OpenCloudOS-Kernel/fs/xfs/libxfs/xfs_ag.c

1127 lines
28 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2018 Red Hat, Inc.
* All rights reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_rmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_health.h"
#include "xfs_error.h"
#include "xfs_bmap.h"
#include "xfs_defer.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_trace.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
/*
* Passive reference counting access wrappers to the perag structures. If the
* per-ag structure is to be freed, the freeing code is responsible for cleaning
* up objects with passive references before freeing the structure. This is
* things like cached buffers.
*/
struct xfs_perag *
xfs_perag_get(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
rcu_read_lock();
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
if (pag) {
trace_xfs_perag_get(pag, _RET_IP_);
ASSERT(atomic_read(&pag->pag_ref) >= 0);
atomic_inc(&pag->pag_ref);
}
rcu_read_unlock();
return pag;
}
/*
* search from @first to find the next perag with the given tag set.
*/
struct xfs_perag *
xfs_perag_get_tag(
struct xfs_mount *mp,
xfs_agnumber_t first,
xfs: clean up incore inode walk functions This ambitious series aims to cleans up redundant inode walk code in xfs_icache.c, hide implementation details of the quotaoff dquot release code, and eliminates indirect function calls from incore inode walks. The first thing it does is to move all the code that quotaoff calls to release dquots from all incore inodes into xfs_icache.c. Next, it separates the goal of an inode walk from the actual radix tree tags that may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing. Finally, we split the speculative preallocation (blockgc) and quotaoff dquot release code paths into separate functions so that we can keep the implementations cohesive. Christoph suggested last cycle that we 'simply' change quotaoff not to allow deactivating quota entirely, but as these cleanups are to enable one major change in behavior (deferred inode inactivation) I do not want to add a second behavior change (quotaoff) as a dependency. To be blunt: Additional cleanups are not in scope for this series. Next, I made two observations about incore inode radix tree walks -- since there's a 1:1 mapping between the walk goal and the per-inode processing function passed in, we can use the goal to make a direct call to the processing function. Furthermore, the only caller to supply a nonzero iter_flags argument is quotaoff, and there's only one INEW flag. From that observation, I concluded that it's quite possible to remove two parameters from the xfs_inode_walk* function signatures -- the iter_flags, and the execute function pointer. The middle of the series moves the INEW functionality into the one piece (quotaoff) that wants it, and removes the indirect calls. The final observation is that the inode reclaim walk loop is now almost the same as xfs_inode_walk, so it's silly to maintain two copies. Merge the reclaim loop code into xfs_inode_walk. Lastly, refactor the per-ag radix tagging functions since there's duplicated code that can be consolidated. This series is a prerequisite for the next two patchsets, since deferred inode inactivation will add another inode radix tree tag and iterator function to xfs_inode_walk. v2: walk the vfs inode list when running quotaoff instead of the radix tree, then rework the (now completely internal) inode walk function to take the tag as the main parameter. v3: merge the reclaim loop into xfs_inode_walk, then consolidate the radix tree tagging functions v4: rebase to 5.13-rc4 v5: combine with the quotaoff patchset, reorder functions to minimize forward declarations, split inode walk goals from radix tree tags to reduce conceptual confusion v6: start moving the inode cache code towards the xfs_icwalk prefix -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7 xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi 9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56 XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8 FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4= =Rxdn -----END PGP SIGNATURE----- Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2 xfs: clean up incore inode walk functions This ambitious series aims to cleans up redundant inode walk code in xfs_icache.c, hide implementation details of the quotaoff dquot release code, and eliminates indirect function calls from incore inode walks. The first thing it does is to move all the code that quotaoff calls to release dquots from all incore inodes into xfs_icache.c. Next, it separates the goal of an inode walk from the actual radix tree tags that may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing. Finally, we split the speculative preallocation (blockgc) and quotaoff dquot release code paths into separate functions so that we can keep the implementations cohesive. Christoph suggested last cycle that we 'simply' change quotaoff not to allow deactivating quota entirely, but as these cleanups are to enable one major change in behavior (deferred inode inactivation) I do not want to add a second behavior change (quotaoff) as a