net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2021-09-17 19:17:35 +08:00
|
|
|
/* Copyright 2019-2021 NXP
|
2020-07-14 00:57:09 +08:00
|
|
|
*
|
|
|
|
* This is an umbrella module for all network switches that are
|
|
|
|
* register-compatible with Ocelot and that perform I/O to their host CPU
|
|
|
|
* through an NPI (Node Processor Interface) Ethernet port.
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
*/
|
|
|
|
#include <uapi/linux/if_bridge.h>
|
2020-02-29 22:31:14 +08:00
|
|
|
#include <soc/mscc/ocelot_vcap.h>
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
#include <soc/mscc/ocelot_qsys.h>
|
|
|
|
#include <soc/mscc/ocelot_sys.h>
|
|
|
|
#include <soc/mscc/ocelot_dev.h>
|
|
|
|
#include <soc/mscc/ocelot_ana.h>
|
2020-04-20 10:46:45 +08:00
|
|
|
#include <soc/mscc/ocelot_ptp.h>
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
#include <soc/mscc/ocelot.h>
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
#include <linux/dsa/8021q.h>
|
2021-02-14 06:37:56 +08:00
|
|
|
#include <linux/dsa/ocelot.h>
|
net: dsa: felix: introduce support for Seville VSC9953 switch
This is another switch from Vitesse / Microsemi / Microchip, that has
10 ports (8 external, 2 internal) and is integrated into the Freescale /
NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A,
except that this is a platform device and Felix is a PCI device, and it
doesn't support IEEE 1588 and TSN.
Like Felix, this driver configures its own PCS on the internal MDIO bus
using a phy_device abstraction for it (yes, it will be refactored to use
a raw mdio_device, like other phylink drivers do, but let's keep it like
that for now). But unlike Felix, the MDIO bus and the PCS are not from
the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in
Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it
is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it
would be difficult to reuse that driver (it doesn't even use regmap, and
it's less than 200 lines of code), so we hand-roll here some internal
MDIO bus accessors within seville_vsc9953.c, which serves the purpose of
driving the PCS absolutely fine.
Also, same as Felix, the PCS doesn't support dynamic reconfiguration of
SerDes protocol, so we need to do pre-validation of PHY mode from device
tree and not let phylink change it.
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-14 00:57:10 +08:00
|
|
|
#include <linux/platform_device.h>
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
#include <linux/ptp_classify.h>
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
#include <linux/module.h>
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
#include <linux/of_net.h>
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/of.h>
|
2020-03-29 19:52:00 +08:00
|
|
|
#include <net/pkt_sched.h>
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
#include <net/dsa.h>
|
|
|
|
#include "felix.h"
|
|
|
|
|
2022-03-03 03:14:13 +08:00
|
|
|
/* Translate the DSA database API into the ocelot switch library API,
|
|
|
|
* which uses VID 0 for all ports that aren't part of a bridge,
|
|
|
|
* and expects the bridge_dev to be NULL in that case.
|
|
|
|
*/
|
|
|
|
static struct net_device *felix_classify_db(struct dsa_db db)
|
|
|
|
{
|
|
|
|
switch (db.type) {
|
|
|
|
case DSA_DB_PORT:
|
|
|
|
case DSA_DB_LAG:
|
|
|
|
return NULL;
|
|
|
|
case DSA_DB_BRIDGE:
|
|
|
|
return db.bridge.dev;
|
|
|
|
default:
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-03-03 03:14:14 +08:00
|
|
|
static void felix_migrate_pgid_bit(struct dsa_switch *ds, int from, int to,
|
|
|
|
int pgid)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
bool on;
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
val = ocelot_read_rix(ocelot, ANA_PGID_PGID, pgid);
|
|
|
|
on = !!(val & BIT(from));
|
|
|
|
val &= ~BIT(from);
|
|
|
|
if (on)
|
|
|
|
val |= BIT(to);
|
|
|
|
else
|
|
|
|
val &= ~BIT(to);
|
|
|
|
|
|
|
|
ocelot_write_rix(ocelot, val, ANA_PGID_PGID, pgid);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_migrate_flood_to_npi_port(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
felix_migrate_pgid_bit(ds, port, ocelot->num_phys_ports, PGID_UC);
|
|
|
|
felix_migrate_pgid_bit(ds, port, ocelot->num_phys_ports, PGID_MC);
|
|
|
|
felix_migrate_pgid_bit(ds, port, ocelot->num_phys_ports, PGID_BC);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
felix_migrate_flood_to_tag_8021q_port(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
felix_migrate_pgid_bit(ds, ocelot->num_phys_ports, port, PGID_UC);
|
|
|
|
felix_migrate_pgid_bit(ds, ocelot->num_phys_ports, port, PGID_MC);
|
|
|
|
felix_migrate_pgid_bit(ds, ocelot->num_phys_ports, port, PGID_BC);
|
|
|
|
}
|
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
/* Set up VCAP ES0 rules for pushing a tag_8021q VLAN towards the CPU such that
|
|
|
|
* the tagger can perform RX source port identification.
