case to avoid another #ifdef [akpm@osdl.org: build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 16:50:08 +08:00
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
case MPOL_INTERLEAVE:
return interleave_nodes(policy);
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:17 +08:00
case MPOL_BIND: {
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
/*
* Follow bind policy behavior and start allocation at the
* first node.
*/
struct zonelist *zonelist;
struct zone *zone;
enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
(void)first_zones_zonelist(zonelist, highest_zoneidx,
&policy->v.nodes,
&zone);
return zone->node;
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:17 +08:00
}
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
default:
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
BUG();
[PATCH] NUMA policies in the slab allocator V2 This patch fixes a regression in 2.6.14 against 2.6.13 that causes an imbalance in memory allocation during bootup. The slab allocator in 2.6.13 is not numa aware and simply calls alloc_pages(). This means that memory policies may control the behavior of alloc_pages(). During bootup the memory policy is set to MPOL_INTERLEAVE resulting in the spreading out of allocations during bootup over all available nodes. The slab allocator in 2.6.13 has only a single list of slab pages. As a result the per cpu slab cache and the spinlock controlled page lists may contain slab entries from off node memory. The slab allocator in 2.6.13 makes no effort to discern the locality of an entry on its lists. The NUMA aware slab allocator in 2.6.14 controls locality of the slab pages explicitly by calling alloc_pages_node(). The NUMA slab allocator manages slab entries by having lists of available slab pages for each node. The per cpu slab cache can only contain slab entries associated with the node local to the processor. This guarantees that the default allocation mode of the slab allocator always assigns local memory if available. Setting MPOL_INTERLEAVE as a default policy during bootup has no effect anymore. In 2.6.14 all node unspecific slab allocations are performed on the boot processor. This means that most of key data structures are allocated on one node. Most processors will have to refer to these structures making the boot node a potential bottleneck. This may reduce performance and cause unnecessary memory pressure on the boot node. This patch implements NUMA policies in the slab layer. There is the need of explicit application of NUMA memory policies by the slab allcator itself since the NUMA slab allocator does no longer let the page_allocator control locality. The check for policies is made directly at the beginning of __cache_alloc using current->mempolicy. The memory policy is already frequently checked by the page allocator (alloc_page_vma() and alloc_page_current()). So it is highly likely that the cacheline is present. For MPOL_INTERLEAVE kmalloc() will spread out each request to one node after another so that an equal distribution of allocations can be obtained during bootup. It is not possible to push the policy check to lower layers of the NUMA slab allocator since the per cpu caches are now only containing slab entries from the current node. If the policy says that the local node is not to be preferred or forbidden then there is no point in checking the slab cache or local list of slab pages. The allocation better be directed immediately to the lists containing slab entries for the allowed set of nodes. This way of applying policy also fixes another strange behavior in 2.6.13. alloc_pages() is controlled by the memory allocation policy of the current process. It could therefore be that one process is running with MPOL_INTERLEAVE and would f.e. obtain a new page following that policy since no slab entries are in the lists anymore. A page can typically be used for multiple slab entries but lets say that the current process is only using one. The other entries are then added to the slab lists. These are now non local entries in the slab lists despite of the possible availability of local pages that would provide faster access and increase the performance of the application. Another process without MPOL_INTERLEAVE may now run and expect a local slab entry from kmalloc(). However, there are still these free slab entries from the off node page obtained from the other process via MPOL_INTERLEAVE in the cache. The process will then get an off node slab entry although other slab entries may be available that are local to that process. This means that the policy if one process may contaminate the locality of the slab caches for other processes. This patch in effect insures that a per process policy is followed for the allocation of slab entries and that there cannot be a memory policy influence from one process to another. A process with default policy will always get a local slab entry if one is available. And the process using memory policies will get its memory arranged as requested. Off-node slab allocation will require the use of spinlocks and will make the use of per cpu caches not possible. A process using memory policies to redirect allocations offnode will have to cope with additional lock overhead in addition to the latency added by the need to access a remote slab entry. Changes V1->V2 - Remove #ifdef CONFIG_NUMA by moving forward declaration into prior #ifdef CONFIG_NUMA section. - Give the function determining the node number to use a saner name. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 09:42:36 +08:00
}
}
/* Do static interleaving for a VMA with known offset. */
static unsigned offset_il_node(struct mempolicy *pol,
struct vm_area_struct *vma, unsigned long off)
{
unsigned nnodes = nodes_weight(pol->v.nodes);
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
unsigned target;
int c;
int nid = -1;
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
if (!nnodes)
return numa_node_id();
target = (unsigned int)off % nnodes;
c = 0;
do {
nid = next_node(nid, pol->v.nodes);
c++;
} while (c <= target);
return nid;
}
/* Determine a node number for interleave */
static inline unsigned interleave_nid(struct mempolicy *pol,
struct vm_area_struct *vma, unsigned long addr, int shift)
{
if (vma) {
unsigned long off;
/*
* for small pages, there is no difference between
* shift and PAGE_SHIFT, so the bit-shift is safe.
* for huge pages, since vm_pgoff is in units of small
* pages, we need to shift off the always 0 bits to get
* a useful offset.
*/
BUG_ON(shift < PAGE_SHIFT);
off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
off += (addr - vma->vm_start) >> shift;
return offset_il_node(pol, vma, off);
} else
return interleave_nodes(pol);
}
#ifdef CONFIG_HUGETLBFS
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
/*
* huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
* @vma = virtual memory area whose policy is sought
* @addr = address in @vma for shared policy lookup and interleave policy
* @gfp_flags = for requested zone
* @mpol = pointer to mempolicy pointer for reference counted mempolicy
* @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
*
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* Returns a zonelist suitable for a huge page allocation and a pointer
* to the struct mempolicy for conditional unref after allocation.
* If the effective policy is 'BIND, returns a pointer to the mempolicy's
* @nodemask for filtering the zonelist.
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
*
* Must be protected by get_mems_allowed()
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
*/
struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
gfp_t gfp_flags, struct mempolicy **mpol,
nodemask_t **nodemask)
{
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
struct zonelist *zl;
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
*mpol = get_vma_policy(current, vma, addr);
*nodemask = NULL; /* assume !MPOL_BIND */
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
zl = node_zonelist(interleave_nid(*mpol, vma, addr,
huge_page_shift(hstate_vma(vma))), gfp_flags);
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
} else {
zl = policy_zonelist(gfp_flags, *mpol);
if ((*mpol)->mode == MPOL_BIND)
*nodemask = &(*mpol)->v.nodes;
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
}
return zl;
}
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
/*
* init_nodemask_of_mempolicy
*
* If the current task's mempolicy is "default" [NULL], return 'false'
* to indicate default policy. Otherwise, extract the policy nodemask
* for 'bind' or 'interleave' policy into the argument nodemask, or
* initialize the argument nodemask to contain the single node for
* 'preferred' or 'local' policy and return 'true' to indicate presence
* of non-default mempolicy.