dependency. To be blunt: Additional cleanups are not in scope for this series. Next, I made two observations about incore inode radix tree walks -- since there's a 1:1 mapping between the walk goal and the per-inode processing function passed in, we can use the goal to make a direct call to the processing function. Furthermore, the only caller to supply a nonzero iter_flags argument is quotaoff, and there's only one INEW flag. From that observation, I concluded that it's quite possible to remove two parameters from the xfs_inode_walk* function signatures -- the iter_flags, and the execute function pointer. The middle of the series moves the INEW functionality into the one piece (quotaoff) that wants it, and removes the indirect calls. The final observation is that the inode reclaim walk loop is now almost the same as xfs_inode_walk, so it's silly to maintain two copies. Merge the reclaim loop code into xfs_inode_walk. Lastly, refactor the per-ag radix tagging functions since there's duplicated code that can be consolidated. This series is a prerequisite for the next two patchsets, since deferred inode inactivation will add another inode radix tree tag and iterator function to xfs_inode_walk. v2: walk the vfs inode list when running quotaoff instead of the radix tree, then rework the (now completely internal) inode walk function to take the tag as the main parameter. v3: merge the reclaim loop into xfs_inode_walk, then consolidate the radix tree tagging functions v4: rebase to 5.13-rc4 v5: combine with the quotaoff patchset, reorder functions to minimize forward declarations, split inode walk goals from radix tree tags to reduce conceptual confusion v6: start moving the inode cache code towards the xfs_icwalk prefix * tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux: xfs: refactor per-AG inode tagging functions xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag xfs: pass struct xfs_eofblocks to the inode scan callback xfs: fix radix tree tag signs xfs: make the icwalk processing functions clean up the grab state xfs: clean up inode state flag tests in xfs_blockgc_igrab xfs: remove indirect calls from xfs_inode_walk{,_ag} xfs: remove iter_flags parameter from xfs_inode_walk_* xfs: move xfs_inew_wait call into xfs_dqrele_inode xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab xfs: pass the goal of the incore inode walk to xfs_inode_walk() xfs: rename xfs_inode_walk functions to xfs_icwalk xfs: move the inode walk functions further down xfs: detach inode dquots at the end of inactivation xfs: move the quotaoff dqrele inode walk into xfs_icache.c [djwong: added variable names to function declarations while fixing merge conflicts] Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-09 00:26:44 +08:00
unsigned int tag)
{
struct xfs_perag *pag;
int found;
rcu_read_lock();
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
(void **)&pag, first, 1, tag);
if (found <= 0) {
rcu_read_unlock();
return NULL;
}
trace_xfs_perag_get_tag(pag, _RET_IP_);
atomic_inc(&pag->pag_ref);
rcu_read_unlock();
return pag;
}
/* Get a passive reference to the given perag. */
struct xfs_perag *
xfs_perag_hold(
struct xfs_perag *pag)
{
ASSERT(atomic_read(&pag->pag_ref) > 0 ||
atomic_read(&pag->pag_active_ref) > 0);
trace_xfs_perag_hold(pag, _RET_IP_);
atomic_inc(&pag->pag_ref);
return pag;
}
void
xfs_perag_put(
struct xfs_perag *pag)
{
trace_xfs_perag_put(pag, _RET_IP_);
ASSERT(atomic_read(&pag->pag_ref) > 0);
atomic_dec(&pag->pag_ref);
}
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
/*
* Active references for perag structures. This is for short term access to the
* per ag structures for walking trees or accessing state. If an AG is being
* shrunk or is offline, then this will fail to find that AG and return NULL
* instead.
*/
struct xfs_perag *
xfs_perag_grab(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
rcu_read_lock();
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
if (pag) {
trace_xfs_perag_grab(pag, _RET_IP_);
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
if (!atomic_inc_not_zero(&pag->pag_active_ref))
pag = NULL;
}
rcu_read_unlock();
return pag;
}
/*
* search from @first to find the next perag with the given tag set.
*/
struct xfs_perag *
xfs_perag_grab_tag(
struct xfs_mount *mp,
xfs_agnumber_t first,
int tag)
{
struct xfs_perag *pag;
int found;
rcu_read_lock();
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
(void **)&pag, first, 1, tag);
if (found <= 0) {
rcu_read_unlock();
return NULL;
}
trace_xfs_perag_grab_tag(pag, _RET_IP_);
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
if (!atomic_inc_not_zero(&pag->pag_active_ref))
pag = NULL;
rcu_read_unlock();
return pag;
}
void
xfs_perag_rele(
struct xfs_perag *pag)
{
trace_xfs_perag_rele(pag, _RET_IP_);
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
if (atomic_dec_and_test(&pag->pag_active_ref))
wake_up(&pag->pag_active_wq);
}
/*
* xfs_initialize_perag_data
*
* Read in each per-ag structure so we can count up the number of
* allocated inodes, free inodes and used filesystem blocks as this
* information is no longer persistent in the superblock. Once we have
* this information, write it into the in-core superblock structure.