|
|
|
|
*/
|
|
|
|
static int felix_tag_8021q_vlan_add_rx(struct felix *felix, int port, u16 vid)
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
{
|
|
|
|
struct ocelot_vcap_filter *outer_tagging_rule;
|
|
|
|
struct ocelot *ocelot = &felix->ocelot;
|
|
|
|
struct dsa_switch *ds = felix->ds;
|
|
|
|
int key_length, upstream, err;
|
|
|
|
|
|
|
|
key_length = ocelot->vcap[VCAP_ES0].keys[VCAP_ES0_IGR_PORT].length;
|
|
|
|
upstream = dsa_upstream_port(ds, port);
|
|
|
|
|
|
|
|
outer_tagging_rule = kzalloc(sizeof(struct ocelot_vcap_filter),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!outer_tagging_rule)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
outer_tagging_rule->key_type = OCELOT_VCAP_KEY_ANY;
|
|
|
|
outer_tagging_rule->prio = 1;
|
2022-02-16 22:30:05 +08:00
|
|
|
outer_tagging_rule->id.cookie = OCELOT_VCAP_ES0_TAG_8021Q_RXVLAN(ocelot, port);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
outer_tagging_rule->id.tc_offload = false;
|
|
|
|
outer_tagging_rule->block_id = VCAP_ES0;
|
|
|
|
outer_tagging_rule->type = OCELOT_VCAP_FILTER_OFFLOAD;
|
|
|
|
outer_tagging_rule->lookup = 0;
|
|
|
|
outer_tagging_rule->ingress_port.value = port;
|
|
|
|
outer_tagging_rule->ingress_port.mask = GENMASK(key_length - 1, 0);
|
|
|
|
outer_tagging_rule->egress_port.value = upstream;
|
|
|
|
outer_tagging_rule->egress_port.mask = GENMASK(key_length - 1, 0);
|
|
|
|
outer_tagging_rule->action.push_outer_tag = OCELOT_ES0_TAG;
|
|
|
|
outer_tagging_rule->action.tag_a_tpid_sel = OCELOT_TAG_TPID_SEL_8021AD;
|
|
|
|
outer_tagging_rule->action.tag_a_vid_sel = 1;
|
|
|
|
outer_tagging_rule->action.vid_a_val = vid;
|
|
|
|
|
|
|
|
err = ocelot_vcap_filter_add(ocelot, outer_tagging_rule, NULL);
|
|
|
|
if (err)
|
|
|
|
kfree(outer_tagging_rule);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
static int felix_tag_8021q_vlan_del_rx(struct felix *felix, int port, u16 vid)
|
|
|
|
{
|
|
|
|
struct ocelot_vcap_filter *outer_tagging_rule;
|
|
|
|
struct ocelot_vcap_block *block_vcap_es0;
|
|
|
|
struct ocelot *ocelot = &felix->ocelot;
|
|
|
|
|
|
|
|
block_vcap_es0 = &ocelot->block[VCAP_ES0];
|
|
|
|
|
|
|
|
outer_tagging_rule = ocelot_vcap_block_find_filter_by_id(block_vcap_es0,
|
|
|
|
port, false);
|
|
|
|
if (!outer_tagging_rule)
|
|
|
|
return -ENOENT;
|
|
|
|
|
|
|
|
return ocelot_vcap_filter_del(ocelot, outer_tagging_rule);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set up VCAP IS1 rules for stripping the tag_8021q VLAN on TX and VCAP IS2
|
|
|
|
* rules for steering those tagged packets towards the correct destination port
|
|
|
|
*/
|
|
|
|
static int felix_tag_8021q_vlan_add_tx(struct felix *felix, int port, u16 vid)
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
{
|
|
|
|
struct ocelot_vcap_filter *untagging_rule, *redirect_rule;
|
|
|
|
struct ocelot *ocelot = &felix->ocelot;
|
|
|
|
struct dsa_switch *ds = felix->ds;
|
|
|
|
int upstream, err;
|
|
|
|
|
|
|
|
untagging_rule = kzalloc(sizeof(struct ocelot_vcap_filter), GFP_KERNEL);
|
|
|
|
if (!untagging_rule)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
redirect_rule = kzalloc(sizeof(struct ocelot_vcap_filter), GFP_KERNEL);
|
|
|
|
if (!redirect_rule) {
|
|
|
|
kfree(untagging_rule);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
upstream = dsa_upstream_port(ds, port);
|
|
|
|
|
|
|
|