*
* We don't bother with reference counting the mempolicy [mpol_get/put]
* because the current task is examining it's own mempolicy and a task's
* mempolicy is only ever changed by the task itself.
*
* N.B., it is the caller's responsibility to free a returned nodemask.
*/
bool init_nodemask_of_mempolicy(nodemask_t *mask)
{
struct mempolicy *mempolicy;
int nid;
if (!(mask && current->mempolicy))
return false;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
task_lock(current);
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
mempolicy = current->mempolicy;
switch (mempolicy->mode) {
case MPOL_PREFERRED:
if (mempolicy->flags & MPOL_F_LOCAL)
nid = numa_node_id();
else
nid = mempolicy->v.preferred_node;
init_nodemask_of_node(mask, nid);
break;
case MPOL_BIND:
/* Fall through */
case MPOL_INTERLEAVE:
*mask = mempolicy->v.nodes;
break;
default:
BUG();
}
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
task_unlock(current);
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:21 +08:00
return true;
}
#endif
/*
* mempolicy_nodemask_intersects
*
* If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
* policy. Otherwise, check for intersection between mask and the policy
* nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
* policy, always return true since it may allocate elsewhere on fallback.
*
* Takes task_lock(tsk) to prevent freeing of its mempolicy.
*/
bool mempolicy_nodemask_intersects(struct task_struct *tsk,
const nodemask_t *mask)
{
struct mempolicy *mempolicy;
bool ret = true;
if (!mask)
return ret;
task_lock(tsk);
mempolicy = tsk->mempolicy;
if (!mempolicy)
goto out;
switch (mempolicy->mode) {
case MPOL_PREFERRED:
/*
* MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
* allocate from, they may fallback to other nodes when oom.
* Thus, it's possible for tsk to have allocated memory from
* nodes in mask.
*/
break;
case MPOL_BIND:
case MPOL_INTERLEAVE:
ret = nodes_intersects(mempolicy->v.nodes, *mask);
break;
default:
BUG();
}
out:
task_unlock(tsk);
return ret;
}
/* Allocate a page in interleaved policy.
Own path because it needs to do special accounting. */
static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
unsigned nid)
{
struct zonelist *zl;
struct page *page;
zl = node_zonelist(nid, gfp);
page = __alloc_pages(gfp, order, zl);
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:17 +08:00
if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
return page;
}
/**
* alloc_page_vma - Allocate a page for a VMA.
*
* @gfp:
* %GFP_USER user allocation.
* %GFP_KERNEL kernel allocations,
* %GFP_HIGHMEM highmem/user allocations,
* %GFP_FS allocation should not call back into a file system.
* %GFP_ATOMIC don't sleep.
*
* @vma: Pointer to VMA or NULL if not available.
* @addr: Virtual Address of the allocation. Must be inside the VMA.
*
* This function allocates a page from the kernel page pool and applies
* a NUMA policy associated with the VMA or the current process.
* When VMA is not NULL caller must hold down_read on the mmap_sem of the
* mm_struct of the VMA to prevent it from going away. Should be used for
* all allocations for pages that will be mapped into
* user space. Returns NULL when no page can be allocated.
*
* Should be called with the mm_sem of the vma hold.
*/
struct page *
alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
{
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
struct mempolicy *pol = get_vma_policy(current, vma, addr);
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
struct zonelist *zl;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
struct page *page;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
get_mems_allowed();
if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid;
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
mpol_cond_put(pol);
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
page = alloc_page_interleave(gfp, 0, nid);
put_mems_allowed();
return page;
}
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
zl = policy_zonelist(gfp, pol);
if (unlikely(mpol_needs_cond_ref(pol))) {
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
/*
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
* slow path: ref counted shared policy
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
*/
struct page *page = __alloc_pages_nodemask(gfp, 0,
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
zl, policy_nodemask(gfp, pol));
__mpol_put(pol);
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
put_mems_allowed();
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
return page;
}
/*
* fast path: default or task policy
*/
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
put_mems_allowed();
return page;
}
/**
* alloc_pages_current - Allocate pages.
*
* @gfp:
* %GFP_USER user allocation,
* %GFP_KERNEL kernel allocation,
* %GFP_HIGHMEM highmem allocation,
* %GFP_FS don't call back into a file system.
* %GFP_ATOMIC don't sleep.
* @order: Power of two of allocation size in pages. 0 is a single page.
*
* Allocate a page from the kernel page pool. When not in
* interrupt context and apply the current process NUMA policy.
* Returns NULL when no page can be allocated.
*
* Don't call cpuset_update_task_memory_state() unless
* 1) it's ok to take cpuset_sem (can WAIT), and
* 2) allocating for current task (not interrupt).
*/
struct page *alloc_pages_current(gfp_t gfp, unsigned order)
{
struct mempolicy *pol = current->mempolicy;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
struct page *page;
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
pol = &default_policy;
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
get_mems_allowed();
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
/*
* No reference counting needed for current->mempolicy
* nor system default_policy
*/
if (pol->mode == MPOL_INTERLEAVE)
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
else
page = __alloc_pages_nodemask(gfp, order,
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:08 +08:00
put_mems_allowed();
return page;
}
EXPORT_SYMBOL(alloc_pages_current);
[PATCH] cpuset: rebind vma mempolicies fix Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:59 +08:00
/*
* If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
[PATCH] cpuset: rebind vma mempolicies fix Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:59 +08:00
* rebinds the mempolicy its copying by calling mpol_rebind_policy()
* with the mems_allowed returned by cpuset_mems_allowed(). This
* keeps mempolicies cpuset relative after its cpuset moves. See
* further kernel/cpuset.c update_nodemask().
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
*
* current's mempolicy may be rebinded by the other task(the task that changes
* cpuset's mems), so we needn't do rebind work for current task.