*/
int
xfs_initialize_perag_data(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
struct xfs_perag *pag;
struct xfs_sb *sbp = &mp->m_sb;
uint64_t ifree = 0;
uint64_t ialloc = 0;
uint64_t bfree = 0;
uint64_t bfreelst = 0;
uint64_t btree = 0;
uint64_t fdblocks;
int error = 0;
for (index = 0; index < agcount; index++) {
/*
* Read the AGF and AGI buffers to populate the per-ag
* structures for us.
*/
pag = xfs_perag_get(mp, index);
error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
if (!error)
error = xfs_ialloc_read_agi(pag, NULL, NULL);
if (error) {
xfs_perag_put(pag);
return error;
}
ifree += pag->pagi_freecount;
ialloc += pag->pagi_count;
bfree += pag->pagf_freeblks;
bfreelst += pag->pagf_flcount;
btree += pag->pagf_btreeblks;
xfs_perag_put(pag);
}
fdblocks = bfree + bfreelst + btree;
/*
* If the new summary counts are obviously incorrect, fail the
* mount operation because that implies the AGFs are also corrupt.
* Clear FS_COUNTERS so that we don't unmount with a dirty log, which
* will prevent xfs_repair from fixing anything.
*/
if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
error = -EFSCORRUPTED;
goto out;
}
/* Overwrite incore superblock counters with just-read data */
spin_lock(&mp->m_sb_lock);
sbp->sb_ifree = ifree;
sbp->sb_icount = ialloc;
sbp->sb_fdblocks = fdblocks;
spin_unlock(&mp->m_sb_lock);
xfs_reinit_percpu_counters(mp);
out:
xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
return error;
}
STATIC void
__xfs_free_perag(
struct rcu_head *head)
{
struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
kmem_free(pag);
}
/*
* Free up the per-ag resources associated with the mount structure.
*/
void
xfs_free_perag(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
xfs_agnumber_t agno;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
spin_lock(&mp->m_perag_lock);
pag = radix_tree_delete(&mp->m_perag_tree, agno);
spin_unlock(&mp->m_perag_lock);
ASSERT(pag);
XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
xfs: allow queued AG intents to drain before scrubbing When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-12 09:59:58 +08:00
xfs_defer_drain_free(&pag->pag_intents_drain);
cancel_delayed_work_sync(&pag->pag_blockgc_work);
xfs_buf_hash_destroy(pag);
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
/* drop the mount's active reference */
xfs_perag_rele(pag);
XFS_IS_CORRUPT(pag->pag_mount,
atomic_read(&pag->pag_active_ref) != 0);
call_rcu(&pag->rcu_head, __xfs_free_perag);
}
}
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 17:13:02 +08:00
/* Find the size of the AG, in blocks. */
static xfs_agblock_t
__xfs_ag_block_count(
struct xfs_mount *mp,
xfs_agnumber_t agno,
xfs_agnumber_t agcount,
xfs_rfsblock_t dblocks)
{
ASSERT(agno < agcount);
if (agno < agcount - 1)
return mp->m_sb.sb_agblocks;
return dblocks - (agno * mp->m_sb.sb_agblocks);
}
xfs_agblock_t
xfs_ag_block_count(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
mp->m_sb.sb_dblocks);
}
/* Calculate the first and last possible inode number in an AG. */
static void
__xfs_agino_range(
struct xfs_mount *mp,
xfs_agblock_t eoag,
xfs_agino_t *first,
xfs_agino_t *last)
{
xfs_agblock_t bno;
/*
* Calculate the first inode, which will be in the first
* cluster-aligned block after the AGFL.
*/
bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
*first = XFS_AGB_TO_AGINO(mp, bno);
/*
* Calculate the last inode, which will be at the end of the
* last (aligned) cluster that can be allocated in the AG.