untagging_rule->key_type = OCELOT_VCAP_KEY_ANY;
|
|
|
|
untagging_rule->ingress_port_mask = BIT(upstream);
|
|
|
|
untagging_rule->vlan.vid.value = vid;
|
|
|
|
untagging_rule->vlan.vid.mask = VLAN_VID_MASK;
|
|
|
|
untagging_rule->prio = 1;
|
2022-02-16 22:30:05 +08:00
|
|
|
untagging_rule->id.cookie = OCELOT_VCAP_IS1_TAG_8021Q_TXVLAN(ocelot, port);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
untagging_rule->id.tc_offload = false;
|
|
|
|
untagging_rule->block_id = VCAP_IS1;
|
|
|
|
untagging_rule->type = OCELOT_VCAP_FILTER_OFFLOAD;
|
|
|
|
untagging_rule->lookup = 0;
|
|
|
|
untagging_rule->action.vlan_pop_cnt_ena = true;
|
|
|
|
untagging_rule->action.vlan_pop_cnt = 1;
|
|
|
|
untagging_rule->action.pag_override_mask = 0xff;
|
|
|
|
untagging_rule->action.pag_val = port;
|
|
|
|
|
|
|
|
err = ocelot_vcap_filter_add(ocelot, untagging_rule, NULL);
|
|
|
|
if (err) {
|
|
|
|
kfree(untagging_rule);
|
|
|
|
kfree(redirect_rule);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
redirect_rule->key_type = OCELOT_VCAP_KEY_ANY;
|
|
|
|
redirect_rule->ingress_port_mask = BIT(upstream);
|
|
|
|
redirect_rule->pag = port;
|
|
|
|
redirect_rule->prio = 1;
|
2022-02-16 22:30:05 +08:00
|
|
|
redirect_rule->id.cookie = OCELOT_VCAP_IS2_TAG_8021Q_TXVLAN(ocelot, port);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
redirect_rule->id.tc_offload = false;
|
|
|
|
redirect_rule->block_id = VCAP_IS2;
|
|
|
|
redirect_rule->type = OCELOT_VCAP_FILTER_OFFLOAD;
|
|
|
|
redirect_rule->lookup = 0;
|
|
|
|
redirect_rule->action.mask_mode = OCELOT_MASK_MODE_REDIRECT;
|
|
|
|
redirect_rule->action.port_mask = BIT(port);
|
|
|
|
|
|
|
|
err = ocelot_vcap_filter_add(ocelot, redirect_rule, NULL);
|
|
|
|
if (err) {
|
|
|
|
ocelot_vcap_filter_del(ocelot, untagging_rule);
|
|
|
|
kfree(redirect_rule);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
static int felix_tag_8021q_vlan_del_tx(struct felix *felix, int port, u16 vid)
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
{
|
|
|
|
struct ocelot_vcap_filter *untagging_rule, *redirect_rule;
|
|
|
|
struct ocelot_vcap_block *block_vcap_is1;
|
|
|
|
struct ocelot_vcap_block *block_vcap_is2;
|
|
|
|
struct ocelot *ocelot = &felix->ocelot;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
block_vcap_is1 = &ocelot->block[VCAP_IS1];
|
|
|
|
block_vcap_is2 = &ocelot->block[VCAP_IS2];
|
|
|
|
|
|
|
|
untagging_rule = ocelot_vcap_block_find_filter_by_id(block_vcap_is1,
|
|
|
|
port, false);
|
|
|
|
if (!untagging_rule)
|
2022-02-25 17:22:19 +08:00
|
|
|
return -ENOENT;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
err = ocelot_vcap_filter_del(ocelot, untagging_rule);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
redirect_rule = ocelot_vcap_block_find_filter_by_id(block_vcap_is2,
|
|
|
|
port, false);
|
|
|
|
if (!redirect_rule)
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
return -ENOENT;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
return ocelot_vcap_filter_del(ocelot, redirect_rule);
|
|
|
|
}
|
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
static int felix_tag_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
|
|
|
|
u16 flags)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* tag_8021q.c assumes we are implementing this via port VLAN
|
|
|
|
* membership, which we aren't. So we don't need to add any VCAP filter
|
|
|
|
* for the CPU port.