[PATCH] cpuset: rebind vma mempolicies fix Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:59 +08:00
*/
/* Slow path of a mempolicy duplicate */
struct mempolicy *__mpol_dup(struct mempolicy *old)
{
struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
if (!new)
return ERR_PTR(-ENOMEM);
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
/* task's mempolicy is protected by alloc_lock */
if (old == current->mempolicy) {
task_lock(current);
*new = *old;
task_unlock(current);
} else
*new = *old;
rcu_read_lock();
[PATCH] cpuset: rebind vma mempolicies fix Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:59 +08:00
if (current_cpuset_is_being_rebound()) {
nodemask_t mems = cpuset_mems_allowed(current);
mempolicy: restructure rebinding-mempolicy functions Nick Piggin reported that the allocator may see an empty nodemask when changing cpuset's mems[1]. It happens only on the kernel that do not do atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG) But I found that there is also a problem on the kernel that can do atomic nodemask_t stores. The problem is that the allocator can't find a node to alloc page when changing cpuset's mems though there is a lot of free memory. The reason is like this: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom I can use the attached program reproduce it by the following step: # mkdir /dev/cpuset # mount -t cpuset cpuset /dev/cpuset # mkdir /dev/cpuset/1 # echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus # echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems # echo $$ > /dev/cpuset/1/tasks # numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> & <nr_tasks> = max(nr_cpus - 1, 1) # killall -s SIGUSR1 cpuset_mem_hog # ./change_mems.sh several hours later, oom will happen though there is a lot of free memory. This patchset fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. This patch: In order to fix no node to alloc memory, when we want to update mempolicy and mems_allowed, we expand the set of nodes first (set all the newly nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the mempolicy's rebind functions may breaks the expanding. So we restructure the mempolicy's rebind functions and split the rebind work to two steps, just like the update of cpuset's mems: The 1st step: expand the set of the mempolicy's nodes. The 2nd step: shrink the set of the mempolicy's nodes. It is used when there is no real lock to protect the mempolicy in the read-side. Otherwise we can do rebind work at once. In order to implement it, we define enum mpol_rebind_step { MPOL_REBIND_ONCE, MPOL_REBIND_STEP1, MPOL_REBIND_STEP2, MPOL_REBIND_NSTEP, }; If the mempolicy needn't be updated by two steps, we can pass MPOL_REBIND_ONCE to the rebind functions. Or we can pass MPOL_REBIND_STEP1 to do the first step of the rebind work and pass MPOL_REBIND_STEP2 to do the second step work. Besides that, it maybe long time between these two step and we have to release the lock that protects mempolicy and mems_allowed. If we hold the lock once again, we must check whether the current mempolicy is under the rebinding (the first step has been done) or not, because the task may alloc a new mempolicy when we don't hold the lock. So we defined the following flag to identify it: #define MPOL_F_REBINDING (1 << 2) The new functions will be used in the next patch. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:32:07 +08:00
if (new->flags & MPOL_F_REBINDING)
mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
else
mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
[PATCH] cpuset: rebind vma mempolicies fix Fix more of longstanding bug in cpuset/mempolicy interaction. NUMA mempolicies (mm/mempolicy.c) are constrained by the current tasks cpuset to just the Memory Nodes allowed by that cpuset. The kernel maintains internal state for each mempolicy, tracking what nodes are used for the MPOL_INTERLEAVE, MPOL_BIND or MPOL_PREFERRED policies. When a tasks cpuset memory placement changes, whether because the cpuset changed, or because the task was attached to a different cpuset, then the tasks mempolicies have to be rebound to the new cpuset placement, so as to preserve the cpuset-relative numbering of the nodes in that policy. An earlier fix handled such mempolicy rebinding for mempolicies attached to a task. This fix rebinds mempolicies attached to vma's (address ranges in a tasks address space.) Due to the need to hold the task->mm->mmap_sem semaphore while updating vma's, the rebinding of vma mempolicies has to be done when the cpuset memory placement is changed, at which time mmap_sem can be safely acquired. The tasks mempolicy is rebound later, when the task next attempts to allocate memory and notices that its task->cpuset_mems_generation is out-of-date with its cpusets mems_generation. Because walking the tasklist to find all tasks attached to a changing cpuset requires holding tasklist_lock, a spinlock, one cannot update the vma's of the affected tasks while doing the tasklist scan. In general, one cannot acquire a semaphore (which can sleep) while already holding a spinlock (such as tasklist_lock). So a list of mm references has to be built up during the tasklist scan, then the tasklist lock dropped, then for each mm, its mmap_sem acquired, and the vma's in that mm rebound. Once the tasklist lock is dropped, affected tasks may fork new tasks, before their mm's are rebound. A kernel global 'cpuset_being_rebound' is set to point to the cpuset being rebound (there can only be one; cpuset modifications are done under a global 'manage_sem' semaphore), and the mpol_copy code that is used to copy a tasks mempolicies during fork catches such forking tasks, and ensures their children are also rebound. When a task is moved to a different cpuset, it is easier, as there is only one task involved. It's mm->vma's are scanned, using the same mpol_rebind_policy() as used above. It may happen that both the mpol_copy hook and the update done via the tasklist scan update the same mm twice. This is ok, as the mempolicies of each vma in an mm keep track of what mems_allowed they are relative to, and safely no-op a second request to rebind to the same nodes. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:01:59 +08:00
}
rcu_read_unlock();
atomic_set(&new->refcnt, 1);
return new;
}
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
/*
* If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
* eliminate the * MPOL_F_* flags that require conditional ref and
* [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
* after return. Use the returned value.
*
* Allows use of a mempolicy for, e.g., multiple allocations with a single
* policy lookup, even if the policy needs/has extra ref on lookup.
* shmem_readahead needs this.
*/
struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
struct mempolicy *frompol)
{
if (!mpol_needs_cond_ref(frompol))
return frompol;
*tompol = *frompol;
tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
__mpol_put(frompol);
return tompol;
}
/* Slow path of a mempolicy comparison */
int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
{
if (!a || !b)
return 0;
if (a->mode != b->mode)
return 0;
if (a->flags != b->flags)
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
return 0;
if (mpol_store_user_nodemask(a))
if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
return 0;
switch (a->mode) {
case MPOL_BIND:
/* Fall through */
case MPOL_INTERLEAVE:
return nodes_equal(a->v.nodes, b->v.nodes);
case MPOL_PREFERRED:
return a->v.preferred_node == b->v.preferred_node &&
a->flags == b->flags;
default:
BUG();
return 0;
}
}
/*
* Shared memory backing store policy support.
*
* Remember policies even when nobody has shared memory mapped.
* The policies are kept in Red-Black tree linked from the inode.
* They are protected by the sp->lock spinlock, which should be held
* for any accesses to the tree.