*/
bno = round_down(eoag, M_IGEO(mp)->cluster_align);
*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
}
void
xfs_agino_range(
struct xfs_mount *mp,
xfs_agnumber_t agno,
xfs_agino_t *first,
xfs_agino_t *last)
{
return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
}
int
xfs_initialize_perag(
struct xfs_mount *mp,
xfs_agnumber_t agcount,
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 17:13:02 +08:00
xfs_rfsblock_t dblocks,
xfs_agnumber_t *maxagi)
{
struct xfs_perag *pag;
xfs_agnumber_t index;
xfs_agnumber_t first_initialised = NULLAGNUMBER;
int error;
/*
* Walk the current per-ag tree so we don't try to initialise AGs
* that already exist (growfs case). Allocate and insert all the
* AGs we don't find ready for initialisation.
*/
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
if (pag) {
xfs_perag_put(pag);
continue;
}
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
if (!pag) {
error = -ENOMEM;
goto out_unwind_new_pags;
}
pag->pag_agno = index;
pag->pag_mount = mp;
error = radix_tree_preload(GFP_NOFS);
if (error)
goto out_free_pag;
spin_lock(&mp->m_perag_lock);
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
WARN_ON_ONCE(1);
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
error = -EEXIST;
goto out_free_pag;
}
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
#ifdef __KERNEL__
/* Place kernel structure only init below this point. */
spin_lock_init(&pag->pag_ici_lock);
spin_lock_init(&pag->pagb_lock);
spin_lock_init(&pag->pag_state_lock);
INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
xfs: allow queued AG intents to drain before scrubbing When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-12 09:59:58 +08:00
xfs_defer_drain_init(&pag->pag_intents_drain);
init_waitqueue_head(&pag->pagb_wait);
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
init_waitqueue_head(&pag->pag_active_wq);
pag->pagb_count = 0;
pag->pagb_tree = RB_ROOT;
#endif /* __KERNEL__ */
error = xfs_buf_hash_init(pag);
if (error)
goto out_remove_pag;
xfs: active perag reference counting We need to be able to dynamically remove instantiated AGs from memory safely, either for shrinking the filesystem or paging AG state in and out of memory (e.g. supporting millions of AGs). This means we need to be able to safely exclude operations from accessing perags while dynamic removal is in progress. To do this, introduce the concept of active and passive references. Active references are required for high level operations that make use of an AG for a given operation (e.g. allocation) and pin the perag in memory for the duration of the operation that is operating on the perag (e.g. transaction scope). This means we can fail to get an active reference to an AG, hence callers of the new active reference API must be able to handle lookup failure gracefully. Passive references are used in low level code, where we might need to access the perag structure for the purposes of completing high level operations. For example, buffers need to use passive references because: - we need to be able to do metadata IO during operations like grow and shrink transactions where high level active references to the AG have already been blocked - buffers need to pin the perag until they are reclaimed from memory, something that high level code has no direct control over. - unused cached buffers should not prevent a shrink from being started. Hence we have active references that will form exclusion barriers for operations to be performed on an AG, and passive references that will prevent reclaim of the perag until all objects with passive references have been reclaimed themselves. This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API for active AG reference functionality. We also need to convert the for_each_perag*() iterators to use active references, which will start the process of converting high level code over to using active references. Conversion of non-iterator based code to active references will be done in followup patches. Note that the implementation using reference counting is really just a development vehicle for the API to ensure we don't have any leaks in the callers. Once we need to remove perag structures from memory dyanmically, we will need a much more robust per-ag state transition mechanism for preventing new references from being taken while we wait for existing references to drain before removal from memory can occur.... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 06:14:42 +08:00
/* Active ref owned by mount indicates AG is online. */
atomic_set(&pag->pag_active_ref, 1);
/* first new pag is fully initialized */
if (first_initialised == NULLAGNUMBER)
first_initialised = index;
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 17:13:02 +08:00
/*
* Pre-calculated geometry
*/
pag->block_count = __xfs_ag_block_count(mp, index, agcount,
dblocks);
pag->min_block = XFS_AGFL_BLOCK(mp);
__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
&pag->agino_max);
}
index = xfs_set_inode_alloc(mp, agcount);
if (maxagi)
*maxagi = index;
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
return 0;
out_remove_pag:
xfs: allow queued AG intents to drain before scrubbing When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-12 09:59:58 +08:00
xfs_defer_drain_free(&pag->pag_intents_drain);
radix_tree_delete(&mp->m_perag_tree, index);
out_free_pag:
kmem_free(pag);
out_unwind_new_pags:
/* unwind any prior newly initialized pags */
for (index = first_initialised; index < agcount; index++) {
pag = radix_tree_delete(&mp->m_perag_tree, index);
if (!pag)
break;
xfs_buf_hash_destroy(pag);
xfs: allow queued AG intents to drain before scrubbing When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-12 09:59:58 +08:00
xfs_defer_drain_free(&pag->pag_intents_drain);
kmem_free(pag);
}
return error;
}
static int
xfs_get_aghdr_buf(
struct xfs_mount *mp,
xfs_daddr_t blkno,
size_t numblks,
struct xfs_buf **bpp,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
int error;
error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
if (error)
return error;
bp->b_maps[0].bm_bn = blkno;
bp->b_ops = ops;
*bpp = bp;
return 0;
}
/*
* Generic btree root block init function
*/
static void
xfs_btroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
}
/* Finish initializing a free space btree. */
static void
xfs_freesp_init_recs(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_alloc_rec *arec;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
if (xfs_ag_contains_log(mp, id->agno)) {
struct xfs_alloc_rec *nrec;
xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
mp->m_sb.sb_logstart);
ASSERT(start >= mp->m_ag_prealloc_blocks);
if (start != mp->m_ag_prealloc_blocks) {
/*
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
* Modify first record to pad stripe align of log and
* bump the record count.