|
|
|
|
*/
|
|
|
|
if (!dsa_is_user_port(ds, port))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err = felix_tag_8021q_vlan_add_rx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
err = felix_tag_8021q_vlan_add_tx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
if (err) {
|
|
|
|
felix_tag_8021q_vlan_del_rx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
static int felix_tag_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!dsa_is_user_port(ds, port))
|
|
|
|
return 0;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
err = felix_tag_8021q_vlan_del_rx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
if (err)
|
|
|
|
return err;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
err = felix_tag_8021q_vlan_del_tx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
if (err) {
|
|
|
|
felix_tag_8021q_vlan_add_rx(ocelot_to_felix(ocelot), port, vid);
|
|
|
|
return err;
|
|
|
|
}
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Alternatively to using the NPI functionality, that same hardware MAC
|
|
|
|
* connected internally to the enetc or fman DSA master can be configured to
|
|
|
|
* use the software-defined tag_8021q frame format. As far as the hardware is
|
|
|
|
* concerned, it thinks it is a "dumb switch" - the queues of the CPU port
|
|
|
|
* module are now disconnected from it, but can still be accessed through
|
|
|
|
* register-based MMIO.
|
|
|
|
*/
|
|
|
|
static void felix_8021q_cpu_port_init(struct ocelot *ocelot, int port)
|
|
|
|
{
|
net: dsa: felix: enable cut-through forwarding between ports by default
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-25 20:58:08 +08:00
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
ocelot_port_set_dsa_8021q_cpu(ocelot, port);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
/* Overwrite PGID_CPU with the non-tagging port */
|
|
|
|
ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, PGID_CPU);
|
|
|
|
|
net: dsa: felix: enable cut-through forwarding between ports by default
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-25 20:58:08 +08:00
|
|
|
ocelot_apply_bridge_fwd_mask(ocelot, true);
|
|
|
|
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_8021q_cpu_port_deinit(struct ocelot *ocelot, int port)
|
|
|
|
{
|
net: dsa: felix: enable cut-through forwarding between ports by default
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-25 20:58:08 +08:00
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
ocelot_port_unset_dsa_8021q_cpu(ocelot, port);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
/* Restore PGID_CPU */
|
|
|
|
ocelot_write_rix(ocelot, BIT(ocelot->num_phys_ports), ANA_PGID_PGID,
|
|
|
|
PGID_CPU);
|
|
|
|
|
net: dsa: felix: enable cut-through forwarding between ports by default
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-25 20:58:08 +08:00
|
|
|
ocelot_apply_bridge_fwd_mask(ocelot, true);
|
|
|
|
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
}
|
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
/* On switches with no extraction IRQ wired, trapped packets need to be
|
|
|
|
* replicated over Ethernet as well, otherwise we'd get no notification of
|
|
|
|
* their arrival when using the ocelot-8021q tagging protocol.
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
*/
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
static int felix_update_trapping_destinations(struct dsa_switch *ds,
|
|
|
|
bool using_tag_8021q)
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
{
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
net: mscc: ocelot: mark traps with a bool instead of keeping them in a list
Since the blamed commit, VCAP filters can appear on more than one list.
If their action is "trap", they are chained on ocelot->traps via
filter->trap_list. This is in addition to their normal placement on the
VCAP block->rules list head.
