OpenCloudOS-Kernel/drivers/usb/misc/sisusbvga/sisusb.c

3523 lines
82 KiB
C
Raw Normal View History

/*
* sisusb - usb kernel driver for SiS315(E) based USB2VGA dongles
*
* Main part
*
* Copyright (C) 2005 by Thomas Winischhofer, Vienna, Austria
*
* If distributed as part of the Linux kernel, this code is licensed under the
* terms of the GPL v2.
*
* Otherwise, the following license terms apply:
*
* * Redistribution and use in source and binary forms, with or without
* * modification, are permitted provided that the following conditions
* * are met:
* * 1) Redistributions of source code must retain the above copyright
* * notice, this list of conditions and the following disclaimer.
* * 2) Redistributions in binary form must reproduce the above copyright
* * notice, this list of conditions and the following disclaimer in the
* * documentation and/or other materials provided with the distribution.
* * 3) The name of the author may not be used to endorse or promote products
* * derived from this software without specific psisusbr written permission.
* *
* * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESSED OR
* * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Thomas Winischhofer <thomas@winischhofer.net>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kref.h>
#include <linux/usb.h>
#include <linux/smp_lock.h>
#include <linux/vmalloc.h>
#include "sisusb.h"
#ifdef INCL_SISUSB_CON
#include <linux/font.h>
#endif
#define SISUSB_DONTSYNC
/* Forward declarations / clean-up routines */
#ifdef INCL_SISUSB_CON
int sisusb_setreg(struct sisusb_usb_data *sisusb, int port, u8 data);
int sisusb_getreg(struct sisusb_usb_data *sisusb, int port, u8 *data);
int sisusb_setidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 data);
int sisusb_getidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 *data);
int sisusb_setidxregandor(struct sisusb_usb_data *sisusb, int port, u8 idx, u8 myand, u8 myor);
int sisusb_setidxregor(struct sisusb_usb_data *sisusb, int port, u8 index, u8 myor);
int sisusb_setidxregand(struct sisusb_usb_data *sisusb, int port, u8 idx, u8 myand);
int sisusb_writeb(struct sisusb_usb_data *sisusb, u32 adr, u8 data);
int sisusb_readb(struct sisusb_usb_data *sisusb, u32 adr, u8 *data);
int sisusb_writew(struct sisusb_usb_data *sisusb, u32 adr, u16 data);
int sisusb_readw(struct sisusb_usb_data *sisusb, u32 adr, u16 *data);
int sisusb_copy_memory(struct sisusb_usb_data *sisusb, char *src,
u32 dest, int length, size_t *bytes_written);
int sisusb_reset_text_mode(struct sisusb_usb_data *sisusb, int init);
extern int SiSUSBSetMode(struct SiS_Private *SiS_Pr, unsigned short ModeNo);
extern int SiSUSBSetVESAMode(struct SiS_Private *SiS_Pr, unsigned short VModeNo);
extern void sisusb_init_concode(void);
extern int sisusb_console_init(struct sisusb_usb_data *sisusb, int first, int last);
extern void sisusb_console_exit(struct sisusb_usb_data *sisusb);
extern void sisusb_set_cursor(struct sisusb_usb_data *sisusb, unsigned int location);
extern int sisusbcon_do_font_op(struct sisusb_usb_data *sisusb, int set, int slot,
u8 *arg, int cmapsz, int ch512, int dorecalc,
struct vc_data *c, int fh, int uplock);
static int sisusb_first_vc = 0;
static int sisusb_last_vc = 0;
module_param_named(first, sisusb_first_vc, int, 0);
module_param_named(last, sisusb_last_vc, int, 0);
MODULE_PARM_DESC(first, "Number of first console to take over (1 - MAX_NR_CONSOLES)");
MODULE_PARM_DESC(last, "Number of last console to take over (1 - MAX_NR_CONSOLES)");
#endif
static struct usb_driver sisusb_driver;
DECLARE_MUTEX(disconnect_sem);
static void
sisusb_free_buffers(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < NUMOBUFS; i++) {
if (sisusb->obuf[i]) {
usb_buffer_free(sisusb->sisusb_dev, sisusb->obufsize,
sisusb->obuf[i], sisusb->transfer_dma_out[i]);
sisusb->obuf[i] = NULL;
}
}
if (sisusb->ibuf) {
usb_buffer_free(sisusb->sisusb_dev, sisusb->ibufsize,
sisusb->ibuf, sisusb->transfer_dma_in);
sisusb->ibuf = NULL;
}
}
static void
sisusb_free_urbs(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < NUMOBUFS; i++) {
usb_free_urb(sisusb->sisurbout[i]);
sisusb->sisurbout[i] = NULL;
}
usb_free_urb(sisusb->sisurbin);
sisusb->sisurbin = NULL;
}
/* Level 0: USB transport layer */
/* 1. out-bulks */
/* out-urb management */
/* Return 1 if all free, 0 otherwise */
static int
sisusb_all_free(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < sisusb->numobufs; i++) {
if (sisusb->urbstatus[i] & SU_URB_BUSY)
return 0;
}
return 1;
}
/* Kill all busy URBs */
static void
sisusb_kill_all_busy(struct sisusb_usb_data *sisusb)
{
int i;
if (sisusb_all_free(sisusb))
return;
for (i = 0; i < sisusb->numobufs; i++) {
if (sisusb->urbstatus[i] & SU_URB_BUSY)
usb_kill_urb(sisusb->sisurbout[i]);
}
}
/* Return 1 if ok, 0 if error (not all complete within timeout) */
static int
sisusb_wait_all_out_complete(struct sisusb_usb_data *sisusb)
{
int timeout = 5 * HZ, i = 1;
wait_event_timeout(sisusb->wait_q,
(i = sisusb_all_free(sisusb)),
timeout);
return i;
}
static int
sisusb_outurb_available(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < sisusb->numobufs; i++) {
if ((sisusb->urbstatus[i] & (SU_URB_BUSY|SU_URB_ALLOC)) == 0)
return i;
}
return -1;
}
static int
sisusb_get_free_outbuf(struct sisusb_usb_data *sisusb)
{
int i, timeout = 5 * HZ;
wait_event_timeout(sisusb->wait_q,
((i = sisusb_outurb_available(sisusb)) >= 0),
timeout);
return i;
}
static int
sisusb_alloc_outbuf(struct sisusb_usb_data *sisusb)
{
int i;
i = sisusb_outurb_available(sisusb);
if (i >= 0)
sisusb->urbstatus[i] |= SU_URB_ALLOC;
return i;
}
static void
sisusb_free_outbuf(struct sisusb_usb_data *sisusb, int index)
{
if ((index >= 0) && (index < sisusb->numobufs))
sisusb->urbstatus[index] &= ~SU_URB_ALLOC;
}
/* completion callback */
static void
sisusb_bulk_completeout(struct urb *urb, struct pt_regs *regs)
{
struct sisusb_urb_context *context = urb->context;
struct sisusb_usb_data *sisusb;
if (!context)
return;
sisusb = context->sisusb;
if (!sisusb || !sisusb->sisusb_dev || !sisusb->present)
return;
#ifndef SISUSB_DONTSYNC
if (context->actual_length)
*(context->actual_length) += urb->actual_length;
#endif
sisusb->urbstatus[context->urbindex] &= ~SU_URB_BUSY;
wake_up(&sisusb->wait_q);
}
static int
sisusb_bulkout_msg(struct sisusb_usb_data *sisusb, int index, unsigned int pipe, void *data,
int len, int *actual_length, int timeout, unsigned int tflags,
dma_addr_t transfer_dma)
{
struct urb *urb = sisusb->sisurbout[index];
int retval, byteswritten = 0;
/* Set up URB */
urb->transfer_flags = 0;
usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len,
sisusb_bulk_completeout, &sisusb->urbout_context[index]);
urb->transfer_flags |= tflags;
urb->actual_length = 0;
if ((urb->transfer_dma = transfer_dma))
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* Set up context */
sisusb->urbout_context[index].actual_length = (timeout) ?
NULL : actual_length;
/* Declare this urb/buffer in use */
sisusb->urbstatus[index] |= SU_URB_BUSY;
/* Submit URB */
retval = usb_submit_urb(urb, GFP_ATOMIC);
/* If OK, and if timeout > 0, wait for completion */
if ((retval == 0) && timeout) {
wait_event_timeout(sisusb->wait_q,
(!(sisusb->urbstatus[index] & SU_URB_BUSY)),
timeout);
if (sisusb->urbstatus[index] & SU_URB_BUSY) {
/* URB timed out... kill it and report error */
usb_kill_urb(urb);
retval = -ETIMEDOUT;
} else {
/* Otherwise, report urb status */
retval = urb->status;
byteswritten = urb->actual_length;
}
}
if (actual_length)
*actual_length = byteswritten;
return retval;
}
/* 2. in-bulks */
/* completion callback */
static void
sisusb_bulk_completein(struct urb *urb, struct pt_regs *regs)
{
struct sisusb_usb_data *sisusb = urb->context;
if (!sisusb || !sisusb->sisusb_dev || !sisusb->present)
return;
sisusb->completein = 1;
wake_up(&sisusb->wait_q);
}
static int
sisusb_bulkin_msg(struct sisusb_usb_data *sisusb, unsigned int pipe, void *data, int len,
int *actual_length, int timeout, unsigned int tflags, dma_addr_t transfer_dma)
{
struct urb *urb = sisusb->sisurbin;
int retval, readbytes = 0;
urb->transfer_flags = 0;
usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len,
sisusb_bulk_completein, sisusb);
urb->transfer_flags |= tflags;
urb->actual_length = 0;
if ((urb->transfer_dma = transfer_dma))
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
sisusb->completein = 0;
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval == 0) {
wait_event_timeout(sisusb->wait_q, sisusb->completein, timeout);
if (!sisusb->completein) {
/* URB timed out... kill it and report error */
usb_kill_urb(urb);
retval = -ETIMEDOUT;
} else {
/* URB completed within timout */
retval = urb->status;
readbytes = urb->actual_length;
}
}
if (actual_length)
*actual_length = readbytes;
return retval;
}
/* Level 1: */
/* Send a bulk message of variable size
*
* To copy the data from userspace, give pointer to "userbuffer",
* to copy from (non-DMA) kernel memory, give "kernbuffer". If
* both of these are NULL, it is assumed, that the transfer
* buffer "sisusb->obuf[index]" is set up with the data to send.
* Index is ignored if either kernbuffer or userbuffer is set.
* If async is nonzero, URBs will be sent without waiting for
* completion of the previous URB.