*/
arec->ar_blockcount = cpu_to_be32(start -
mp->m_ag_prealloc_blocks);
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
be16_add_cpu(&block->bb_numrecs, 1);
nrec = arec + 1;
/*
* Insert second record at start of internal log
* which then gets trimmed.
*/
nrec->ar_startblock = cpu_to_be32(
be32_to_cpu(arec->ar_startblock) +
be32_to_cpu(arec->ar_blockcount));
arec = nrec;
}
/*
* Change record start to after the internal log
*/
be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
}
/*
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
* Calculate the block count of this record; if it is nonzero,
* increment the record count.
*/
arec->ar_blockcount = cpu_to_be32(id->agsize -
be32_to_cpu(arec->ar_startblock));
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
if (arec->ar_blockcount)
be16_add_cpu(&block->bb_numrecs, 1);
}
/*
* Alloc btree root block init functions
*/
static void
xfs_bnoroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
xfs_freesp_init_recs(mp, bp, id);
}
static void
xfs_cntroot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
xfs: set bnobt/cntbt numrecs correctly when formatting new AGs Through generic/300, I discovered that mkfs.xfs creates corrupt filesystems when given these parameters: # mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported Filesystems formatted with --unsupported are not supported!! meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks = sectsz=512 attr=2, projid32bit=1 = crc=1 finobt=1, sparse=1, rmapbt=1 = reflink=1 bigtime=1 inobtcount=1 nrext64=1 data = bsize=4096 blocks=130816, imaxpct=25 = sunit=32 swidth=128 blks naming =version 2 bsize=4096 ascii-ci=0, ftype=1 log =internal log bsize=4096 blocks=8192, version=2 = sectsz=512 sunit=32 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 = rgcount=0 rgsize=0 blks Discarding blocks...Done. # xfs_repair -n /dev/sda Phase 1 - find and verify superblock... - reporting progress in intervals of 15 minutes Phase 2 - using internal log - zero log... - 16:30:50: zeroing log - 16320 of 16320 blocks done - scan filesystem freespace and inode maps... agf_freeblks 25, counted 0 in ag 4 sb_fdblocks 8823, counted 8798 The root cause of this problem is the numrecs handling in xfs_freesp_init_recs, which is used to initialize a new AG. Prior to calling the function, we set up the new bnobt block with numrecs == 1 and rely on _freesp_init_recs to format that new record. If the last record created has a blockcount of zero, then it sets numrecs = 0. That last bit isn't correct if the AG contains the log, the start of the log is not immediately after the initial blocks due to stripe alignment, and the end of the log is perfectly aligned with the end of the AG. For this case, we actually formatted a single bnobt record to handle the free space before the start of the (stripe aligned) log, and incremented arec to try to format a second record. That second record turned out to be unnecessary, so what we really want is to leave numrecs at 1. The numrecs handling itself is overly complicated because a different function sets numrecs == 1. Change the bnobt creation code to start with numrecs set to zero and only increment it after successfully formatting a free space extent into the btree block. Fixes: f327a00745ff ("xfs: account for log space when formatting new AGs") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 07:14:36 +08:00
xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
xfs_freesp_init_recs(mp, bp, id);
}
/*
* Reverse map root block init
*/
static void
xfs_rmaproot_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_rmap_rec *rrec;
xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
/*
* mark the AG header regions as static metadata The BNO
* btree block is the first block after the headers, so
* it's location defines the size of region the static
* metadata consumes.
