chcr: Support for Chelsio's Crypto Hardware
The Chelsio's Crypto Hardware can perform the following operations:
SHA1, SHA224, SHA256, SHA384 and SHA512, HMAC(SHA1), HMAC(SHA224),
HMAC(SHA256), HMAC(SHA384), HAMC(SHA512), AES-128-CBC, AES-192-CBC,
AES-256-CBC, AES-128-XTS, AES-256-XTS
This patch implements the driver for above mentioned features. This
driver is an Upper Layer Driver which is attached to Chelsio's LLD
(cxgb4) and uses the queue allocated by the LLD for sending the crypto
requests to the Hardware and receiving the responses from it.
The crypto operations can be performed by Chelsio's hardware from the
userspace applications and/or from within the kernel space using the
kernel's crypto API.
The above mentioned crypto features have been tested using kernel's
tests mentioned in testmgr.h. They also have been tested from user
space using libkcapi and Openssl.
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-17 15:03:05 +08:00
|
|
|
/*
|
|
|
|
* This file is part of the Chelsio T6 Crypto driver for Linux.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __CHCR_CORE_H__
|
|
|
|
#define __CHCR_CORE_H__
|
|
|
|
|
|
|
|
#include <crypto/algapi.h>
|
|
|
|
#include "t4_hw.h"
|
|
|
|
#include "cxgb4.h"
|
|
|
|
#include "cxgb4_uld.h"
|
|
|
|
|
|
|
|
#define DRV_MODULE_NAME "chcr"
|
|
|
|
#define DRV_VERSION "1.0.0.0"
|
|
|
|
|
|
|
|
#define MAX_PENDING_REQ_TO_HW 20
|
|
|
|
#define CHCR_TEST_RESPONSE_TIMEOUT 1000
|
|
|
|
|
|
|
|
#define PAD_ERROR_BIT 1
|
|
|
|
#define CHK_PAD_ERR_BIT(x) (((x) >> PAD_ERROR_BIT) & 1)
|
|
|
|
|
|
|
|
#define MAC_ERROR_BIT 0
|
|
|
|
#define CHK_MAC_ERR_BIT(x) (((x) >> MAC_ERROR_BIT) & 1)
|
2016-11-29 21:30:36 +08:00
|
|
|
#define MAX_SALT 4
|
2017-06-15 15:13:43 +08:00
|
|
|
#define WR_MIN_LEN (sizeof(struct chcr_wr) + \
|
|
|
|
sizeof(struct cpl_rx_phys_dsgl) + \
|
|
|
|
sizeof(struct ulptx_sgl))
|
chcr: Support for Chelsio's Crypto Hardware
The Chelsio's Crypto Hardware can perform the following operations:
SHA1, SHA224, SHA256, SHA384 and SHA512, HMAC(SHA1), HMAC(SHA224),
HMAC(SHA256), HMAC(SHA384), HAMC(SHA512), AES-128-CBC, AES-192-CBC,
AES-256-CBC, AES-128-XTS, AES-256-XTS
This patch implements the driver for above mentioned features. This
driver is an Upper Layer Driver which is attached to Chelsio's LLD
(cxgb4) and uses the queue allocated by the LLD for sending the crypto
requests to the Hardware and receiving the responses from it.
The crypto operations can be performed by Chelsio's hardware from the
userspace applications and/or from within the kernel space using the
kernel's crypto API.
The above mentioned crypto features have been tested using kernel's
tests mentioned in testmgr.h. They also have been tested from user
space using libkcapi and Openssl.
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-17 15:03:05 +08:00
|
|
|
|
2017-04-10 20:54:00 +08:00
|
|
|
#define padap(dev) pci_get_drvdata(dev->u_ctx->lldi.pdev)
|
|
|
|
|
chcr: Support for Chelsio's Crypto Hardware
The Chelsio's Crypto Hardware can perform the following operations:
SHA1, SHA224, SHA256, SHA384 and SHA512, HMAC(SHA1), HMAC(SHA224),
HMAC(SHA256), HMAC(SHA384), HAMC(SHA512), AES-128-CBC, AES-192-CBC,
AES-256-CBC, AES-128-XTS, AES-256-XTS
This patch implements the driver for above mentioned features. This
driver is an Upper Layer Driver which is attached to Chelsio's LLD
(cxgb4) and uses the queue allocated by the LLD for sending the crypto
requests to the Hardware and receiving the responses from it.