*/
/* lookup first element intersecting start-end */
/* Caller holds sp->lock */
static struct sp_node *
sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
{
struct rb_node *n = sp->root.rb_node;
while (n) {
struct sp_node *p = rb_entry(n, struct sp_node, nd);
if (start >= p->end)
n = n->rb_right;
else if (end <= p->start)
n = n->rb_left;
else
break;
}
if (!n)
return NULL;
for (;;) {
struct sp_node *w = NULL;
struct rb_node *prev = rb_prev(n);
if (!prev)
break;
w = rb_entry(prev, struct sp_node, nd);
if (w->end <= start)
break;
n = prev;
}
return rb_entry(n, struct sp_node, nd);
}
/* Insert a new shared policy into the list. */
/* Caller holds sp->lock */
static void sp_insert(struct shared_policy *sp, struct sp_node *new)
{
struct rb_node **p = &sp->root.rb_node;
struct rb_node *parent = NULL;
struct sp_node *nd;
while (*p) {
parent = *p;
nd = rb_entry(parent, struct sp_node, nd);
if (new->start < nd->start)
p = &(*p)->rb_left;
else if (new->end > nd->end)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->nd, parent, p);
rb_insert_color(&new->nd, &sp->root);
pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
new->policy ? new->policy->mode : 0);
}
/* Find shared policy intersecting idx */
struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
{
struct mempolicy *pol = NULL;
struct sp_node *sn;
if (!sp->root.rb_node)
return NULL;
spin_lock(&sp->lock);
sn = sp_lookup(sp, idx, idx+1);
if (sn) {
mpol_get(sn->policy);
pol = sn->policy;
}
spin_unlock(&sp->lock);
return pol;
}
static void sp_delete(struct shared_policy *sp, struct sp_node *n)
{
pr_debug("deleting %lx-l%lx\n", n->start, n->end);
rb_erase(&n->nd, &sp->root);
mpol_put(n->policy);
kmem_cache_free(sn_cache, n);
}
static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
struct mempolicy *pol)
{
struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
if (!n)
return NULL;
n->start = start;
n->end = end;
mpol_get(pol);
mempolicy: mark shared policies for unref As part of yet another rework of mempolicy reference counting, we want to be able to identify shared policies efficiently, because they have an extra ref taken on lookup that needs to be removed when we're finished using the policy. Note: the extra ref is required because the policies are shared between tasks/processes and can be changed/freed by one task while another task is using them--e.g., for page allocation. Building on David Rientjes mempolicy "mode flags" enhancement, this patch indicates a "shared" policy by setting a new MPOL_F_SHARED flag in the flags member of the struct mempolicy added by David. MPOL_F_SHARED, and any future "internal mode flags" are reserved from bit zero up, as they will never be passed in the upper bits of the mode argument of a mempolicy API. I set the MPOL_F_SHARED flag when the policy is installed in the shared policy rb-tree. Don't need/want to clear the flag when removing from the tree as the mempolicy is freed [unref'd] internally to the sp_delete() function. However, a task could hold another reference on this mempolicy from a prior lookup. We need the MPOL_F_SHARED flag to stay put so that any tasks holding a ref will unref, eventually freeing, the mempolicy. A later patch in this series will introduce a function to conditionally unref [mpol_free] a policy. The MPOL_F_SHARED flag is one reason [currently the only reason] to unref/free a policy via the conditional free. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:13 +08:00
pol->flags |= MPOL_F_SHARED; /* for unref */
n->policy = pol;
return n;
}
/* Replace a policy range. */
static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
unsigned long end, struct sp_node *new)
{
struct sp_node *n, *new2 = NULL;
restart:
spin_lock(&sp->lock);
n = sp_lookup(sp, start, end);
/* Take care of old policies in the same range. */
while (n && n->start < end) {
struct rb_node *next = rb_next(&n->nd);
if (n->start >= start) {
if (n->end <= end)
sp_delete(sp, n);
else
n->start = end;
} else {
/* Old policy spanning whole new range. */
if (n->end > end) {
if (!new2) {
spin_unlock(&sp->lock);
new2 = sp_alloc(end, n->end, n->policy);
if (!new2)
return -ENOMEM;
goto restart;
}
n->end = start;
sp_insert(sp, new2);
new2 = NULL;
break;
} else
n->end = start;
}
if (!next)
break;
n = rb_entry(next, struct sp_node, nd);
}
if (new)
sp_insert(sp, new);
spin_unlock(&sp->lock);
if (new2) {
mpol_put(new2->policy);
kmem_cache_free(sn_cache, new2);
}
return 0;
}
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
/**
* mpol_shared_policy_init - initialize shared policy for inode
* @sp: pointer to inode shared policy
* @mpol: struct mempolicy to install
*
* Install non-NULL @mpol in inode's shared policy rb-tree.
* On entry, the current task has a reference on a non-NULL @mpol.
* This must be released on exit.
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
* This is called at get_inode() calls and we can use GFP_KERNEL.
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
*/
void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
{
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
int ret;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
sp->root = RB_ROOT; /* empty tree == default mempolicy */
spin_lock_init(&sp->lock);
if (mpol) {
struct vm_area_struct pvma;
struct mempolicy *new;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
NODEMASK_SCRATCH(scratch);
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
if (!scratch)
goto put_mpol;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
/* contextualize the tmpfs mount point mempolicy */
new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
if (IS_ERR(new))
goto free_scratch; /* no valid nodemask intersection */
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_lock(current);
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
task_unlock(current);
if (ret)
goto put_new;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
/* Create pseudo-vma that contains just the policy */
memset(&pvma, 0, sizeof(struct vm_area_struct));
pvma.vm_end = TASK_SIZE; /* policy covers entire file */
mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
put_new:
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mpol_put(new); /* drop initial ref */
free_scratch:
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
NODEMASK_SCRATCH_FREE(scratch);
put_mpol:
mpol_put(mpol); /* drop our incoming ref on sb mpol */
}
}
int mpol_set_shared_policy(struct shared_policy *info,
struct vm_area_struct *vma, struct mempolicy *npol)
{
int err;
struct sp_node *new = NULL;
unsigned long sz = vma_pages(vma);
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
vma->vm_pgoff,
sz, npol ? npol->mode : -1,
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
npol ? npol->flags : -1,
npol ? nodes_addr(npol->v.nodes)[0] : -1);
if (npol) {
new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
if (!new)
return -ENOMEM;
}
err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
if (err && new)
kmem_cache_free(sn_cache, new);
return err;
}
/* Free a backing policy store on inode delete. */
void mpol_free_shared_policy(struct shared_policy *p)
{
struct sp_node *n;
struct rb_node *next;
if (!p->root.rb_node)
return;
spin_lock(&p->lock);
next = rb_first(&p->root);
while (next) {
n = rb_entry(next, struct sp_node, nd);
next = rb_next(&n->nd);
rb_erase(&n->nd, &p->root);
mpol_put(n->policy);
kmem_cache_free(sn_cache, n);
}
spin_unlock(&p->lock);
}
/* assumes fs == KERNEL_DS */
void __init numa_policy_init(void)
{
nodemask_t interleave_nodes;
unsigned long largest = 0;
int nid, prefer = 0;
policy_cache = kmem_cache_create("numa_policy",
sizeof(struct mempolicy),
0, SLAB_PANIC, NULL);
sn_cache = kmem_cache_create("shared_policy_node",
sizeof(struct sp_node),
0, SLAB_PANIC, NULL);
/*
* Set interleaving policy for system init. Interleaving is only
* enabled across suitably sized nodes (default is >= 16MB), or
* fall back to the largest node if they're all smaller.