*
* Note: unlike mkfs, we never have to account for log
* space when growing the data regions
*/
rrec = XFS_RMAP_REC_ADDR(block, 1);
rrec->rm_startblock = 0;
rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
rrec->rm_offset = 0;
/* account freespace btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 2);
rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(2);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account inode btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 3);
rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
XFS_IBT_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
rrec->rm_offset = 0;
/* account for rmap btree root */
rrec = XFS_RMAP_REC_ADDR(block, 4);
rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
/* account for refc btree root */
if (xfs_has_reflink(mp)) {
rrec = XFS_RMAP_REC_ADDR(block, 5);
rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
/* account for the log space */
if (xfs_ag_contains_log(mp, id->agno)) {
rrec = XFS_RMAP_REC_ADDR(block,
be16_to_cpu(block->bb_numrecs) + 1);
rrec->rm_startblock = cpu_to_be32(
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
}
/*
* Initialise new secondary superblocks with the pre-grow geometry, but mark
* them as "in progress" so we know they haven't yet been activated. This will
* get cleared when the update with the new geometry information is done after
* changes to the primary are committed. This isn't strictly necessary, but we
* get it for free with the delayed buffer write lists and it means we can tell
* if a grow operation didn't complete properly after the fact.
*/
static void
xfs_sbblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_dsb *dsb = bp->b_addr;
xfs_sb_to_disk(dsb, &mp->m_sb);
dsb->sb_inprogress = 1;
}
static void
xfs_agfblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agf *agf = bp->b_addr;
xfs_extlen_t tmpsize;
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(id->agno);
agf->agf_length = cpu_to_be32(id->agsize);
agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
if (xfs_has_rmapbt(mp)) {
agf->agf_roots[XFS_BTNUM_RMAPi] =
cpu_to_be32(XFS_RMAP_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
agf->agf_rmap_blocks = cpu_to_be32(1);
}
agf->agf_flfirst = cpu_to_be32(1);
agf->agf_fllast = 0;
agf->agf_flcount = 0;
tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
agf->agf_freeblks = cpu_to_be32(tmpsize);
agf->agf_longest = cpu_to_be32(tmpsize);
if (xfs_has_crc(mp))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_has_reflink(mp)) {
agf->agf_refcount_root = cpu_to_be32(
xfs_refc_block(mp));
agf->agf_refcount_level = cpu_to_be32(1);
agf->agf_refcount_blocks = cpu_to_be32(1);
}
if (xfs_ag_contains_log(mp, id->agno)) {
int64_t logblocks = mp->m_sb.sb_logblocks;
be32_add_cpu(&agf->agf_freeblks, -logblocks);
agf->agf_longest = cpu_to_be32(id->agsize -
XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
}
}
static void
xfs_agflblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
__be32 *agfl_bno;
int bucket;
if (xfs_has_crc(mp)) {
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(id->agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
}
agfl_bno = xfs_buf_to_agfl_bno(bp);
for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
}
static void
xfs_agiblock_init(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct aghdr_init_data *id)
{
struct xfs_agi *agi = bp->b_addr;
int bucket;
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(id->agno);
agi->agi_length = cpu_to_be32(id->agsize);
agi->agi_count = 0;
agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
agi->agi_level = cpu_to_be32(1);
agi->agi_freecount = 0;
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_has_crc(mp))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_has_finobt(mp)) {
agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
agi->agi_free_level = cpu_to_be32(1);
}
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
if (xfs_has_inobtcounts(mp)) {
agi->agi_iblocks = cpu_to_be32(1);
if (xfs_has_finobt(mp))
agi->agi_fblocks = cpu_to_be32(1);
}
}
typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
struct aghdr_init_data *id);
static int
xfs_ag_init_hdr(
struct xfs_mount *mp,
struct aghdr_init_data *id,
aghdr_init_work_f work,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
int error;
error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
if (error)
return error;
(*work)(mp, bp, id);
xfs_buf_delwri_queue(bp, &id->buffer_list);
xfs_buf_relse(bp);
return 0;
}
struct xfs_aghdr_grow_data {
xfs_daddr_t daddr;
size_t numblks;
const struct xfs_buf_ops *ops;
aghdr_init_work_f work;
xfs_btnum_t type;
bool need_init;
};
/*
* Prepare new AG headers to be written to disk. We use uncached buffers here,
* as it is assumed these new AG headers are currently beyond the currently
* valid filesystem address space. Using cached buffers would trip over EOFS
* corruption detection alogrithms in the buffer cache lookup routines.