*
* (return 0 on success)
*/
static int sisusb_send_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len,
char *kernbuffer, const char __user *userbuffer, int index,
ssize_t *bytes_written, unsigned int tflags, int async)
{
int result = 0, retry, count = len;
int passsize, thispass, transferred_len = 0;
int fromuser = (userbuffer != NULL) ? 1 : 0;
int fromkern = (kernbuffer != NULL) ? 1 : 0;
unsigned int pipe;
char *buffer;
(*bytes_written) = 0;
/* Sanity check */
if (!sisusb || !sisusb->present || !sisusb->sisusb_dev)
return -ENODEV;
/* If we copy data from kernel or userspace, force the
* allocation of a buffer/urb. If we have the data in
* the transfer buffer[index] already, reuse the buffer/URB
* if the length is > buffer size. (So, transmitting
* large data amounts directly from the transfer buffer
* treats the buffer as a ring buffer. However, we need
* to sync in this case.)
*/
if (fromuser || fromkern)
index = -1;
else if (len > sisusb->obufsize)
async = 0;
pipe = usb_sndbulkpipe(sisusb->sisusb_dev, ep);
do {
passsize = thispass = (sisusb->obufsize < count) ?
sisusb->obufsize : count;
if (index < 0)
index = sisusb_get_free_outbuf(sisusb);
if (index < 0)
return -EIO;
buffer = sisusb->obuf[index];
if (fromuser) {
if (copy_from_user(buffer, userbuffer, passsize))
return -EFAULT;
userbuffer += passsize;
} else if (fromkern) {
memcpy(buffer, kernbuffer, passsize);
kernbuffer += passsize;
}
retry = 5;
while (thispass) {
if (!sisusb->sisusb_dev)
return -ENODEV;
result = sisusb_bulkout_msg(sisusb,
index,
pipe,
buffer,
thispass,
&transferred_len,
async ? 0 : 5 * HZ,
tflags,
sisusb->transfer_dma_out[index]);
if (result == -ETIMEDOUT) {
/* Will not happen if async */
if (!retry--)
return -ETIME;
continue;
} else if ((result == 0) && !async && transferred_len) {
thispass -= transferred_len;
if (thispass) {
if (sisusb->transfer_dma_out) {
/* If DMA, copy remaining
* to beginning of buffer
*/
memcpy(buffer,
buffer + transferred_len,
thispass);
} else {
/* If not DMA, simply increase
* the pointer
*/
buffer += transferred_len;
}
}
} else
break;
};
if (result)
return result;
(*bytes_written) += passsize;
count -= passsize;
/* Force new allocation in next iteration */
if (fromuser || fromkern)
index = -1;
} while (count > 0);
if (async) {
#ifdef SISUSB_DONTSYNC
(*bytes_written) = len;
/* Some URBs/buffers might be busy */
#else
sisusb_wait_all_out_complete(sisusb);
(*bytes_written) = transferred_len;
/* All URBs and all buffers are available */
#endif
}
return ((*bytes_written) == len) ? 0 : -EIO;
}
/* Receive a bulk message of variable size
*
* To copy the data to userspace, give pointer to "userbuffer",
* to copy to kernel memory, give "kernbuffer". One of them
* MUST be set. (There is no technique for letting the caller
* read directly from the ibuf.)
*
*/
static int sisusb_recv_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len,
void *kernbuffer, char __user *userbuffer, ssize_t *bytes_read,
unsigned int tflags)
{
int result = 0, retry, count = len;
int bufsize, thispass, transferred_len;
unsigned int pipe;
char *buffer;
(*bytes_read) = 0;
/* Sanity check */
if (!sisusb || !sisusb->present || !sisusb->sisusb_dev)
return -ENODEV;
pipe = usb_rcvbulkpipe(sisusb->sisusb_dev, ep);
buffer = sisusb->ibuf;
bufsize = sisusb->ibufsize;
retry = 5;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return -EIO;
#endif
while (count > 0) {
if (!sisusb->sisusb_dev)
return -ENODEV;
thispass = (bufsize < count) ? bufsize : count;
result = sisusb_bulkin_msg(sisusb,
pipe,
buffer,
thispass,
&transferred_len,
5 * HZ,
tflags,
sisusb->transfer_dma_in);
if (transferred_len)
thispass = transferred_len;
else if (result == -ETIMEDOUT) {
if (!retry--)
return -ETIME;
continue;
} else
return -EIO;
if (thispass) {
(*bytes_read) += thispass;
count -= thispass;
if (userbuffer) {
if (copy_to_user(userbuffer, buffer, thispass))
return -EFAULT;
userbuffer += thispass;
} else {
memcpy(kernbuffer, buffer, thispass);
kernbuffer += thispass;
}
}
}
return ((*bytes_read) == len) ? 0 : -EIO;
}
static int sisusb_send_packet(struct sisusb_usb_data *sisusb, int len,
struct sisusb_packet *packet)
{
int ret;
ssize_t bytes_transferred = 0;
__le32 tmp;
if (len == 6)
packet->data = 0;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return 1;
#endif
/* Eventually correct endianness */
SISUSB_CORRECT_ENDIANNESS_PACKET(packet);
/* 1. send the packet */
ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_OUT, len,
(char *)packet, NULL, 0, &bytes_transferred, 0, 0);
if ((ret == 0) && (len == 6)) {
/* 2. if packet len == 6, it means we read, so wait for 32bit
* return value and write it to packet->data
*/
ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_GFX_IN, 4,
(char *)&tmp, NULL, &bytes_transferred, 0);
packet->data = le32_to_cpu(tmp);
}
return ret;
}
static int sisusb_send_bridge_packet(struct sisusb_usb_data *sisusb, int len,
struct sisusb_packet *packet,
unsigned int tflags)
{
int ret;
ssize_t bytes_transferred = 0;
__le32 tmp;
if (len == 6)
packet->data = 0;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return 1;
#endif
/* Eventually correct endianness */
SISUSB_CORRECT_ENDIANNESS_PACKET(packet);
/* 1. send the packet */
ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_BRIDGE_OUT, len,
(char *)packet, NULL, 0, &bytes_transferred, tflags, 0);
if ((ret == 0) && (len == 6)) {
/* 2. if packet len == 6, it means we read, so wait for 32bit
* return value and write it to packet->data
*/
ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_BRIDGE_IN, 4,
(char *)&tmp, NULL, &bytes_transferred, 0);
packet->data = le32_to_cpu(tmp);
}
return ret;
}
/* access video memory and mmio (return 0 on success) */
/* Low level */
/* The following routines assume being used to transfer byte, word,
* long etc.
* This means that
* - the write routines expect "data" in machine endianness format.
* The data will be converted to leXX in sisusb_xxx_packet.
* - the read routines can expect read data in machine-endianess.
*/
static int sisusb_write_memio_byte(struct sisusb_usb_data *sisusb, int type,
u32 addr, u8 data)
{
struct sisusb_packet packet;
int ret;
packet.header = (1 << (addr & 3)) | (type << 6);
packet.address = addr & ~3;
packet.data = data << ((addr & 3) << 3);
ret = sisusb_send_packet(sisusb, 10, &packet);
return ret;
}
static int sisusb_write_memio_word(struct sisusb_usb_data *sisusb, int type,
u32 addr, u16 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0003;
packet.data = (u32)data;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x0006;
packet.data = (u32)data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = (u32)data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = (u32)data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = (u32)data >> 8;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
static int sisusb_write_memio_24bit(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0007;
packet.data = data & 0x00ffffff;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x000e;
packet.data = data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = (data >> 16) & 0x00ff;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
packet.data = (data >> 8) & 0xffff;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
static int sisusb_write_memio_long(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x000f;
packet.data = data;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x000e;
packet.data = data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = data >> 24;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
packet.data = data >> 16;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0007;
packet.address = (addr & ~3) + 4;
packet.data = data >> 8;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
/* The xxx_bulk routines copy a buffer of variable size. They treat the
* buffer as chars, therefore lsb/msb has to be corrected if using the
* byte/word/long/etc routines for speed-up
*
* If data is from userland, set "userbuffer" (and clear "kernbuffer"),
* if data is in kernel space, set "kernbuffer" (and clear "userbuffer");
* if neither "kernbuffer" nor "userbuffer" are given, it is assumed
* that the data already is in the transfer buffer "sisusb->obuf[index]".
*/
static int sisusb_write_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr,
char *kernbuffer, int length,
const char __user *userbuffer, int index,
ssize_t *bytes_written)
{
struct sisusb_packet packet;
int ret = 0;
static int msgcount = 0;
u8 swap8, fromkern = kernbuffer ? 1 : 0;
u16 swap16;
u32 swap32, flag = (length >> 28) & 1;
char buf[4];
/* if neither kernbuffer not userbuffer are given, assume
* data in obuf
*/
if (!fromkern && !userbuffer)
kernbuffer = sisusb->obuf[index];
(*bytes_written = 0);
length &= 0x00ffffff;
while (length) {
switch (length) {
case 1:
if (userbuffer) {
if (get_user(swap8, (u8 __user *)userbuffer))
return -EFAULT;
} else
swap8 = kernbuffer[0];
ret = sisusb_write_memio_byte(sisusb,
SISUSB_TYPE_MEM,
addr, swap8);
if (!ret)
(*bytes_written)++;
return ret;
case 2:
if (userbuffer) {
if (get_user(swap16, (u16 __user *)userbuffer))
return -EFAULT;
} else
swap16 = *((u16 *)kernbuffer);
ret = sisusb_write_memio_word(sisusb,
SISUSB_TYPE_MEM,
addr,
swap16);
if (!ret)
(*bytes_written) += 2;
return ret;
case 3:
if (userbuffer) {
if (copy_from_user(&buf, userbuffer, 3))
return -EFAULT;
#ifdef __BIG_ENDIAN
swap32 = (buf[0] << 16) |
(buf[1] << 8) |
buf[2];
#else
swap32 = (buf[2] << 16) |
(buf[1] << 8) |
buf[0];
#endif
} else
#ifdef __BIG_ENDIAN
swap32 = (kernbuffer[0] << 16) |
(kernbuffer[1] << 8) |
kernbuffer[2];
#else
swap32 = (kernbuffer[2] << 16) |
(kernbuffer[1] << 8) |
kernbuffer[0];
#endif
ret = sisusb_write_memio_24bit(sisusb,
SISUSB_TYPE_MEM,
addr,
swap32);
if (!ret)
(*bytes_written) += 3;
return ret;
case 4:
if (userbuffer) {
if (get_user(swap32, (u32 __user *)userbuffer))
return -EFAULT;
} else
swap32 = *((u32 *)kernbuffer);
ret = sisusb_write_memio_long(sisusb,
SISUSB_TYPE_MEM,
addr,
swap32);
if (!ret)
(*bytes_written) += 4;
return ret;
default:
if ((length & ~3) > 0x10000) {
packet.header = 0x001f;
packet.address = 0x000001d4;
packet.data = addr;
ret = sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001d0;
packet.data = (length & ~3);
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001c0;
packet.data = flag | 0x16;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
if (userbuffer) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
NULL, userbuffer, 0,
bytes_written, 0, 1);
userbuffer += (*bytes_written);
} else if (fromkern) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
kernbuffer, NULL, 0,
bytes_written, 0, 1);
kernbuffer += (*bytes_written);
} else {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
NULL, NULL, index,
bytes_written, 0, 1);
kernbuffer += ((*bytes_written) &
(sisusb->obufsize-1));
}
} else {
packet.header = 0x001f;
packet.address = 0x00000194;
packet.data = addr;
ret = sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x00000190;
packet.data = (length & ~3);
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
if (sisusb->flagb0 != 0x16) {
packet.header = 0x001f;
packet.address = 0x00000180;
packet.data = flag | 0x16;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
sisusb->flagb0 = 0x16;
}
if (userbuffer) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
NULL, userbuffer, 0,
bytes_written, 0, 1);
userbuffer += (*bytes_written);
} else if (fromkern) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
kernbuffer, NULL, 0,
bytes_written, 0, 1);
kernbuffer += (*bytes_written);
} else {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
NULL, NULL, index,
bytes_written, 0, 1);
kernbuffer += ((*bytes_written) &
(sisusb->obufsize-1));
}
}
if (ret) {
msgcount++;
if (msgcount < 500)
printk(KERN_ERR
"sisusbvga[%d]: Wrote %zd of "
"%d bytes, error %d\n",
sisusb->minor, *bytes_written,
length, ret);
else if (msgcount == 500)
printk(KERN_ERR
"sisusbvga[%d]: Too many errors"
", logging stopped\n",
sisusb->minor);
}
addr += (*bytes_written);
length -= (*bytes_written);
}
if (ret)
break;
}
return ret ? -EIO : 0;
}
/* Remember: Read data in packet is in machine-endianess! So for
* byte, word, 24bit, long no endian correction is necessary.