*/
nodes_clear(interleave_nodes);
for_each_node_state(nid, N_HIGH_MEMORY) {
unsigned long total_pages = node_present_pages(nid);
/* Preserve the largest node */
if (largest < total_pages) {
largest = total_pages;
prefer = nid;
}
/* Interleave this node? */
if ((total_pages << PAGE_SHIFT) >= (16 << 20))
node_set(nid, interleave_nodes);
}
/* All too small, use the largest */
if (unlikely(nodes_empty(interleave_nodes)))
node_set(prefer, interleave_nodes);
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
printk("numa_policy_init: interleaving failed\n");
}
/* Reset policy of current process to default */
void numa_default_policy(void)
{
mempolicy: support optional mode flags With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:25 +08:00
do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
}
[PATCH] cpusets: automatic numa mempolicy rebinding This patch automatically updates a tasks NUMA mempolicy when its cpuset memory placement changes. It does so within the context of the task, without any need to support low level external mempolicy manipulation. If a system is not using cpusets, or if running on a system with just the root (all-encompassing) cpuset, then this remap is a no-op. Only when a task is moved between cpusets, or a cpusets memory placement is changed does the following apply. Otherwise, the main routine below, rebind_policy() is not even called. When mixing cpusets, scheduler affinity, and NUMA mempolicies, the essential role of cpusets is to place jobs (several related tasks) on a set of CPUs and Memory Nodes, the essential role of sched_setaffinity is to manage a jobs processor placement within its allowed cpuset, and the essential role of NUMA mempolicy (mbind, set_mempolicy) is to manage a jobs memory placement within its allowed cpuset. However, CPU affinity and NUMA memory placement are managed within the kernel using absolute system wide numbering, not cpuset relative numbering. This is ok until a job is migrated to a different cpuset, or what's the same, a jobs cpuset is moved to different CPUs and Memory Nodes. Then the CPU affinity and NUMA memory placement of the tasks in the job need to be updated, to preserve their cpuset-relative position. This can be done for CPU affinity using sched_setaffinity() from user code, as one task can modify anothers CPU affinity. This cannot be done from an external task for NUMA memory placement, as that can only be modified in the context of the task using it. However, it easy enough to remap a tasks NUMA mempolicy automatically when a task is migrated, using the existing cpuset mechanism to trigger a refresh of a tasks memory placement after its cpuset has changed. All that is needed is the old and new nodemask, and notice to the task that it needs to rebind its mempolicy. The tasks mems_allowed has the old mask, the tasks cpuset has the new mask, and the existing cpuset_update_current_mems_allowed() mechanism provides the notice. The bitmap/cpumask/nodemask remap operators provide the cpuset relative calculations. This patch leaves open a couple of issues: 1) Updating vma and shmfs/tmpfs/hugetlbfs memory policies: These mempolicies may reference nodes outside of those allowed to the current task by its cpuset. Tasks are migrated as part of jobs, which reside on what might be several cpusets in a subtree. When such a job is migrated, all NUMA memory policy references to nodes within that cpuset subtree should be translated, and references to any nodes outside that subtree should be left untouched. A future patch will provide the cpuset mechanism needed to mark such subtrees. With that patch, we will be able to correctly migrate these other memory policies across a job migration. 2) Updating cpuset, affinity and memory policies in user space: This is harder. Any placement state stored in user space using system-wide numbering will be invalidated across a migration. More work will be required to provide user code with a migration-safe means to manage its cpuset relative placement, while preserving the current API's that pass system wide numbers, not cpuset relative numbers across the kernel-user boundary. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-31 07:02:36 +08:00
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
/*
* Parse and format mempolicy from/to strings
*/
/*
* "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
* Used only for mpol_parse_str() and mpol_to_str()
*/
#define MPOL_LOCAL MPOL_MAX
static const char * const policy_modes[] =
{
[MPOL_DEFAULT] = "default",
[MPOL_PREFERRED] = "prefer",
[MPOL_BIND] = "bind",
[MPOL_INTERLEAVE] = "interleave",
[MPOL_LOCAL] = "local"
};
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
#ifdef CONFIG_TMPFS
/**
* mpol_parse_str - parse string to mempolicy
* @str: string containing mempolicy to parse
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
* @mpol: pointer to struct mempolicy pointer, returned on success.
* @no_context: flag whether to "contextualize" the mempolicy
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
*
* Format of input:
* <mode>[=<flags>][:<nodelist>]
*
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
* if @no_context is true, save the input nodemask in w.user_nodemask in
* the returned mempolicy. This will be used to "clone" the mempolicy in
* a specific context [cpuset] at a later time. Used to parse tmpfs mpol
* mount option. Note that if 'static' or 'relative' mode flags were
* specified, the input nodemask will already have been saved. Saving
* it again is redundant, but safe.
*
* On success, returns 0, else 1
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
*/
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
{
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
struct mempolicy *new = NULL;
unsigned short mode;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
unsigned short uninitialized_var(mode_flags);
nodemask_t nodes;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
char *nodelist = strchr(str, ':');
char *flags = strchr(str, '=');
int err = 1;
if (nodelist) {
/* NUL-terminate mode or flags string */
*nodelist++ = '\0';
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
if (nodelist_parse(nodelist, nodes))
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
goto out;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
goto out;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
} else
nodes_clear(nodes);
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
if (flags)
*flags++ = '\0'; /* terminate mode string */
for (mode = 0; mode <= MPOL_LOCAL; mode++) {
if (!strcmp(str, policy_modes[mode])) {
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
break;
}
}
if (mode > MPOL_LOCAL)
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
goto out;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
switch (mode) {
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
case MPOL_PREFERRED:
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
/*
* Insist on a nodelist of one node only
*/
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
if (nodelist) {
char *rest = nodelist;
while (isdigit(*rest))
rest++;
if (*rest)
goto out;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
}
break;
case MPOL_INTERLEAVE:
/*
* Default to online nodes with memory if no nodelist
*/
if (!nodelist)
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
nodes = node_states[N_HIGH_MEMORY];
break;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
case MPOL_LOCAL:
/*
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
* Don't allow a nodelist; mpol_new() checks flags
*/
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
if (nodelist)
goto out;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mode = MPOL_PREFERRED;
break;
case MPOL_DEFAULT:
/*
* Insist on a empty nodelist
*/
if (!nodelist)
err = 0;
goto out;
case MPOL_BIND:
/*
* Insist on a nodelist
*/
if (!nodelist)
goto out;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
}
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mode_flags = 0;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
if (flags) {
/*
* Currently, we only support two mutually exclusive
* mode flags.