*
* This is a non-transactional function, but the prepared buffers are added to a
* delayed write buffer list supplied by the caller so they can submit them to
* disk and wait on them as required.
*/
int
xfs_ag_init_headers(
struct xfs_mount *mp,
struct aghdr_init_data *id)
{
struct xfs_aghdr_grow_data aghdr_data[] = {
{ /* SB */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_sb_buf_ops,
.work = &xfs_sbblock_init,
.need_init = true
},
{ /* AGF */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agf_buf_ops,
.work = &xfs_agfblock_init,
.need_init = true
},
{ /* AGFL */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agfl_buf_ops,
.work = &xfs_agflblock_init,
.need_init = true
},
{ /* AGI */
.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
.numblks = XFS_FSS_TO_BB(mp, 1),
.ops = &xfs_agi_buf_ops,
.work = &xfs_agiblock_init,
.need_init = true
},
{ /* BNO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_bnobt_buf_ops,
.work = &xfs_bnoroot_init,
.need_init = true
},
{ /* CNT root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_cntbt_buf_ops,
.work = &xfs_cntroot_init,
.need_init = true
},
{ /* INO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_inobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_INO,
.need_init = true
},
{ /* FINO root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_finobt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_FINO,
.need_init = xfs_has_finobt(mp)
},
{ /* RMAP root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_rmapbt_buf_ops,
.work = &xfs_rmaproot_init,
.need_init = xfs_has_rmapbt(mp)
},
{ /* REFC root block */
.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
.numblks = BTOBB(mp->m_sb.sb_blocksize),
.ops = &xfs_refcountbt_buf_ops,
.work = &xfs_btroot_init,
.type = XFS_BTNUM_REFC,
.need_init = xfs_has_reflink(mp)
},
{ /* NULL terminating block */
.daddr = XFS_BUF_DADDR_NULL,
}
};
struct xfs_aghdr_grow_data *dp;
int error = 0;
/* Account for AG free space in new AG */
id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
if (!dp->need_init)
continue;
id->daddr = dp->daddr;
id->numblks = dp->numblks;
id->type = dp->type;
error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
if (error)
break;
}
return error;
}
int
xfs_ag_shrink_space(
struct xfs_perag *pag,
struct xfs_trans **tpp,
xfs_extlen_t delta)
{
struct xfs_mount *mp = pag->pag_mount;
struct xfs_alloc_arg args = {
.tp = *tpp,
.mp = mp,
.pag = pag,
.minlen = delta,
.maxlen = delta,
.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
.resv = XFS_AG_RESV_NONE,
.prod = 1
};
struct xfs_buf *agibp, *agfbp;
struct xfs_agi *agi;
struct xfs_agf *agf;
xfs_agblock_t aglen;
int error, err2;
ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
if (error)
return error;
agi = agibp->b_addr;
error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
if (error)
return error;
agf = agfbp->b_addr;
aglen = be32_to_cpu(agi->agi_length);
/* some extra paranoid checks before we shrink the ag */
if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
return -EFSCORRUPTED;
if (delta >= aglen)
return -EINVAL;
/*
* Make sure that the last inode cluster cannot overlap with the new
* end of the AG, even if it's sparse.
*/
error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
if (error)
return error;
/*
* Disable perag reservations so it doesn't cause the allocation request
* to fail. We'll reestablish reservation before we return.
*/
error = xfs_ag_resv_free(pag);
if (error)
return error;
/* internal log shouldn't also show up in the free space btrees */
error = xfs_alloc_vextent_exact_bno(&args,
XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
if (!error && args.agbno == NULLAGBLOCK)
error = -ENOSPC;
if (error) {
/*
* if extent allocation fails, need to roll the transaction to
* ensure that the AGFL fixup has been committed anyway.
*/
xfs_trans_bhold(*tpp, agfbp);
err2 = xfs_trans_roll(tpp);
if (err2)
return err2;
xfs_trans_bjoin(*tpp, agfbp);
goto resv_init_out;
}
/*
* if successfully deleted from freespace btrees, need to confirm
* per-AG reservation works as expected.