*/
static int sisusb_read_memio_byte(struct sisusb_usb_data *sisusb, int type,
u32 addr, u8 *data)
{
struct sisusb_packet packet;
int ret;
CLEARPACKET(&packet);
packet.header = (1 << (addr & 3)) | (type << 6);
packet.address = addr & ~3;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u8)(packet.data >> ((addr & 3) << 3));
return ret;
}
static int sisusb_read_memio_word(struct sisusb_usb_data *sisusb, int type,
u32 addr, u16 *data)
{
struct sisusb_packet packet;
int ret = 0;
CLEARPACKET(&packet);
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0003;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data);
break;
case 1:
packet.header = (type << 6) | 0x0006;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 8);
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 24);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (u16)(packet.data << 8);
}
return ret;
}
static int sisusb_read_memio_24bit(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 *data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0007;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data & 0x00ffffff;
break;
case 1:
packet.header = (type << 6) | 0x000e;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 8;
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 16;
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= ((packet.data & 0xff) << 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 24;
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= ((packet.data & 0xffff) << 8);
}
return ret;
}
static int sisusb_read_memio_long(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 *data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x000f;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data;
break;
case 1:
packet.header = (type << 6) | 0x000e;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 8;
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 24);
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 16;
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 24;
packet.header = (type << 6) | 0x0007;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 8);
}
return ret;
}
static int sisusb_read_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr,
char *kernbuffer, int length,
char __user *userbuffer, ssize_t *bytes_read)
{
int ret = 0;
char buf[4];
u16 swap16;
u32 swap32;
(*bytes_read = 0);
length &= 0x00ffffff;
while (length) {
switch (length) {
case 1:
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM,
addr, &buf[0]);
if (!ret) {
(*bytes_read)++;
if (userbuffer) {
if (put_user(buf[0],
(u8 __user *)userbuffer)) {
return -EFAULT;
}
} else {
kernbuffer[0] = buf[0];
}
}
return ret;
case 2:
ret |= sisusb_read_memio_word(sisusb, SISUSB_TYPE_MEM,
addr, &swap16);
if (!ret) {
(*bytes_read) += 2;
if (userbuffer) {
if (put_user(swap16,
(u16 __user *)userbuffer))
return -EFAULT;
} else {
*((u16 *)kernbuffer) = swap16;
}
}
return ret;
case 3:
ret |= sisusb_read_memio_24bit(sisusb, SISUSB_TYPE_MEM,
addr, &swap32);
if (!ret) {
(*bytes_read) += 3;
#ifdef __BIG_ENDIAN
buf[0] = (swap32 >> 16) & 0xff;
buf[1] = (swap32 >> 8) & 0xff;
buf[2] = swap32 & 0xff;
#else
buf[2] = (swap32 >> 16) & 0xff;
buf[1] = (swap32 >> 8) & 0xff;
buf[0] = swap32 & 0xff;
#endif
if (userbuffer) {
if (copy_to_user(userbuffer, &buf[0], 3))
return -EFAULT;
} else {
kernbuffer[0] = buf[0];
kernbuffer[1] = buf[1];
kernbuffer[2] = buf[2];
}
}
return ret;
default:
ret |= sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM,
addr, &swap32);
if (!ret) {
(*bytes_read) += 4;
if (userbuffer) {
if (put_user(swap32,
(u32 __user *)userbuffer))
return -EFAULT;
userbuffer += 4;
} else {
*((u32 *)kernbuffer) = swap32;
kernbuffer += 4;
}
addr += 4;
length -= 4;
}
#if 0 /* That does not work, as EP 2 is an OUT EP! */
default:
CLEARPACKET(&packet);
packet.header = 0x001f;
packet.address = 0x000001a0;
packet.data = 0x00000006;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001b0;
packet.data = (length & ~3) | 0x40000000;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001b4;
packet.data = addr;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001a4;
packet.data = 0x00000001;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
if (userbuffer) {
ret |= sisusb_recv_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_IN,
(length & ~3),
NULL, userbuffer,
bytes_read, 0);
if (!ret) userbuffer += (*bytes_read);
} else {
ret |= sisusb_recv_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_IN,
(length & ~3),
kernbuffer, NULL,
bytes_read, 0);
if (!ret) kernbuffer += (*bytes_read);
}
addr += (*bytes_read);
length -= (*bytes_read);
#endif
}
if (ret)
break;
}
return ret;
}
/* High level: Gfx (indexed) register access */
#ifdef INCL_SISUSB_CON
int
sisusb_setreg(struct sisusb_usb_data *sisusb, int port, u8 data)
{
return sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, data);
}
int
sisusb_getreg(struct sisusb_usb_data *sisusb, int port, u8 *data)
{
return sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port, data);
}
#endif
#ifndef INCL_SISUSB_CON
static
#endif
int
sisusb_setidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 data)
{
int ret;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index);
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data);
return ret;
}
#ifndef INCL_SISUSB_CON
static
#endif
int
sisusb_getidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 *data)
{
int ret;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data);
return ret;
}
#ifndef INCL_SISUSB_CON
static
#endif
int
sisusb_setidxregandor(struct sisusb_usb_data *sisusb, int port, u8 idx,
u8 myand, u8 myor)
{
int ret;
u8 tmp;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp);
tmp &= myand;
tmp |= myor;
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp);
return ret;
}
static int
sisusb_setidxregmask(struct sisusb_usb_data *sisusb, int port, u8 idx,
u8 data, u8 mask)
{
int ret;
u8 tmp;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp);
tmp &= ~(mask);
tmp |= (data & mask);
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp);
return ret;
}
#ifndef INCL_SISUSB_CON
static
#endif
int
sisusb_setidxregor(struct sisusb_usb_data *sisusb, int port, u8 index, u8 myor)
{
return(sisusb_setidxregandor(sisusb, port, index, 0xff, myor));
}
#ifndef INCL_SISUSB_CON
static
#endif
int
sisusb_setidxregand(struct sisusb_usb_data *sisusb, int port, u8 idx, u8 myand)
{
return(sisusb_setidxregandor(sisusb, port, idx, myand, 0x00));
}
/* Write/read video ram */
#ifdef INCL_SISUSB_CON
int
sisusb_writeb(struct sisusb_usb_data *sisusb, u32 adr, u8 data)
{
return(sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_readb(struct sisusb_usb_data *sisusb, u32 adr, u8 *data)
{
return(sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_writew(struct sisusb_usb_data *sisusb, u32 adr, u16 data)
{
return(sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_readw(struct sisusb_usb_data *sisusb, u32 adr, u16 *data)
{
return(sisusb_read_memio_word(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_copy_memory(struct sisusb_usb_data *sisusb, char *src,
u32 dest, int length, size_t *bytes_written)
{
return(sisusb_write_mem_bulk(sisusb, dest, src, length, NULL, 0, bytes_written));
}
#ifdef SISUSBENDIANTEST
int
sisusb_read_memory(struct sisusb_usb_data *sisusb, char *dest,
u32 src, int length, size_t *bytes_written)
{
return(sisusb_read_mem_bulk(sisusb, src, dest, length, NULL, bytes_written));
}
#endif
#endif
#ifdef SISUSBENDIANTEST
static void
sisusb_testreadwrite(struct sisusb_usb_data *sisusb)
{
static char srcbuffer[] = { 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
char destbuffer[10];
size_t dummy;
int i,j;
sisusb_copy_memory(sisusb, srcbuffer, sisusb->vrambase, 7, &dummy);
for(i = 1; i <= 7; i++) {
printk(KERN_DEBUG "sisusb: rwtest %d bytes\n", i);
sisusb_read_memory(sisusb, destbuffer, sisusb->vrambase, i, &dummy);
for(j = 0; j < i; j++) {
printk(KERN_DEBUG "sisusb: rwtest read[%d] = %x\n", j, destbuffer[j]);
}
}
}
#endif
/* access pci config registers (reg numbers 0, 4, 8, etc) */
static int
sisusb_write_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 data)
{
struct sisusb_packet packet;
int ret;
packet.header = 0x008f;
packet.address = regnum | 0x10000;
packet.data = data;
ret = sisusb_send_packet(sisusb, 10, &packet);
return ret;
}
static int
sisusb_read_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 *data)
{
struct sisusb_packet packet;
int ret;
packet.header = 0x008f;
packet.address = (u32)regnum | 0x10000;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data;
return ret;
}
/* Clear video RAM */
static int
sisusb_clear_vram(struct sisusb_usb_data *sisusb, u32 address, int length)
{
int ret, i;
ssize_t j;
if (address < sisusb->vrambase)
return 1;
if (address >= sisusb->vrambase + sisusb->vramsize)
return 1;
if (address + length > sisusb->vrambase + sisusb->vramsize)
length = sisusb->vrambase + sisusb->vramsize - address;
if (length <= 0)
return 0;
/* allocate free buffer/urb and clear the buffer */
if ((i = sisusb_alloc_outbuf(sisusb)) < 0)
return -EBUSY;
memset(sisusb->obuf[i], 0, sisusb->obufsize);
/* We can write a length > buffer size here. The buffer
* data will simply be re-used (like a ring-buffer).