*/
if (!strcmp(flags, "static"))
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mode_flags |= MPOL_F_STATIC_NODES;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
else if (!strcmp(flags, "relative"))
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mode_flags |= MPOL_F_RELATIVE_NODES;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
else
goto out;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
}
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
new = mpol_new(mode, mode_flags, &nodes);
if (IS_ERR(new))
goto out;
if (no_context) {
/* save for contextualization */
new->w.user_nodemask = nodes;
} else {
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
int ret;
mm: make set_mempolicy(MPOL_INTERLEAV) N_HIGH_MEMORY aware At first, init_task's mems_allowed is initialized as this. init_task->mems_allowed == node_state[N_POSSIBLE] And cpuset's top_cpuset mask is initialized as this top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY] Before 2.6.29: policy's mems_allowed is initialized as this. 1. update tasks->mems_allowed by its cpuset->mems_allowed. 2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask) Updating task's mems_allowed in reference to top_cpuset's one. cpuset's mems_allowed is aware of N_HIGH_MEMORY, always. In 2.6.30: After commit 58568d2a8215cb6f55caf2332017d7bdff954e1c ("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed is initialized as this. 1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask) Here, if task is in top_cpuset, task->mems_allowed is not updated from init's one. Assume user excutes command as #numactrl --interleave=all ,.... policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK) Then, policy's mems_allowd can includes a possible node, which has no pgdat. MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this directly. NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL Then, what's we need is making policy->mems_allowed be aware of N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will be on statck. Because I know cpumask has a new interface of CPUMASK_ALLOC(), I added it to node. This patch stands on old behavior. But I feel this fix itself is just a Band-Aid. But to do fundametal fix, we have to take care of memory hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I think.) mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask should be includes only online nodes. In old behavior, this is guaranteed by frequent reference to cpuset's code. Now, most of them are removed and mempolicy has to check it by itself. To do check, a few nodemask_t will be used for calculating nodemask. But, size of nodemask_t can be big and it's not good to allocate them on stack. Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area. NODEMASK_ALLOC/FREE shoudl be there. [akpm@linux-foundation.org: cleanups & tweaks] Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-07 06:07:33 +08:00
NODEMASK_SCRATCH(scratch);
if (scratch) {
task_lock(current);
ret = mpol_set_nodemask(new, &nodes, scratch);
task_unlock(current);
} else
ret = -ENOMEM;
NODEMASK_SCRATCH_FREE(scratch);
if (ret) {
mpol_put(new);
goto out;
cpuset,mm: update tasks' mems_allowed in time Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-17 06:31:49 +08:00
}
}
err = 0;
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
out:
/* Restore string for error message */
if (nodelist)
*--nodelist = ':';
if (flags)
*--flags = '=';
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
if (!err)
*mpol = new;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
return err;
}
#endif /* CONFIG_TMPFS */
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
/**
* mpol_to_str - format a mempolicy structure for printing
* @buffer: to contain formatted mempolicy string
* @maxlen: length of @buffer
* @pol: pointer to mempolicy to be formatted
* @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
*
* Convert a mempolicy into a string.
* Returns the number of characters in buffer (if positive)
* or an error (negative)
*/
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
{
char *p = buffer;
int l;
nodemask_t nodes;
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
unsigned short mode;
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
unsigned short flags = pol ? pol->flags : 0;
mempolicy: clean-up mpol-to-str() mempolicy formatting mpol-to-str() formats memory policies into printable strings. Currently this is only used to display "numa_maps". A subsequent patch will use mpol_to_str() for formatting tmpfs [shmem] mpol mount options, allowing us to remove essentially duplicate code in mm/shmem.c. This patch cleans up mpol_to_str() generally and in preparation for that patch. 1) show_numa_maps() is not checking the return code from mpol_to_str(). There's not a lot we can do in this context if mpol_to_str() did return the error [insufficient space in buffer]. Proposed "solution": just check, under DEBUG_VM, that callers are providing sufficient buffer space for the policy, flags, and a few nodes. This way, we'll get some display. show_numa_maps() is providing a 50-byte buffer, so it won't trip this check. 50-bytes should be sufficient unless one has a large number of nodes in a very sparse nodemask. 2) The display of the new mode flags ["static" & "relative"] was set up to display multiple flags, separated by a "bar" '|'. However, this support is incomplete--e.g., need_bar was never incremented; and currently, these two flags are mutually exclusive. So remove the "bar" support, for now, and only display one flag. 3) Use snprint() to format flags, so as not to overflow the buffer. Not that it's ever happed, AFAIK. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:22 +08:00
/*
* Sanity check: room for longest mode, flag and some nodes
*/
VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
mempolicy: use MPOL_PREFERRED for system-wide default policy Currently, when one specifies MPOL_DEFAULT via a NUMA memory policy API [set_mempolicy(), mbind() and internal versions], the kernel simply installs a NULL struct mempolicy pointer in the appropriate context: task policy, vma policy, or shared policy. This causes any use of that policy to "fall back" to the next most specific policy scope. The only use of MPOL_DEFAULT to mean "local allocation" is in the system default policy. This requires extra checks/cases for MPOL_DEFAULT in many mempolicy.c functions. There is another, "preferred" way to specify local allocation via the APIs. That is using the MPOL_PREFERRED policy mode with an empty nodemask. Internally, the empty nodemask gets converted to a preferred_node id of '-1'. All internal usage of MPOL_PREFERRED will convert the '-1' to the id of the node local to the cpu where the allocation occurs. System default policy, except during boot, is hard-coded to "local allocation". By using the MPOL_PREFERRED mode with a negative value of preferred node for system default policy, MPOL_DEFAULT will never occur in the 'policy' member of a struct mempolicy. Thus, we can remove all checks for MPOL_DEFAULT when converting policy to a node id/zonelist in the allocation paths. In slab_node() return local node id when policy pointer is NULL. No need to set a pol value to take the switch default. Replace switch default with BUG()--i.e., shouldn't happen. With this patch MPOL_DEFAULT is only used in the APIs, including internal calls to do_set_mempolicy() and in the display of policy in /proc/<pid>/numa_maps. It always means "fall back" to the the next most specific policy scope. This simplifies the description of memory policies quite a bit, with no visible change in behavior. get_mempolicy() continues to return MPOL_DEFAULT and an empty nodemask when the requested policy [task or vma/shared] is NULL. These are the values one would supply via set_mempolicy() or mbind() to achieve that condition--default behavior. This patch updates Documentation to reflect this change. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:18 +08:00
if (!pol || pol == &default_policy)
mode = MPOL_DEFAULT;
else
mode = pol->mode;
switch (mode) {
case MPOL_DEFAULT:
nodes_clear(nodes);
break;
case MPOL_PREFERRED:
nodes_clear(nodes);
if (flags & MPOL_F_LOCAL)
mempolicy: mPOL_PREFERRED cleanups for "local allocation" Here are a couple of "cleanups" for MPOL_PREFERRED behavior when v.preferred_node < 0 -- i.e., "local allocation": 1) [do_]get_mempolicy() calls the now renamed get_policy_nodemask() to fetch the nodemask associated with a policy. Currently, get_policy_nodemask() returns the set of nodes with memory, when the policy 'mode' is 'PREFERRED, and the preferred_node is < 0. Change to return an empty nodemask, as this is what was specified to achieve "local allocation". 2) When a task is moved into a [new] cpuset, mpol_rebind_policy() is called to adjust any task and vma policy nodes to be valid in the new cpuset. However, when the policy is MPOL_PREFERRED, and the preferred_node is <0, no rebind is necessary. The "local allocation" indication is valid in any cpuset. Existing code will "do the right thing" because node_remap() will just return the argument node when it is outside of the valid range of node ids. However, I think it is clearer and cleaner to skip the remap explicitly in this case. 3) mpol_to_str() produces a printable, "human readable" string from a struct mempolicy. For MPOL_PREFERRED with preferred_node <0, show "local", as this indicates local allocation, as the task migrates among nodes. Note that this matches the usage of "local allocation" in libnuma() and numactl. Without this change, I believe that node_set() [via set_bit()] will set bit 31, resulting in a misleading display. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:20 +08:00