The crypto operations can be performed by Chelsio's hardware from the
userspace applications and/or from within the kernel space using the
kernel's crypto API.
The above mentioned crypto features have been tested using kernel's
tests mentioned in testmgr.h. They also have been tested from user
space using libkcapi and Openssl.
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-17 15:03:05 +08:00
|
|
|
struct uld_ctx;
|
|
|
|
|
2016-11-29 21:30:36 +08:00
|
|
|
struct _key_ctx {
|
|
|
|
__be32 ctx_hdr;
|
|
|
|
u8 salt[MAX_SALT];
|
|
|
|
__be64 reserverd;
|
|
|
|
unsigned char key[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct chcr_wr {
|
|
|
|
struct fw_crypto_lookaside_wr wreq;
|
|
|
|
struct ulp_txpkt ulptx;
|
|
|
|
struct ulptx_idata sc_imm;
|
|
|
|
struct cpl_tx_sec_pdu sec_cpl;
|
|
|
|
struct _key_ctx key_ctx;
|
|
|
|
};
|
|
|
|
|
chcr: Support for Chelsio's Crypto Hardware
The Chelsio's Crypto Hardware can perform the following operations:
SHA1, SHA224, SHA256, SHA384 and SHA512, HMAC(SHA1), HMAC(SHA224),
HMAC(SHA256), HMAC(SHA384), HAMC(SHA512), AES-128-CBC, AES-192-CBC,
AES-256-CBC, AES-128-XTS, AES-256-XTS
This patch implements the driver for above mentioned features. This
driver is an Upper Layer Driver which is attached to Chelsio's LLD
(cxgb4) and uses the queue allocated by the LLD for sending the crypto
requests to the Hardware and receiving the responses from it.
The crypto operations can be performed by Chelsio's hardware from the
userspace applications and/or from within the kernel space using the
kernel's crypto API.
The above mentioned crypto features have been tested using kernel's
tests mentioned in testmgr.h. They also have been tested from user
space using libkcapi and Openssl.
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-17 15:03:05 +08:00
|
|
|
struct chcr_dev {
|
|
|
|
spinlock_t lock_chcr_dev;
|
|
|
|
struct uld_ctx *u_ctx;
|
|
|
|
unsigned char tx_channel_id;
|
2017-01-27 18:39:05 +08:00
|
|
|
unsigned char rx_channel_id;
|
chcr: Support for Chelsio's Crypto Hardware
The Chelsio's Crypto Hardware can perform the following operations:
SHA1, SHA224, SHA256, SHA384 and SHA512, HMAC(SHA1), HMAC(SHA224),
HMAC(SHA256), HMAC(SHA384), HAMC(SHA512), AES-128-CBC, AES-192-CBC,
AES-256-CBC, AES-128-XTS, AES-256-XTS
This patch implements the driver for above mentioned features. This
driver is an Upper Layer Driver which is attached to Chelsio's LLD
(cxgb4) and uses the queue allocated by the LLD for sending the crypto
requests to the Hardware and receiving the responses from it.
The crypto operations can be performed by Chelsio's hardware from the
userspace applications and/or from within the kernel space using the
kernel's crypto API.
The above mentioned crypto features have been tested using kernel's
tests mentioned in testmgr.h. They also have been tested from user
space using libkcapi and Openssl.
Signed-off-by: Atul Gupta <atul.gupta@chelsio.com>
Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-17 15:03:05 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct uld_ctx {
|
|
|
|
struct list_head entry;
|
|
|
|
struct cxgb4_lld_info lldi;
|
|
|
|
struct chcr_dev *dev;
|
|
|
|
};
|
|
|
|
|
|
|
|
int assign_chcr_device(struct chcr_dev **dev);
|
|
|
|
int chcr_send_wr(struct sk_buff *skb);
|
|
|
|
int start_crypto(void);
|
|
|
|
int stop_crypto(void);
|
|
|
|
int chcr_uld_rx_handler(void *handle, const __be64 *rsp,
|
|
|
|
const struct pkt_gl *pgl);
|
|
|
|
int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input,
|
|
|
|
int err);
|
|
|
|
#endif /* __CHCR_CORE_H__ */
|