*/
ret = sisusb_write_mem_bulk(sisusb, address, NULL, length, NULL, i, &j);
/* Free the buffer/urb */
sisusb_free_outbuf(sisusb, i);
return ret;
}
/* Initialize the graphics core (return 0 on success)
* This resets the graphics hardware and puts it into
* a defined mode (640x480@60Hz)
*/
#define GETREG(r,d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, r, d)
#define SETREG(r,d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, r, d)
#define SETIREG(r,i,d) sisusb_setidxreg(sisusb, r, i, d)
#define GETIREG(r,i,d) sisusb_getidxreg(sisusb, r, i, d)
#define SETIREGOR(r,i,o) sisusb_setidxregor(sisusb, r, i, o)
#define SETIREGAND(r,i,a) sisusb_setidxregand(sisusb, r, i, a)
#define SETIREGANDOR(r,i,a,o) sisusb_setidxregandor(sisusb, r, i, a, o)
#define READL(a,d) sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, a, d)
#define WRITEL(a,d) sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, a, d)
#define READB(a,d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d)
#define WRITEB(a,d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d)
static int
sisusb_triggersr16(struct sisusb_usb_data *sisusb, u8 ramtype)
{
int ret;
u8 tmp8;
ret = GETIREG(SISSR, 0x16, &tmp8);
if (ramtype <= 1) {
tmp8 &= 0x3f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0x80;
ret |= SETIREG(SISSR, 0x16, tmp8);
} else {
tmp8 |= 0xc0;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0x80;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0xd0;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0xa0;
ret |= SETIREG(SISSR, 0x16, tmp8);
}
return ret;
}
static int
sisusb_getbuswidth(struct sisusb_usb_data *sisusb, int *bw, int *chab)
{
int ret;
u8 ramtype, done = 0;
u32 t0, t1, t2, t3;
u32 ramptr = SISUSB_PCI_MEMBASE;
ret = GETIREG(SISSR, 0x3a, &ramtype);
ramtype &= 3;
ret |= SETIREG(SISSR, 0x13, 0x00);
if (ramtype <= 1) {
ret |= SETIREG(SISSR, 0x14, 0x12);
ret |= SETIREGAND(SISSR, 0x15, 0xef);
} else {
ret |= SETIREG(SISSR, 0x14, 0x02);
}
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x01234567);
ret |= WRITEL(ramptr + 4, 0x456789ab);
ret |= WRITEL(ramptr + 8, 0x89abcdef);
ret |= WRITEL(ramptr + 12, 0xcdef0123);
ret |= WRITEL(ramptr + 16, 0x55555555);
ret |= WRITEL(ramptr + 20, 0x55555555);
ret |= WRITEL(ramptr + 24, 0xffffffff);
ret |= WRITEL(ramptr + 28, 0xffffffff);
ret |= READL(ramptr + 0, &t0);
ret |= READL(ramptr + 4, &t1);
ret |= READL(ramptr + 8, &t2);
ret |= READL(ramptr + 12, &t3);
if (ramtype <= 1) {
*chab = 0; *bw = 64;
if ((t3 != 0xcdef0123) || (t2 != 0x89abcdef)) {
if ((t1 == 0x456789ab) && (t0 == 0x01234567)) {
*chab = 0; *bw = 64;
ret |= SETIREGAND(SISSR, 0x14, 0xfd);
}
}
if ((t1 != 0x456789ab) || (t0 != 0x01234567)) {
*chab = 1; *bw = 64;
ret |= SETIREGANDOR(SISSR, 0x14, 0xfc,0x01);
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x89abcdef);
ret |= WRITEL(ramptr + 4, 0xcdef0123);
ret |= WRITEL(ramptr + 8, 0x55555555);
ret |= WRITEL(ramptr + 12, 0x55555555);
ret |= WRITEL(ramptr + 16, 0xaaaaaaaa);
ret |= WRITEL(ramptr + 20, 0xaaaaaaaa);
ret |= READL(ramptr + 4, &t1);
if (t1 != 0xcdef0123) {
*bw = 32;
ret |= SETIREGOR(SISSR, 0x15, 0x10);
}
}
} else {
*chab = 0; *bw = 64; /* default: cha, bw = 64 */
done = 0;
if (t1 == 0x456789ab) {
if (t0 == 0x01234567) {
*chab = 0; *bw = 64;
done = 1;
}
} else {
if (t0 == 0x01234567) {
*chab = 0; *bw = 32;
ret |= SETIREG(SISSR, 0x14, 0x00);
done = 1;
}
}
if (!done) {
ret |= SETIREG(SISSR, 0x14, 0x03);
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x01234567);
ret |= WRITEL(ramptr + 4, 0x456789ab);
ret |= WRITEL(ramptr + 8, 0x89abcdef);
ret |= WRITEL(ramptr + 12, 0xcdef0123);
ret |= WRITEL(ramptr + 16, 0x55555555);
ret |= WRITEL(ramptr + 20, 0x55555555);
ret |= WRITEL(ramptr + 24, 0xffffffff);
ret |= WRITEL(ramptr + 28, 0xffffffff);
ret |= READL(ramptr + 0, &t0);
ret |= READL(ramptr + 4, &t1);
if (t1 == 0x456789ab) {
if (t0 == 0x01234567) {
*chab = 1; *bw = 64;
return ret;
} /* else error */
} else {
if (t0 == 0x01234567) {
*chab = 1; *bw = 32;
ret |= SETIREG(SISSR, 0x14, 0x01);
} /* else error */
}
}
}
return ret;
}
static int
sisusb_verify_mclk(struct sisusb_usb_data *sisusb)
{
int ret = 0;
u32 ramptr = SISUSB_PCI_MEMBASE;
u8 tmp1, tmp2, i, j;
ret |= WRITEB(ramptr, 0xaa);
ret |= WRITEB(ramptr + 16, 0x55);
ret |= READB(ramptr, &tmp1);
ret |= READB(ramptr + 16, &tmp2);
if ((tmp1 != 0xaa) || (tmp2 != 0x55)) {
for (i = 0, j = 16; i < 2; i++, j += 16) {
ret |= GETIREG(SISSR, 0x21, &tmp1);
ret |= SETIREGAND(SISSR, 0x21, (tmp1 & 0xfb));
ret |= SETIREGOR(SISSR, 0x3c, 0x01); /* not on 330 */
ret |= SETIREGAND(SISSR, 0x3c, 0xfe); /* not on 330 */
ret |= SETIREG(SISSR, 0x21, tmp1);
ret |= WRITEB(ramptr + 16 + j, j);
ret |= READB(ramptr + 16 + j, &tmp1);
if (tmp1 == j) {
ret |= WRITEB(ramptr + j, j);
break;
}
}
}
return ret;
}
static int
sisusb_set_rank(struct sisusb_usb_data *sisusb, int *iret, int index,
u8 rankno, u8 chab, const u8 dramtype[][5],
int bw)
{
int ret = 0, ranksize;
u8 tmp;
*iret = 0;
if ((rankno == 2) && (dramtype[index][0] == 2))
return ret;
ranksize = dramtype[index][3] / 2 * bw / 32;
if ((ranksize * rankno) > 128)
return ret;
tmp = 0;
while ((ranksize >>= 1) > 0) tmp += 0x10;
tmp |= ((rankno - 1) << 2);
tmp |= ((bw / 64) & 0x02);
tmp |= (chab & 0x01);
ret = SETIREG(SISSR, 0x14, tmp);
ret |= sisusb_triggersr16(sisusb, 0); /* sic! */
*iret = 1;
return ret;
}
static int
sisusb_check_rbc(struct sisusb_usb_data *sisusb, int *iret, u32 inc, int testn)
{
int ret = 0, i;
u32 j, tmp;
*iret = 0;
for (i = 0, j = 0; i < testn; i++) {
ret |= WRITEL(sisusb->vrambase + j, j);
j += inc;
}
for (i = 0, j = 0; i < testn; i++) {
ret |= READL(sisusb->vrambase + j, &tmp);
if (tmp != j) return ret;
j += inc;
}
*iret = 1;
return ret;
}
static int
sisusb_check_ranks(struct sisusb_usb_data *sisusb, int *iret, int rankno,
int idx, int bw, const u8 rtype[][5])
{
int ret = 0, i, i2ret;
u32 inc;
*iret = 0;
for (i = rankno; i >= 1; i--) {
inc = 1 << (rtype[idx][2] +
rtype[idx][1] +
rtype[idx][0] +
bw / 64 + i);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2);
if (!i2ret)
return ret;
}
inc = 1 << (rtype[idx][2] + bw / 64 + 2);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 4);
if (!i2ret)
return ret;
inc = 1 << (10 + bw / 64);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2);
if (!i2ret)
return ret;
*iret = 1;
return ret;
}
static int
sisusb_get_sdram_size(struct sisusb_usb_data *sisusb, int *iret, int bw,
int chab)
{
int ret = 0, i2ret = 0, i, j;
static const u8 sdramtype[13][5] = {
{ 2, 12, 9, 64, 0x35 },
{ 1, 13, 9, 64, 0x44 },
{ 2, 12, 8, 32, 0x31 },
{ 2, 11, 9, 32, 0x25 },
{ 1, 12, 9, 32, 0x34 },
{ 1, 13, 8, 32, 0x40 },
{ 2, 11, 8, 16, 0x21 },
{ 1, 12, 8, 16, 0x30 },
{ 1, 11, 9, 16, 0x24 },
{ 1, 11, 8, 8, 0x20 },
{ 2, 9, 8, 4, 0x01 },
{ 1, 10, 8, 4, 0x10 },
{ 1, 9, 8, 2, 0x00 }
};
*iret = 1; /* error */
for (i = 0; i < 13; i++) {
ret |= SETIREGANDOR(SISSR, 0x13, 0x80, sdramtype[i][4]);
for (j = 2; j > 0; j--) {
ret |= sisusb_set_rank(sisusb, &i2ret, i, j,
chab, sdramtype, bw);
if (!i2ret)
continue;
ret |= sisusb_check_ranks(sisusb, &i2ret, j, i,
bw, sdramtype);
if (i2ret) {
*iret = 0; /* ram size found */
return ret;
}
}
}
return ret;
}
static int
sisusb_setup_screen(struct sisusb_usb_data *sisusb, int clrall, int drwfr)
{
int ret = 0;
u32 address;
int i, length, modex, modey, bpp;
modex = 640; modey = 480; bpp = 2;
address = sisusb->vrambase; /* Clear video ram */
if (clrall)
length = sisusb->vramsize;
else
length = modex * bpp * modey;
ret = sisusb_clear_vram(sisusb, address, length);
if (!ret && drwfr) {
for (i = 0; i < modex; i++) {
address = sisusb->vrambase + (i * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
address += (modex * (modey-1) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
}
for (i = 0; i < modey; i++) {
address = sisusb->vrambase + ((i * modex) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
address += ((modex - 1) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
}
}
return ret;
}
static int
sisusb_set_default_mode(struct sisusb_usb_data *sisusb, int touchengines)
{
int ret = 0, i, j, modex, modey, bpp, du;
u8 sr31, cr63, tmp8;
static const char attrdata[] = {
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x01,0x00,0x00,0x00
};
static const char crtcrdata[] = {
0x5f,0x4f,0x50,0x82,0x54,0x80,0x0b,0x3e,
0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,