mode = MPOL_LOCAL; /* pseudo-policy */
else
node_set(pol->v.preferred_node, nodes);
break;
case MPOL_BIND:
/* Fall through */
case MPOL_INTERLEAVE:
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
if (no_context)
nodes = pol->w.user_nodemask;
else
nodes = pol->v.nodes;
break;
default:
BUG();
}
l = strlen(policy_modes[mode]);
mempolicy: mPOL_PREFERRED cleanups for "local allocation" Here are a couple of "cleanups" for MPOL_PREFERRED behavior when v.preferred_node < 0 -- i.e., "local allocation": 1) [do_]get_mempolicy() calls the now renamed get_policy_nodemask() to fetch the nodemask associated with a policy. Currently, get_policy_nodemask() returns the set of nodes with memory, when the policy 'mode' is 'PREFERRED, and the preferred_node is < 0. Change to return an empty nodemask, as this is what was specified to achieve "local allocation". 2) When a task is moved into a [new] cpuset, mpol_rebind_policy() is called to adjust any task and vma policy nodes to be valid in the new cpuset. However, when the policy is MPOL_PREFERRED, and the preferred_node is <0, no rebind is necessary. The "local allocation" indication is valid in any cpuset. Existing code will "do the right thing" because node_remap() will just return the argument node when it is outside of the valid range of node ids. However, I think it is clearer and cleaner to skip the remap explicitly in this case. 3) mpol_to_str() produces a printable, "human readable" string from a struct mempolicy. For MPOL_PREFERRED with preferred_node <0, show "local", as this indicates local allocation, as the task migrates among nodes. Note that this matches the usage of "local allocation" in libnuma() and numactl. Without this change, I believe that node_set() [via set_bit()] will set bit 31, resulting in a misleading display. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:20 +08:00
if (buffer + maxlen < p + l + 1)
return -ENOSPC;
strcpy(p, policy_modes[mode]);
p += l;
if (flags & MPOL_MODE_FLAGS) {
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
if (buffer + maxlen < p + 2)
return -ENOSPC;
*p++ = '=';
mempolicy: clean-up mpol-to-str() mempolicy formatting mpol-to-str() formats memory policies into printable strings. Currently this is only used to display "numa_maps". A subsequent patch will use mpol_to_str() for formatting tmpfs [shmem] mpol mount options, allowing us to remove essentially duplicate code in mm/shmem.c. This patch cleans up mpol_to_str() generally and in preparation for that patch. 1) show_numa_maps() is not checking the return code from mpol_to_str(). There's not a lot we can do in this context if mpol_to_str() did return the error [insufficient space in buffer]. Proposed "solution": just check, under DEBUG_VM, that callers are providing sufficient buffer space for the policy, flags, and a few nodes. This way, we'll get some display. show_numa_maps() is providing a 50-byte buffer, so it won't trip this check. 50-bytes should be sufficient unless one has a large number of nodes in a very sparse nodemask. 2) The display of the new mode flags ["static" & "relative"] was set up to display multiple flags, separated by a "bar" '|'. However, this support is incomplete--e.g., need_bar was never incremented; and currently, these two flags are mutually exclusive. So remove the "bar" support, for now, and only display one flag. 3) Use snprint() to format flags, so as not to overflow the buffer. Not that it's ever happed, AFAIK. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:22 +08:00
/*
* Currently, the only defined flags are mutually exclusive
*/
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
if (flags & MPOL_F_STATIC_NODES)
mempolicy: clean-up mpol-to-str() mempolicy formatting mpol-to-str() formats memory policies into printable strings. Currently this is only used to display "numa_maps". A subsequent patch will use mpol_to_str() for formatting tmpfs [shmem] mpol mount options, allowing us to remove essentially duplicate code in mm/shmem.c. This patch cleans up mpol_to_str() generally and in preparation for that patch. 1) show_numa_maps() is not checking the return code from mpol_to_str(). There's not a lot we can do in this context if mpol_to_str() did return the error [insufficient space in buffer]. Proposed "solution": just check, under DEBUG_VM, that callers are providing sufficient buffer space for the policy, flags, and a few nodes. This way, we'll get some display. show_numa_maps() is providing a 50-byte buffer, so it won't trip this check. 50-bytes should be sufficient unless one has a large number of nodes in a very sparse nodemask. 2) The display of the new mode flags ["static" & "relative"] was set up to display multiple flags, separated by a "bar" '|'. However, this support is incomplete--e.g., need_bar was never incremented; and currently, these two flags are mutually exclusive. So remove the "bar" support, for now, and only display one flag. 3) Use snprint() to format flags, so as not to overflow the buffer. Not that it's ever happed, AFAIK. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:22 +08:00
p += snprintf(p, buffer + maxlen - p, "static");
else if (flags & MPOL_F_RELATIVE_NODES)
p += snprintf(p, buffer + maxlen - p, "relative");
mempolicy: add MPOL_F_STATIC_NODES flag Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:12:27 +08:00
}
if (!nodes_empty(nodes)) {
if (buffer + maxlen < p + 2)
return -ENOSPC;
mempolicy: rework shmem mpol parsing and display mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:23 +08:00
*p++ = ':';
p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
}
return p - buffer;
}
struct numa_maps {
unsigned long pages;
unsigned long anon;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
unsigned long active;
unsigned long writeback;
unsigned long mapcount_max;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
unsigned long dirty;
unsigned long swapcache;
unsigned long node[MAX_NUMNODES];
};
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
static void gather_stats(struct page *page, void *private, int pte_dirty)
{
struct numa_maps *md = private;
int count = page_mapcount(page);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
md->pages++;
if (pte_dirty || PageDirty(page))
md->dirty++;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (PageSwapCache(page))
md->swapcache++;
Unevictable LRU Infrastructure When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
if (PageActive(page) || PageUnevictable(page))
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
md->active++;
if (PageWriteback(page))
md->writeback++;
if (PageAnon(page))
md->anon++;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (count > md->mapcount_max)
md->mapcount_max = count;
md->node[page_to_nid(page)]++;
}
#ifdef CONFIG_HUGETLB_PAGE
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
static void check_huge_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct numa_maps *md)
{
unsigned long addr;
struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
for (addr = start; addr < end; addr += sz) {
pte_t *ptep = huge_pte_offset(vma->vm_mm,
addr & huge_page_mask(h));
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
pte_t pte;
if (!ptep)
continue;
pte = *ptep;
if (pte_none(pte))
continue;
page = pte_page(pte);
if (!page)
continue;
gather_stats(page, md, pte_dirty(*ptep));
}
}
#else
static inline void check_huge_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct numa_maps *md)
{
}
#endif
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
mempolicy: mPOL_PREFERRED cleanups for "local allocation" Here are a couple of "cleanups" for MPOL_PREFERRED behavior when v.preferred_node < 0 -- i.e., "local allocation": 1) [do_]get_mempolicy() calls the now renamed get_policy_nodemask() to fetch the nodemask associated with a policy. Currently, get_policy_nodemask() returns the set of nodes with memory, when the policy 'mode' is 'PREFERRED, and the preferred_node is < 0. Change to return an empty nodemask, as this is what was specified to achieve "local allocation". 2) When a task is moved into a [new] cpuset, mpol_rebind_policy() is called to adjust any task and vma policy nodes to be valid in the new cpuset. However, when the policy is MPOL_PREFERRED, and the preferred_node is <0, no rebind is necessary. The "local allocation" indication is valid in any cpuset. Existing code will "do the right thing" because node_remap() will just return the argument node when it is outside of the valid range of node ids. However, I think it is clearer and cleaner to skip the remap explicitly in this case. 3) mpol_to_str() produces a printable, "human readable" string from a struct mempolicy. For MPOL_PREFERRED with preferred_node <0, show "local", as this indicates local allocation, as the task migrates among nodes. Note that this matches the usage of "local allocation" in libnuma() and numactl. Without this change, I believe that node_set() [via set_bit()] will set bit 31, resulting in a misleading display. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:20 +08:00
/*
* Display pages allocated per node and memory policy via /proc.