*/
be32_add_cpu(&agi->agi_length, -delta);
be32_add_cpu(&agf->agf_length, -delta);
err2 = xfs_ag_resv_init(pag, *tpp);
if (err2) {
be32_add_cpu(&agi->agi_length, delta);
be32_add_cpu(&agf->agf_length, delta);
if (err2 != -ENOSPC)
goto resv_err;
err2 = __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
xfs: use deferred frees for btree block freeing Btrees that aren't freespace management trees use the normal extent allocation and freeing routines for their blocks. Hence when a btree block is freed, a direct call to xfs_free_extent() is made and the extent is immediately freed. This puts the entire free space management btrees under this path, so we are stacking btrees on btrees in the call stack. The inobt, finobt and refcount btrees all do this. However, the bmap btree does not do this - it calls xfs_free_extent_later() to defer the extent free operation via an XEFI and hence it gets processed in deferred operation processing during the commit of the primary transaction (i.e. via intent chaining). We need to change xfs_free_extent() to behave in a non-blocking manner so that we can avoid deadlocks with busy extents near ENOSPC in transactions that free multiple extents. Inserting or removing a record from a btree can cause a multi-level tree merge operation and that will free multiple blocks from the btree in a single transaction. i.e. we can call xfs_free_extent() multiple times, and hence the btree manipulation transaction is vulnerable to this busy extent deadlock vector. To fix this, convert all the remaining callers of xfs_free_extent() to use xfs_free_extent_later() to queue XEFIs and hence defer processing of the extent frees to a context that can be safely restarted if a deadlock condition is detected. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2023-06-29 02:04:32 +08:00
XFS_AG_RESV_NONE, true);
if (err2)
goto resv_err;
/*
* Roll the transaction before trying to re-init the per-ag
* reservation. The new transaction is clean so it will cancel
* without any side effects.
*/
error = xfs_defer_finish(tpp);
if (error)
return error;
error = -ENOSPC;
goto resv_init_out;
}
/* Update perag geometry */
pag->block_count -= delta;
__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
&pag->agino_max);
xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
return 0;
resv_init_out:
err2 = xfs_ag_resv_init(pag, *tpp);
if (!err2)
return error;
resv_err:
xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return err2;
}
/*
* Extent the AG indicated by the @id by the length passed in
*/
int
xfs_ag_extend_space(
struct xfs_perag *pag,
struct xfs_trans *tp,
xfs_extlen_t len)
{
struct xfs_buf *bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
int error;
ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
error = xfs_ialloc_read_agi(pag, tp, &bp);
if (error)
return error;
agi = bp->b_addr;
be32_add_cpu(&agi->agi_length, len);
xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
/*
* Change agf length.
*/
error = xfs_alloc_read_agf(pag, tp, 0, &bp);
if (error)
return error;
agf = bp->b_addr;
be32_add_cpu(&agf->agf_length, len);
ASSERT(agf->agf_length == agi->agi_length);
xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
/*
* Free the new space.
*
* XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
* this doesn't actually exist in the rmap btree.
*/
error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
len, &XFS_RMAP_OINFO_SKIP_UPDATE);
if (error)
return error;
error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 17:13:02 +08:00
if (error)
return error;
/* Update perag geometry */
pag->block_count = be32_to_cpu(agf->agf_length);
__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
&pag->agino_max);
xfs: Pre-calculate per-AG agbno geometry There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 17:13:02 +08:00
return 0;
}
/* Retrieve AG geometry. */
int
xfs_ag_get_geometry(
struct xfs_perag *pag,
struct xfs_ag_geometry *ageo)
{
struct xfs_buf *agi_bp;
struct xfs_buf *agf_bp;
struct xfs_agi *agi;
struct xfs_agf *agf;
unsigned int freeblks;
int error;
/* Lock the AG headers. */
error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
if (error)
return error;
error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
if (error)
goto out_agi;
/* Fill out form. */
memset(ageo, 0, sizeof(*ageo));
ageo->ag_number = pag->pag_agno;
agi = agi_bp->b_addr;
ageo->ag_icount = be32_to_cpu(agi->agi_count);
ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
agf = agf_bp->b_addr;
ageo->ag_length = be32_to_cpu(agf->agf_length);
freeblks = pag->pagf_freeblks +
pag->pagf_flcount +
pag->pagf_btreeblks -
xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
ageo->ag_freeblks = freeblks;
xfs_ag_geom_health(pag, ageo);
/* Release resources. */
xfs_buf_relse(agf_bp);
out_agi:
xfs_buf_relse(agi_bp);
return error;
}