0xea,0x8c,0xdf,0x28,0x40,0xe7,0x04,0xa3,
0xff
};
static const char grcdata[] = {
0x00,0x00,0x00,0x00,0x00,0x40,0x05,0x0f,
0xff
};
static const char crtcdata[] = {
0x5f,0x4f,0x4f,0x83,0x55,0x81,0x0b,0x3e,
0xe9,0x8b,0xdf,0xe8,0x0c,0x00,0x00,0x05,
0x00
};
modex = 640; modey = 480; bpp = 2;
GETIREG(SISSR, 0x31, &sr31);
GETIREG(SISCR, 0x63, &cr63);
SETIREGOR(SISSR, 0x01, 0x20);
SETIREG(SISCR, 0x63, cr63 & 0xbf);
SETIREGOR(SISCR, 0x17, 0x80);
SETIREGOR(SISSR, 0x1f, 0x04);
SETIREGAND(SISSR, 0x07, 0xfb);
SETIREG(SISSR, 0x00, 0x03); /* seq */
SETIREG(SISSR, 0x01, 0x21);
SETIREG(SISSR, 0x02, 0x0f);
SETIREG(SISSR, 0x03, 0x00);
SETIREG(SISSR, 0x04, 0x0e);
SETREG(SISMISCW, 0x23); /* misc */
for (i = 0; i <= 0x18; i++) { /* crtc */
SETIREG(SISCR, i, crtcrdata[i]);
}
for (i = 0; i <= 0x13; i++) { /* att */
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, i);
SETREG(SISAR, attrdata[i]);
}
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, 0x14);
SETREG(SISAR, 0x00);
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, 0x20);
GETREG(SISINPSTAT, &tmp8);
for (i = 0; i <= 0x08; i++) { /* grc */
SETIREG(SISGR, i, grcdata[i]);
}
SETIREGAND(SISGR, 0x05, 0xbf);
for (i = 0x0A; i <= 0x0E; i++) { /* clr ext */
SETIREG(SISSR, i, 0x00);
}
SETIREGAND(SISSR, 0x37, 0xfe);
SETREG(SISMISCW, 0xef); /* sync */
SETIREG(SISCR, 0x11, 0x00); /* crtc */
for (j = 0x00, i = 0; i <= 7; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x10; i <= 10; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x15; i <= 12; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x0A; i <= 15; i++, j++) {
SETIREG(SISSR, j, crtcdata[i]);
}
SETIREG(SISSR, 0x0E, (crtcdata[16] & 0xE0));
SETIREGANDOR(SISCR, 0x09, 0x5f, ((crtcdata[16] & 0x01) << 5));
SETIREG(SISCR, 0x14, 0x4f);
du = (modex / 16) * (bpp * 2); /* offset/pitch */
if (modex % 16) du += bpp;
SETIREGANDOR(SISSR, 0x0e, 0xf0, ((du >> 8) & 0x0f));
SETIREG(SISCR, 0x13, (du & 0xff));
du <<= 5;
tmp8 = du >> 8;
if (du & 0xff) tmp8++;
SETIREG(SISSR, 0x10, tmp8);
SETIREG(SISSR, 0x31, 0x00); /* VCLK */
SETIREG(SISSR, 0x2b, 0x1b);
SETIREG(SISSR, 0x2c, 0xe1);
SETIREG(SISSR, 0x2d, 0x01);
SETIREGAND(SISSR, 0x3d, 0xfe); /* FIFO */
SETIREG(SISSR, 0x08, 0xae);
SETIREGAND(SISSR, 0x09, 0xf0);
SETIREG(SISSR, 0x08, 0x34);
SETIREGOR(SISSR, 0x3d, 0x01);
SETIREGAND(SISSR, 0x1f, 0x3f); /* mode regs */
SETIREGANDOR(SISSR, 0x06, 0xc0, 0x0a);
SETIREG(SISCR, 0x19, 0x00);
SETIREGAND(SISCR, 0x1a, 0xfc);
SETIREGAND(SISSR, 0x0f, 0xb7);
SETIREGAND(SISSR, 0x31, 0xfb);
SETIREGANDOR(SISSR, 0x21, 0x1f, 0xa0);
SETIREGAND(SISSR, 0x32, 0xf3);
SETIREGANDOR(SISSR, 0x07, 0xf8, 0x03);
SETIREG(SISCR, 0x52, 0x6c);
SETIREG(SISCR, 0x0d, 0x00); /* adjust frame */
SETIREG(SISCR, 0x0c, 0x00);
SETIREG(SISSR, 0x0d, 0x00);
SETIREGAND(SISSR, 0x37, 0xfe);
SETIREG(SISCR, 0x32, 0x20);
SETIREGAND(SISSR, 0x01, 0xdf); /* enable display */
SETIREG(SISCR, 0x63, (cr63 & 0xbf));
SETIREG(SISSR, 0x31, (sr31 & 0xfb));
if (touchengines) {
SETIREG(SISSR, 0x20, 0xa1); /* enable engines */
SETIREGOR(SISSR, 0x1e, 0x5a);
SETIREG(SISSR, 0x26, 0x01); /* disable cmdqueue */
SETIREG(SISSR, 0x27, 0x1f);
SETIREG(SISSR, 0x26, 0x00);
}
SETIREG(SISCR, 0x34, 0x44); /* we just set std mode #44 */
return ret;
}
static int
sisusb_init_gfxcore(struct sisusb_usb_data *sisusb)
{
int ret = 0, i, j, bw, chab, iret, retry = 3;
u8 tmp8, ramtype;
u32 tmp32;
static const char mclktable[] = {
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143
};
static const char eclktable[] = {
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143
};
static const char ramtypetable1[] = {
0x00, 0x04, 0x60, 0x60,
0x0f, 0x0f, 0x1f, 0x1f,
0xba, 0xba, 0xba, 0xba,
0xa9, 0xa9, 0xac, 0xac,
0xa0, 0xa0, 0xa0, 0xa8,
0x00, 0x00, 0x02, 0x02,
0x30, 0x30, 0x40, 0x40
};
static const char ramtypetable2[] = {
0x77, 0x77, 0x44, 0x44,
0x77, 0x77, 0x44, 0x44,
0x00, 0x00, 0x00, 0x00,
0x5b, 0x5b, 0xab, 0xab,
0x00, 0x00, 0xf0, 0xf8
};
while (retry--) {
/* Enable VGA */
ret = GETREG(SISVGAEN, &tmp8);
ret |= SETREG(SISVGAEN, (tmp8 | 0x01));
/* Enable GPU access to VRAM */
ret |= GETREG(SISMISCR, &tmp8);
ret |= SETREG(SISMISCW, (tmp8 | 0x01));
if (ret) continue;
/* Reset registers */
ret |= SETIREGAND(SISCR, 0x5b, 0xdf);
ret |= SETIREG(SISSR, 0x05, 0x86);
ret |= SETIREGOR(SISSR, 0x20, 0x01);
ret |= SETREG(SISMISCW, 0x67);
for (i = 0x06; i <= 0x1f; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x21; i <= 0x27; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x31; i <= 0x3d; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x12; i <= 0x1b; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x79; i <= 0x7c; i++) {
ret |= SETIREG(SISCR, i, 0x00);
}
if (ret) continue;
ret |= SETIREG(SISCR, 0x63, 0x80);
ret |= GETIREG(SISSR, 0x3a, &ramtype);
ramtype &= 0x03;
ret |= SETIREG(SISSR, 0x28, mclktable[ramtype * 4]);
ret |= SETIREG(SISSR, 0x29, mclktable[(ramtype * 4) + 1]);
ret |= SETIREG(SISSR, 0x2a, mclktable[(ramtype * 4) + 2]);
ret |= SETIREG(SISSR, 0x2e, eclktable[ramtype * 4]);
ret |= SETIREG(SISSR, 0x2f, eclktable[(ramtype * 4) + 1]);
ret |= SETIREG(SISSR, 0x30, eclktable[(ramtype * 4) + 2]);
ret |= SETIREG(SISSR, 0x07, 0x18);
ret |= SETIREG(SISSR, 0x11, 0x0f);
if (ret) continue;
for (i = 0x15, j = 0; i <= 0x1b; i++, j++) {
ret |= SETIREG(SISSR, i, ramtypetable1[(j*4) + ramtype]);
}
for (i = 0x40, j = 0; i <= 0x44; i++, j++) {
ret |= SETIREG(SISCR, i, ramtypetable2[(j*4) + ramtype]);
}
ret |= SETIREG(SISCR, 0x49, 0xaa);
ret |= SETIREG(SISSR, 0x1f, 0x00);
ret |= SETIREG(SISSR, 0x20, 0xa0);
ret |= SETIREG(SISSR, 0x23, 0xf6);
ret |= SETIREG(SISSR, 0x24, 0x0d);
ret |= SETIREG(SISSR, 0x25, 0x33);
ret |= SETIREG(SISSR, 0x11, 0x0f);
ret |= SETIREGOR(SISPART1, 0x2f, 0x01);
ret |= SETIREGAND(SISCAP, 0x3f, 0xef);
if (ret) continue;
ret |= SETIREG(SISPART1, 0x00, 0x00);
ret |= GETIREG(SISSR, 0x13, &tmp8);
tmp8 >>= 4;
ret |= SETIREG(SISPART1, 0x02, 0x00);
ret |= SETIREG(SISPART1, 0x2e, 0x08);
ret |= sisusb_read_pci_config(sisusb, 0x50, &tmp32);
tmp32 &= 0x00f00000;
tmp8 = (tmp32 == 0x100000) ? 0x33 : 0x03;
ret |= SETIREG(SISSR, 0x25, tmp8);
tmp8 = (tmp32 == 0x100000) ? 0xaa : 0x88;
ret |= SETIREG(SISCR, 0x49, tmp8);
ret |= SETIREG(SISSR, 0x27, 0x1f);
ret |= SETIREG(SISSR, 0x31, 0x00);
ret |= SETIREG(SISSR, 0x32, 0x11);
ret |= SETIREG(SISSR, 0x33, 0x00);
if (ret) continue;
ret |= SETIREG(SISCR, 0x83, 0x00);
ret |= sisusb_set_default_mode(sisusb, 0);
ret |= SETIREGAND(SISSR, 0x21, 0xdf);
ret |= SETIREGOR(SISSR, 0x01, 0x20);
ret |= SETIREGOR(SISSR, 0x16, 0x0f);
ret |= sisusb_triggersr16(sisusb, ramtype);
/* Disable refresh */
ret |= SETIREGAND(SISSR, 0x17, 0xf8);
ret |= SETIREGOR(SISSR, 0x19, 0x03);
ret |= sisusb_getbuswidth(sisusb, &bw, &chab);
ret |= sisusb_verify_mclk(sisusb);
if (ramtype <= 1) {
ret |= sisusb_get_sdram_size(sisusb, &iret, bw, chab);
if (iret) {
printk(KERN_ERR "sisusbvga[%d]: RAM size "
"detection failed, "
"assuming 8MB video RAM\n",
sisusb->minor);
ret |= SETIREG(SISSR,0x14,0x31);
/* TODO */
}
} else {
printk(KERN_ERR "sisusbvga[%d]: DDR RAM device found, "
"assuming 8MB video RAM\n",
sisusb->minor);
ret |= SETIREG(SISSR,0x14,0x31);
/* *** TODO *** */
}
/* Enable refresh */
ret |= SETIREG(SISSR, 0x16, ramtypetable1[4 + ramtype]);
ret |= SETIREG(SISSR, 0x17, ramtypetable1[8 + ramtype]);
ret |= SETIREG(SISSR, 0x19, ramtypetable1[16 + ramtype]);
ret |= SETIREGOR(SISSR, 0x21, 0x20);
ret |= SETIREG(SISSR, 0x22, 0xfb);
ret |= SETIREG(SISSR, 0x21, 0xa5);
if (ret == 0)
break;
}
return ret;
}
#undef SETREG
#undef GETREG
#undef SETIREG
#undef GETIREG
#undef SETIREGOR
#undef SETIREGAND
#undef SETIREGANDOR
#undef READL
#undef WRITEL
static void
sisusb_get_ramconfig(struct sisusb_usb_data *sisusb)
{
u8 tmp8, tmp82, ramtype;
int bw = 0;
char *ramtypetext1 = NULL;
const char *ramtypetext2[] = { "SDR SDRAM", "SDR SGRAM",
"DDR SDRAM", "DDR SGRAM" };
static const int busSDR[4] = {64, 64, 128, 128};
static const int busDDR[4] = {32, 32, 64, 64};
static const int busDDRA[4] = {64+32, 64+32 , (64+32)*2, (64+32)*2};
sisusb_getidxreg(sisusb, SISSR, 0x14, &tmp8);
sisusb_getidxreg(sisusb, SISSR, 0x15, &tmp82);
sisusb_getidxreg(sisusb, SISSR, 0x3a, &ramtype);
sisusb->vramsize = (1 << ((tmp8 & 0xf0) >> 4)) * 1024 * 1024;
ramtype &= 0x03;
switch ((tmp8 >> 2) & 0x03) {
case 0: ramtypetext1 = "1 ch/1 r";
if (tmp82 & 0x10) {
bw = 32;
} else {
bw = busSDR[(tmp8 & 0x03)];
}
break;