*/
int show_numa_map(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *vma = v;
struct numa_maps *md;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
struct mempolicy *pol;
int n;
char buffer[50];
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (!mm)
return 0;
md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
if (!md)
return 0;
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-19 13:46:47 +08:00
pol = get_vma_policy(priv->task, vma, vma->vm_start);
mempolicy: use struct mempolicy pointer in shmem_sb_info This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:26 +08:00
mpol_to_str(buffer, sizeof(buffer), pol, 0);
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:16 +08:00
mpol_cond_put(pol);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
if (file) {
seq_printf(m, " file=");
seq_path(m, &file->f_path, "\n\t= ");
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
seq_printf(m, " heap");
} else if (vma->vm_start <= mm->start_stack &&
vma->vm_end >= mm->start_stack) {
seq_printf(m, " stack");
}
if (is_vm_hugetlb_page(vma)) {
check_huge_range(vma, vma->vm_start, vma->vm_end, md);
seq_printf(m, " huge");
} else {
check_pgd_range(vma, vma->vm_start, vma->vm_end,
&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
}
if (!md->pages)
goto out;
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->anon)
seq_printf(m," anon=%lu",md->anon);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->dirty)
seq_printf(m," dirty=%lu",md->dirty);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->pages != md->anon && md->pages != md->dirty)
seq_printf(m, " mapped=%lu", md->pages);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->mapcount_max > 1)
seq_printf(m, " mapmax=%lu", md->mapcount_max);
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->swapcache)
seq_printf(m," swapcache=%lu", md->swapcache);
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
seq_printf(m," active=%lu", md->active);
if (md->writeback)
seq_printf(m," writeback=%lu", md->writeback);
for_each_node_state(n, N_HIGH_MEMORY)
[PATCH] numa_maps update Change the format of numa_maps to be more compact and contain additional information that is useful for managing and troubleshooting memory on a NUMA system. Numa_maps can now also support huge pages. Fixes: 1. More compact format. Only display fields if they contain additional information. 2. Always display information for all vmas. The old numa_maps did not display vma with no mapped entries. This was a bit confusing because page migration removes ptes for file backed vmas. After page migration a part of the vmas vanished. 3. Rename maxref to maxmap. This is the maximum mapcount of all the pages in a vma and may be used as an indicator as to how many processes may be using a certain vma. 4. Include the ability to scan over huge page vmas. New items shown: dirty Number of pages in a vma that have either the dirty bit set in the page_struct or in the pte. file=<filename> The file backing the pages if any stack Stack area heap Heap area huge Huge page area. The number of pages shows is the number of huge pages not the regular sized pages. swapcache Number of pages with swap references. Must be >0 in order to be shown. active Number of active pages. Only displayed if different from the number of pages mapped. writeback Number of pages under writeback. Only displayed if >0. Sample ouput of a process using huge pages: 00000000 default 2000000000000000 default file=/lib/ld-2.3.90.so mapped=13 mapmax=30 N0=13 2000000000044000 default file=/lib/ld-2.3.90.so anon=2 dirty=2 swapcache=2 N2=2 2000000000064000 default file=/lib/librt-2.3.90.so mapped=2 active=1 N1=1 N3=1 2000000000074000 default file=/lib/librt-2.3.90.so 2000000000080000 default file=/lib/librt-2.3.90.so anon=1 swapcache=1 N2=1 2000000000084000 default 2000000000088000 default file=/lib/libc-2.3.90.so mapped=52 mapmax=32 active=48 N0=52 20000000002bc000 default file=/lib/libc-2.3.90.so 20000000002c8000 default file=/lib/libc-2.3.90.so anon=3 dirty=2 swapcache=3 active=2 N1=1 N2=2 20000000002d4000 default anon=1 swapcache=1 N1=1 20000000002d8000 default file=/lib/libpthread-2.3.90.so mapped=8 mapmax=3 active=7 N2=2 N3=6 20000000002fc000 default file=/lib/libpthread-2.3.90.so 2000000000308000 default file=/lib/libpthread-2.3.90.so anon=1 dirty=1 swapcache=1 N1=1 200000000030c000 default anon=1 dirty=1 swapcache=1 N1=1 2000000000320000 default anon=1 dirty=1 N1=1 200000000071c000 default 2000000000720000 default anon=2 dirty=2 swapcache=1 N1=1 N2=1 2000000000f1c000 default 2000000000f20000 default anon=2 dirty=2 swapcache=1 active=1 N2=1 N3=1 200000000171c000 default 2000000001720000 default anon=1 dirty=1 swapcache=1 N1=1 2000000001b20000 default 2000000001b38000 default file=/lib/libgcc_s.so.1 mapped=2 N1=2 2000000001b48000 default file=/lib/libgcc_s.so.1 2000000001b54000 default file=/lib/libgcc_s.so.1 anon=1 dirty=1 active=0 N1=1 2000000001b58000 default file=/lib/libunwind.so.7.0.0 mapped=2 active=1 N1=2 2000000001b74000 default file=/lib/libunwind.so.7.0.0 2000000001b80000 default file=/lib/libunwind.so.7.0.0 2000000001b84000 default 4000000000000000 default file=/media/huge/test9 mapped=1 N1=1 6000000000000000 default file=/media/huge/test9 anon=1 dirty=1 active=0 N1=1 6000000000004000 default heap 607fffff7fffc000 default anon=1 dirty=1 swapcache=1 N2=1 607fffffff06c000 default stack anon=1 dirty=1 active=0 N1=1 8000000060000000 default file=/mnt/huge/test0 huge dirty=3 N1=3 8000000090000000 default file=/mnt/huge/test1 huge dirty=3 N0=1 N2=2 80000000c0000000 default file=/mnt/huge/test2 huge dirty=3 N1=1 N3=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-07 07:42:53 +08:00
if (md->node[n])
seq_printf(m, " N%d=%lu", n, md->node[n]);
out:
seq_putc(m, '\n');
kfree(md);
if (m->count < m->size)
m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
return 0;
}