case 1: ramtypetext1 = "1 ch/2 r";
sisusb->vramsize <<= 1;
bw = busSDR[(tmp8 & 0x03)];
break;
case 2: ramtypetext1 = "asymmeric";
sisusb->vramsize += sisusb->vramsize/2;
bw = busDDRA[(tmp8 & 0x03)];
break;
case 3: ramtypetext1 = "2 channel";
sisusb->vramsize <<= 1;
bw = busDDR[(tmp8 & 0x03)];
break;
}
printk(KERN_INFO "sisusbvga[%d]: %dMB %s %s, bus width %d\n",
sisusb->minor, (sisusb->vramsize >> 20), ramtypetext1,
ramtypetext2[ramtype], bw);
}
static int
sisusb_do_init_gfxdevice(struct sisusb_usb_data *sisusb)
{
struct sisusb_packet packet;
int ret;
u32 tmp32;
/* Do some magic */
packet.header = 0x001f;
packet.address = 0x00000324;
packet.data = 0x00000004;
ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000364;
packet.data = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000384;
packet.data = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000100;
packet.data = 0x00000700;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x000f;
packet.address = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 6, &packet, 0);
packet.data |= 0x17;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
/* Init BAR 0 (VRAM) */
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x10, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_MEMBASE;
ret |= sisusb_write_pci_config(sisusb, 0x10, tmp32);
/* Init BAR 1 (MMIO) */
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x14, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_MMIOBASE;
ret |= sisusb_write_pci_config(sisusb, 0x14, tmp32);
/* Init BAR 2 (i/o ports) */
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x18, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_IOPORTBASE;
ret |= sisusb_write_pci_config(sisusb, 0x18, tmp32);
/* Enable memory and i/o access */
ret |= sisusb_read_pci_config(sisusb, 0x04, &tmp32);
tmp32 |= 0x3;
ret |= sisusb_write_pci_config(sisusb, 0x04, tmp32);
if (ret == 0) {
/* Some further magic */
packet.header = 0x001f;
packet.address = 0x00000050;
packet.data = 0x000000ff;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
}
return ret;
}
/* Initialize the graphics device (return 0 on success)
* This initializes the net2280 as well as the PCI registers
* of the graphics board.
*/
static int
sisusb_init_gfxdevice(struct sisusb_usb_data *sisusb, int initscreen)
{
int ret = 0, test = 0;
u32 tmp32;
if (sisusb->devinit == 1) {
/* Read PCI BARs and see if they have been set up */
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MEMBASE) test++;
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MMIOBASE) test++;
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_IOPORTBASE) test++;
}
/* No? So reset the device */
if ((sisusb->devinit == 0) || (test != 3)) {
ret |= sisusb_do_init_gfxdevice(sisusb);
if (ret == 0)
sisusb->devinit = 1;
}
if (sisusb->devinit) {
/* Initialize the graphics core */
if (sisusb_init_gfxcore(sisusb) == 0) {
sisusb->gfxinit = 1;
sisusb_get_ramconfig(sisusb);
ret |= sisusb_set_default_mode(sisusb, 1);
ret |= sisusb_setup_screen(sisusb, 1, initscreen);
}
}
return ret;
}
#ifdef INCL_SISUSB_CON
/* Set up default text mode:
- Set text mode (0x03)
- Upload default font
- Upload user font (if available)
*/
int
sisusb_reset_text_mode(struct sisusb_usb_data *sisusb, int init)
{
int ret = 0, slot = sisusb->font_slot, i;
const struct font_desc *myfont;
u8 *tempbuf;
u16 *tempbufb;
size_t written;
static const char bootstring[] = "SiSUSB VGA text console, (C) 2005 Thomas Winischhofer.";
static const char bootlogo[] = "(o_ //\\ V_/_";
/* sisusb->lock is down */
if (!sisusb->SiS_Pr)
return 1;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
/* Set mode 0x03 */
SiSUSBSetMode(sisusb->SiS_Pr, 0x03);
if (!(myfont = find_font("VGA8x16")))
return 1;
if (!(tempbuf = vmalloc(8192)))
return 1;
for (i = 0; i < 256; i++)
memcpy(tempbuf + (i * 32), myfont->data + (i * 16), 16);
/* Upload default font */
ret = sisusbcon_do_font_op(sisusb, 1, 0, tempbuf, 8192, 0, 1, NULL, 16, 0);
vfree(tempbuf);
/* Upload user font (and reset current slot) */
if (sisusb->font_backup) {
ret |= sisusbcon_do_font_op(sisusb, 1, 2, sisusb->font_backup,
8192, sisusb->font_backup_512, 1, NULL,
sisusb->font_backup_height, 0);
if (slot != 2)
sisusbcon_do_font_op(sisusb, 1, 0, NULL, 0, 0, 1,
NULL, 16, 0);
}
if (init && !sisusb->scrbuf) {
if ((tempbuf = vmalloc(8192))) {
i = 4096;
tempbufb = (u16 *)tempbuf;
while (i--)
*(tempbufb++) = 0x0720;
i = 0;
tempbufb = (u16 *)tempbuf;
while (bootlogo[i]) {
*(tempbufb++) = 0x0700 | bootlogo[i++];
if (!(i % 4))
tempbufb += 76;
}
i = 0;
tempbufb = (u16 *)tempbuf + 6;
while (bootstring[i])
*(tempbufb++) = 0x0700 | bootstring[i++];
ret |= sisusb_copy_memory(sisusb, tempbuf,
sisusb->vrambase, 8192, &written);
vfree(tempbuf);
}
} else if (sisusb->scrbuf) {
ret |= sisusb_copy_memory(sisusb, (char *)sisusb->scrbuf,
sisusb->vrambase, sisusb->scrbuf_size, &written);
}
if (sisusb->sisusb_cursor_size_from >= 0 &&
sisusb->sisusb_cursor_size_to >= 0) {
sisusb_setidxreg(sisusb, SISCR, 0x0a,
sisusb->sisusb_cursor_size_from);
sisusb_setidxregandor(sisusb, SISCR, 0x0b, 0xe0,
sisusb->sisusb_cursor_size_to);
} else {
sisusb_setidxreg(sisusb, SISCR, 0x0a, 0x2d);
sisusb_setidxreg(sisusb, SISCR, 0x0b, 0x0e);
sisusb->sisusb_cursor_size_to = -1;
}
slot = sisusb->sisusb_cursor_loc;
if(slot < 0) slot = 0;
sisusb->sisusb_cursor_loc = -1;
sisusb->bad_cursor_pos = 1;
sisusb_set_cursor(sisusb, slot);
sisusb_setidxreg(sisusb, SISCR, 0x0c, (sisusb->cur_start_addr >> 8));
sisusb_setidxreg(sisusb, SISCR, 0x0d, (sisusb->cur_start_addr & 0xff));
sisusb->textmodedestroyed = 0;
/* sisusb->lock is down */
return ret;
}
#endif
/* fops */
static int
sisusb_open(struct inode *inode, struct file *file)
{
struct sisusb_usb_data *sisusb;
struct usb_interface *interface;
int subminor = iminor(inode);
down(&disconnect_sem);
if (!(interface = usb_find_interface(&sisusb_driver, subminor))) {
printk(KERN_ERR "sisusb[%d]: Failed to find interface\n",
subminor);
up(&disconnect_sem);
return -ENODEV;
}
if (!(sisusb = usb_get_intfdata(interface))) {
up(&disconnect_sem);
return -ENODEV;
}
down(&sisusb->lock);
if (!sisusb->present || !sisusb->ready) {
up(&sisusb->lock);
up(&disconnect_sem);
return -ENODEV;
}
if (sisusb->isopen) {
up(&sisusb->lock);
up(&disconnect_sem);
return -EBUSY;
}
if (!sisusb->devinit) {
if (sisusb->sisusb_dev->speed == USB_SPEED_HIGH) {
if (sisusb_init_gfxdevice(sisusb, 0)) {
up(&sisusb->lock);
up(&disconnect_sem);
printk(KERN_ERR
"sisusbvga[%d]: Failed to initialize "
"device\n",
sisusb->minor);
return -EIO;
}
} else {
up(&sisusb->lock);
up(&disconnect_sem);
printk(KERN_ERR
"sisusbvga[%d]: Device not attached to "
"USB 2.0 hub\n",
sisusb->minor);
return -EIO;
}
}
/* Increment usage count for our sisusb */
kref_get(&sisusb->kref);
sisusb->isopen = 1;
file->private_data = sisusb;
up(&sisusb->lock);
up(&disconnect_sem);
return 0;
}
void
sisusb_delete(struct kref *kref)
{
struct sisusb_usb_data *sisusb = to_sisusb_dev(kref);
if (!sisusb)
return;
if (sisusb->sisusb_dev)
usb_put_dev(sisusb->sisusb_dev);
sisusb->sisusb_dev = NULL;
sisusb_free_buffers(sisusb);
sisusb_free_urbs(sisusb);
#ifdef INCL_SISUSB_CON
kfree(sisusb->SiS_Pr);
#endif
kfree(sisusb);
}
static int
sisusb_release(struct inode *inode, struct file *file)
{
struct sisusb_usb_data *sisusb;
int myminor;
down(&disconnect_sem);
if (!(sisusb = (struct sisusb_usb_data *)file->private_data)) {
up(&disconnect_sem);
return -ENODEV;
}
down(&sisusb->lock);
if (sisusb->present) {
/* Wait for all URBs to finish if device still present */
if (!sisusb_wait_all_out_complete(sisusb))
sisusb_kill_all_busy(sisusb);
}
myminor = sisusb->minor;
sisusb->isopen = 0;
file->private_data = NULL;
up(&sisusb->lock);
/* decrement the usage count on our device */
kref_put(&sisusb->kref, sisusb_delete);
up(&disconnect_sem);
return 0;
}
static ssize_t
sisusb_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct sisusb_usb_data *sisusb;
ssize_t bytes_read = 0;
int errno = 0;
u8 buf8;
u16 buf16;
u32 buf32, address;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
down(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
up(&sisusb->lock);
return -ENODEV;
}
if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
/* Read i/o ports
* Byte, word and long(32) can be read. As this
* emulates inX instructions, the data returned is
* in machine-endianness.
*/
switch (count) {
case 1:
if (sisusb_read_memio_byte(sisusb,
SISUSB_TYPE_IO,
address, &buf8))
errno = -EIO;
else if (put_user(buf8, (u8 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 1;
break;
case 2:
if (sisusb_read_memio_word(sisusb,
SISUSB_TYPE_IO,
address, &buf16))
errno = -EIO;
else if (put_user(buf16, (u16 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 2;
break;
case 4:
if (sisusb_read_memio_long(sisusb,
SISUSB_TYPE_IO,
address, &buf32))
errno = -EIO;
else if (put_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 4;
break;
default:
errno = -EIO;
}
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
/* Read video ram
* Remember: Data delivered is never endian-corrected
*/
errno = sisusb_read_mem_bulk(sisusb, address,
NULL, count, buffer, &bytes_read);
if (bytes_read)
errno = bytes_read;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MMIOBASE +
SISUSB_PCI_MMIOBASE;
/* Read MMIO
* Remember: Data delivered is never endian-corrected
*/
errno = sisusb_read_mem_bulk(sisusb, address,
NULL, count, buffer, &bytes_read);
if (bytes_read)
errno = bytes_read;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE &&
(*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + 0x5c) {
if (count != 4) {
up(&sisusb->lock);
return -EINVAL;
}
address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE;
/* Read PCI config register
* Return value delivered in machine endianness.
*/
if (sisusb_read_pci_config(sisusb, address, &buf32))
errno = -EIO;
else if (put_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 4;
} else {
errno = -EBADFD;
}
(*ppos) += bytes_read;
up(&sisusb->lock);
return errno ? errno : bytes_read;
}
static ssize_t
sisusb_write(struct file *file, const char __user *buffer, size_t count,
loff_t *ppos)
{
struct sisusb_usb_data *sisusb;
int errno = 0;
ssize_t bytes_written = 0;
u8 buf8;
u16 buf16;
u32 buf32, address;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
down(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
up(&sisusb->lock);
return -ENODEV;
}
if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
/* Write i/o ports
* Byte, word and long(32) can be written. As this
* emulates outX instructions, the data is expected
* in machine-endianness.
*/
switch (count) {
case 1:
if (get_user(buf8, (u8 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_byte(sisusb,
SISUSB_TYPE_IO,
address, buf8))
errno = -EIO;
else
bytes_written = 1;
break;
case 2:
if (get_user(buf16, (u16 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_word(sisusb,
SISUSB_TYPE_IO,
address, buf16))
errno = -EIO;
else
bytes_written = 2;
break;
case 4:
if (get_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_long(sisusb,
SISUSB_TYPE_IO,
address, buf32))
errno = -EIO;
else
bytes_written = 4;
break;
default:
errno = -EIO;
}
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
/* Write video ram.
* Buffer is copied 1:1, therefore, on big-endian
* machines, the data must be swapped by userland
* in advance (if applicable; no swapping in 8bpp
* mode or if YUV data is being transferred).
*/
errno = sisusb_write_mem_bulk(sisusb, address, NULL,
count, buffer, 0, &bytes_written);
if (bytes_written)
errno = bytes_written;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MMIOBASE +
SISUSB_PCI_MMIOBASE;
/* Write MMIO.
* Buffer is copied 1:1, therefore, on big-endian
* machines, the data must be swapped by userland
* in advance.
*/
errno = sisusb_write_mem_bulk(sisusb, address, NULL,
count, buffer, 0, &bytes_written);
if (bytes_written)
errno = bytes_written;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE &&
(*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + SISUSB_PCI_PCONFSIZE) {
if (count != 4) {
up(&sisusb->lock);
return -EINVAL;
}
address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE;
/* Write PCI config register.
* Given value expected in machine endianness.
*/
if (get_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_pci_config(sisusb, address, buf32))
errno = -EIO;
else
bytes_written = 4;
} else {
/* Error */
errno = -EBADFD;
}
(*ppos) += bytes_written;
up(&sisusb->lock);
return errno ? errno : bytes_written;
}
static loff_t
sisusb_lseek(struct file *file, loff_t offset, int orig)
{
struct sisusb_usb_data *sisusb;
loff_t ret;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
down(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
up(&sisusb->lock);
return -ENODEV;
}
switch (orig) {
case 0:
file->f_pos = offset;
ret = file->f_pos;
/* never negative, no force_successful_syscall needed */
break;
case 1:
file->f_pos += offset;
ret = file->f_pos;
/* never negative, no force_successful_syscall needed */
break;
default:
/* seeking relative to "end of file" is not supported */
ret = -EINVAL;
}
up(&sisusb->lock);
return ret;
}
static int
sisusb_handle_command(struct sisusb_usb_data *sisusb, struct sisusb_command *y,
unsigned long arg)
{
int retval, port, length;
u32 address;
/* All our commands require the device
* to be initialized.
*/
if (!sisusb->devinit)
return -ENODEV;
port = y->data3 -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
switch (y->operation) {
case SUCMD_GET:
retval = sisusb_getidxreg(sisusb, port,
y->data0, &y->data1);
if (!retval) {
if (copy_to_user((void __user *)arg, y,
sizeof(*y)))
retval = -EFAULT;
}
break;
case SUCMD_SET:
retval = sisusb_setidxreg(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETOR:
retval = sisusb_setidxregor(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETAND:
retval = sisusb_setidxregand(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETANDOR:
retval = sisusb_setidxregandor(sisusb, port,
y->data0, y->data1, y->data2);
break;
case SUCMD_SETMASK:
retval = sisusb_setidxregmask(sisusb, port,
y->data0, y->data1, y->data2);
break;
case SUCMD_CLRSCR:
/* Gfx core must be initialized */
if (!sisusb->gfxinit)
return -ENODEV;
length = (y->data0 << 16) | (y->data1 << 8) | y->data2;
address = y->data3 -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
retval = sisusb_clear_vram(sisusb, address, length);
break;
case SUCMD_HANDLETEXTMODE:
retval = 0;
#ifdef INCL_SISUSB_CON
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
switch (y->data0) {
case 0:
retval = sisusb_reset_text_mode(sisusb, 0);
break;
case 1:
sisusb->textmodedestroyed = 1;
break;
}
#endif
break;
#ifdef INCL_SISUSB_CON
case SUCMD_SETMODE:
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
retval = 0;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
if (SiSUSBSetMode(sisusb->SiS_Pr, y->data3))
retval = -EINVAL;
break;
case SUCMD_SETVESAMODE:
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
retval = 0;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
if (SiSUSBSetVESAMode(sisusb->SiS_Pr, y->data3))
retval = -EINVAL;
break;
#endif
default:
retval = -EINVAL;
}
if (retval > 0)
retval = -EIO;
return retval;
}
static int
sisusb_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct sisusb_usb_data *sisusb;
struct sisusb_info x;
struct sisusb_command y;
int retval = 0;
u32 __user *argp = (u32 __user *)arg;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
down(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
retval = -ENODEV;
goto err_out;
}
switch (cmd) {
case SISUSB_GET_CONFIG_SIZE:
if (put_user(sizeof(x), argp))
retval = -EFAULT;
break;
case SISUSB_GET_CONFIG:
x.sisusb_id = SISUSB_ID;
x.sisusb_version = SISUSB_VERSION;
x.sisusb_revision = SISUSB_REVISION;
x.sisusb_patchlevel = SISUSB_PATCHLEVEL;
x.sisusb_gfxinit = sisusb->gfxinit;
x.sisusb_vrambase = SISUSB_PCI_PSEUDO_MEMBASE;
x.sisusb_mmiobase = SISUSB_PCI_PSEUDO_MMIOBASE;
x.sisusb_iobase = SISUSB_PCI_PSEUDO_IOPORTBASE;
x.sisusb_pcibase = SISUSB_PCI_PSEUDO_PCIBASE;
x.sisusb_vramsize = sisusb->vramsize;
x.sisusb_minor = sisusb->minor;
x.sisusb_fbdevactive= 0;
#ifdef INCL_SISUSB_CON
x.sisusb_conactive = sisusb->haveconsole ? 1 : 0;
#else
x.sisusb_conactive = 0;
#endif
if (copy_to_user((void __user *)arg, &x, sizeof(x)))
retval = -EFAULT;
break;
case SISUSB_COMMAND:
if (copy_from_user(&y, (void __user *)arg, sizeof(y)))
retval = -EFAULT;
else
retval = sisusb_handle_command(sisusb, &y, arg);
break;
default:
retval = -ENOTTY;
break;
}
err_out:
up(&sisusb->lock);
return retval;
}
#ifdef SISUSB_NEW_CONFIG_COMPAT
static long
sisusb_compat_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
long retval;
switch (cmd) {
case SISUSB_GET_CONFIG_SIZE:
case SISUSB_GET_CONFIG:
case SISUSB_COMMAND:
lock_kernel();
retval = sisusb_ioctl(f->f_dentry->d_inode, f, cmd, arg);
unlock_kernel();
return retval;
default:
return -ENOIOCTLCMD;
}
}
#endif
static struct file_operations usb_sisusb_fops = {
.owner = THIS_MODULE,
.open = sisusb_open,
.release = sisusb_release,
.read = sisusb_read,
.write = sisusb_write,
.llseek = sisusb_lseek,
#ifdef SISUSB_NEW_CONFIG_COMPAT
.compat_ioctl = sisusb_compat_ioctl,
#endif
.ioctl = sisusb_ioctl
};
static struct usb_class_driver usb_sisusb_class = {
.name = "sisusbvga%d",
.fops = &usb_sisusb_fops,
.minor_base = SISUSB_MINOR
};
static int sisusb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct sisusb_usb_data *sisusb;
int retval = 0, i;
const char *memfail =
KERN_ERR
"sisusbvga[%d]: Failed to allocate memory for %s buffer\n";
printk(KERN_INFO "sisusb: USB2VGA dongle found at address %d\n",
dev->devnum);
/* Allocate memory for our private */
if (!(sisusb = kzalloc(sizeof(*sisusb), GFP_KERNEL))) {
printk(KERN_ERR
"sisusb: Failed to allocate memory for private data\n");
return -ENOMEM;
}
kref_init(&sisusb->kref);
init_MUTEX(&(sisusb->lock));
/* Register device */
if ((retval = usb_register_dev(intf, &usb_sisusb_class))) {
printk(KERN_ERR
"sisusb: Failed to get a minor for device %d\n",
dev->devnum);
retval = -ENODEV;
goto error_1;
}
sisusb->sisusb_dev = dev;
sisusb->minor = intf->minor;
sisusb->vrambase = SISUSB_PCI_MEMBASE;
sisusb->mmiobase = SISUSB_PCI_MMIOBASE;
sisusb->mmiosize = SISUSB_PCI_MMIOSIZE;
sisusb->ioportbase = SISUSB_PCI_IOPORTBASE;
/* Everything else is zero */
/* Allocate buffers */
sisusb->ibufsize = SISUSB_IBUF_SIZE;
if (!(sisusb->ibuf = usb_buffer_alloc(dev, SISUSB_IBUF_SIZE,
GFP_KERNEL, &sisusb->transfer_dma_in))) {
printk(memfail, "input", sisusb->minor);
retval = -ENOMEM;
goto error_2;
}
sisusb->numobufs = 0;
sisusb->obufsize = SISUSB_OBUF_SIZE;
for (i = 0; i < NUMOBUFS; i++) {
if (!(sisusb->obuf[i] = usb_buffer_alloc(dev, SISUSB_OBUF_SIZE,
GFP_KERNEL,
&sisusb->transfer_dma_out[i]))) {
if (i == 0) {
printk(memfail, "output", sisusb->minor);
retval = -ENOMEM;
goto error_3;
}
break;
} else
sisusb->numobufs++;
}
/* Allocate URBs */
if (!(sisusb->sisurbin = usb_alloc_urb(0, GFP_KERNEL))) {
printk(KERN_ERR
"sisusbvga[%d]: Failed to allocate URBs\n",
sisusb->minor);
retval = -ENOMEM;
goto error_3;
}
sisusb->completein = 1;
for (i = 0; i < sisusb->numobufs; i++) {
if (!(sisusb->sisurbout[i] = usb_alloc_urb(0, GFP_KERNEL))) {
printk(KERN_ERR
"sisusbvga[%d]: Failed to allocate URBs\n",
sisusb->minor);
retval = -ENOMEM;
goto error_4;
}
sisusb->urbout_context[i].sisusb = (void *)sisusb;
sisusb->urbout_context[i].urbindex = i;
sisusb->urbstatus[i] = 0;
}
printk(KERN_INFO "sisusbvga[%d]: Allocated %d output buffers\n",
sisusb->minor, sisusb->numobufs);
#ifdef INCL_SISUSB_CON
/* Allocate our SiS_Pr */
if (!(sisusb->SiS_Pr = kmalloc(sizeof(struct SiS_Private), GFP_KERNEL))) {
printk(KERN_ERR
"sisusbvga[%d]: Failed to allocate SiS_Pr\n",
sisusb->minor);
}
#endif
/* Do remaining init stuff */
init_waitqueue_head(&sisusb->wait_q);
usb_set_intfdata(intf, sisusb);
usb_get_dev(sisusb->sisusb_dev);
sisusb->present = 1;
#ifdef SISUSB_OLD_CONFIG_COMPAT
{
int ret;
/* Our ioctls are all "32/64bit compatible" */
ret = register_ioctl32_conversion(SISUSB_GET_CONFIG_SIZE, NULL);
ret |= register_ioctl32_conversion(SISUSB_GET_CONFIG, NULL);
ret |= register_ioctl32_conversion(SISUSB_COMMAND, NULL);
if (ret)
printk(KERN_ERR
"sisusbvga[%d]: Error registering ioctl32 "
"translations\n",
sisusb->minor);
else
sisusb->ioctl32registered = 1;
}
#endif
if (dev->speed == USB_SPEED_HIGH) {
int initscreen = 1;
#ifdef INCL_SISUSB_CON
if (sisusb_first_vc > 0 &&
sisusb_last_vc > 0 &&
sisusb_first_vc <= sisusb_last_vc &&
sisusb_last_vc <= MAX_NR_CONSOLES)
initscreen = 0;
#endif
if (sisusb_init_gfxdevice(sisusb, initscreen))
printk(KERN_ERR
"sisusbvga[%d]: Failed to early "
"initialize device\n",
sisusb->minor);
} else
printk(KERN_INFO
"sisusbvga[%d]: Not attached to USB 2.0 hub, "
"deferring init\n",
sisusb->minor);
sisusb->ready = 1;
#ifdef SISUSBENDIANTEST
printk(KERN_DEBUG "sisusb: *** RWTEST ***\n");
sisusb_testreadwrite(sisusb);
printk(KERN_DEBUG "sisusb: *** RWTEST END ***\n");
#endif
#ifdef INCL_SISUSB_CON
sisusb_console_init(sisusb, sisusb_first_vc, sisusb_last_vc);
#endif
return 0;
error_4:
sisusb_free_urbs(sisusb);
error_3:
sisusb_free_buffers(sisusb);
error_2:
usb_deregister_dev(intf, &usb_sisusb_class);
error_1:
kfree(sisusb);
return retval;
}
static void sisusb_disconnect(struct usb_interface *intf)
{
struct sisusb_usb_data *sisusb;
int minor;
/* This should *not* happen */
if (!(sisusb = usb_get_intfdata(intf)))
return;
#ifdef INCL_SISUSB_CON
sisusb_console_exit(sisusb);
#endif
/* The above code doesn't need the disconnect
* semaphore to be down; its meaning is to
* protect all other routines from the disconnect
* case, not the other way round.
*/
down(&disconnect_sem);
down(&sisusb->lock);
/* Wait for all URBs to complete and kill them in case (MUST do) */
if (!sisusb_wait_all_out_complete(sisusb))
sisusb_kill_all_busy(sisusb);
minor = sisusb->minor;
usb_set_intfdata(intf, NULL);
usb_deregister_dev(intf, &usb_sisusb_class);
#ifdef SISUSB_OLD_CONFIG_COMPAT
if (sisusb->ioctl32registered) {
int ret;
sisusb->ioctl32registered = 0;
ret = unregister_ioctl32_conversion(SISUSB_GET_CONFIG_SIZE);
ret |= unregister_ioctl32_conversion(SISUSB_GET_CONFIG);
ret |= unregister_ioctl32_conversion(SISUSB_COMMAND);
if (ret) {
printk(KERN_ERR
"sisusbvga[%d]: Error unregistering "
"ioctl32 translations\n",
minor);
}
}
#endif
sisusb->present = 0;
sisusb->ready = 0;
up(&sisusb->lock);
/* decrement our usage count */
kref_put(&sisusb->kref, sisusb_delete);
up(&disconnect_sem);
printk(KERN_INFO "sisusbvga[%d]: Disconnected\n", minor);
}
static struct usb_device_id sisusb_table [] = {
{ USB_DEVICE(0x0711, 0x0900) },
{ USB_DEVICE(0x182d, 0x021c) },
{ USB_DEVICE(0x182d, 0x0269) },
{ }
};
MODULE_DEVICE_TABLE (usb, sisusb_table);
static struct usb_driver sisusb_driver = {
.name = "sisusb",
.probe = sisusb_probe,
.disconnect = sisusb_disconnect,
.id_table = sisusb_table,
};
static int __init usb_sisusb_init(void)
{
int retval;
#ifdef INCL_SISUSB_CON
sisusb_init_concode();
#endif
if (!(retval = usb_register(&sisusb_driver))) {
printk(KERN_INFO "sisusb: Driver version %d.%d.%d\n",
SISUSB_VERSION, SISUSB_REVISION, SISUSB_PATCHLEVEL);
printk(KERN_INFO
"sisusb: Copyright (C) 2005 Thomas Winischhofer\n");
}
return retval;
}
static void __exit usb_sisusb_exit(void)
{
usb_deregister(&sisusb_driver);
}
module_init(usb_sisusb_init);
module_exit(usb_sisusb_exit);
MODULE_AUTHOR("Thomas Winischhofer <thomas@winischhofer.net>");
MODULE_DESCRIPTION("sisusbvga - Driver for Net2280/SiS315-based USB2VGA dongles");
MODULE_LICENSE("GPL");