Therefore, when we free a VCAP filter, we must remove it from all lists
it is a member of, including ocelot->traps.
There are at least 2 bugs which are direct consequences of this design
decision.
First is the incorrect usage of list_empty(), meant to denote whether
"filter" is chained into ocelot->traps via filter->trap_list.
This does not do the correct thing, because list_empty() checks whether
"head->next == head", but in our case, head->next == head->prev == NULL.
So we dereference NULL pointers and die when we call list_del().
Second is the fact that not all places that should remove the filter
from ocelot->traps do so. One example is ocelot_vcap_block_remove_filter(),
which is where we have the main kfree(filter). By keeping freed filters
in ocelot->traps we end up in a use-after-free in
felix_update_trapping_destinations().
Attempting to fix all the buggy patterns is a whack-a-mole game which
makes the driver unmaintainable. Actually this is what the previous
patch version attempted to do:
https://patchwork.kernel.org/project/netdevbpf/patch/20220503115728.834457-3-vladimir.oltean@nxp.com/
but it introduced another set of bugs, because there are other places in
which create VCAP filters, not just ocelot_vcap_filter_create():
- ocelot_trap_add()
- felix_tag_8021q_vlan_add_rx()
- felix_tag_8021q_vlan_add_tx()
Relying on the convention that all those code paths must call
INIT_LIST_HEAD(&filter->trap_list) is not going to scale.
So let's do what should have been done in the first place and keep a
bool in struct ocelot_vcap_filter which denotes whether we are looking
at a trapping rule or not. Iterating now happens over the main VCAP IS2
block->rules. The advantage is that we no longer risk having stale
references to a freed filter, since it is only present in that list.
Fixes: e42bd4ed09aa ("net: mscc: ocelot: keep traps in a list")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-05 07:54:59 +08:00
|
|
|
struct ocelot_vcap_block *block_vcap_is2;
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
struct ocelot_vcap_filter *trap;
|
|
|
|
enum ocelot_mask_mode mask_mode;
|
|
|
|
unsigned long port_mask;
|
2022-02-16 22:30:09 +08:00
|
|
|
struct dsa_port *dp;
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
bool cpu_copy_ena;
|
|
|
|
int cpu = -1, err;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
if (!felix->info->quirk_no_xtr_irq)
|
|
|
|
return 0;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
/* Figure out the current CPU port */
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_cpu_port(dp, ds) {
|
|
|
|
cpu = dp->index;
|
|
|
|
break;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
}
|
|
|
|
|
2022-02-16 22:30:12 +08:00
|
|
|
/* We are sure that "cpu" was found, otherwise
|
|
|
|
* dsa_tree_setup_default_cpu() would have failed earlier.
|
|
|
|
*/
|
net: mscc: ocelot: mark traps with a bool instead of keeping them in a list
Since the blamed commit, VCAP filters can appear on more than one list.
If their action is "trap", they are chained on ocelot->traps via
filter->trap_list. This is in addition to their normal placement on the
VCAP block->rules list head.
Therefore, when we free a VCAP filter, we must remove it from all lists
it is a member of, including ocelot->traps.
There are at least 2 bugs which are direct consequences of this design
decision.
First is the incorrect usage of list_empty(), meant to denote whether
"filter" is chained into ocelot->traps via filter->trap_list.
This does not do the correct thing, because list_empty() checks whether
"head->next == head", but in our case, head->next == head->prev == NULL.
So we dereference NULL pointers and die when we call list_del().
Second is the fact that not all places that should remove the filter
from ocelot->traps do so. One example is ocelot_vcap_block_remove_filter(),
which is where we have the main kfree(filter). By keeping freed filters
in ocelot->traps we end up in a use-after-free in
felix_update_trapping_destinations().
Attempting to fix all the buggy patterns is a whack-a-mole game which
makes the driver unmaintainable. Actually this is what the previous
patch version attempted to do:
https://patchwork.kernel.org/project/netdevbpf/patch/20220503115728.834457-3-vladimir.oltean@nxp.com/
but it introduced another set of bugs, because there are other places in
which create VCAP filters, not just ocelot_vcap_filter_create():
- ocelot_trap_add()
- felix_tag_8021q_vlan_add_rx()
- felix_tag_8021q_vlan_add_tx()
Relying on the convention that all those code paths must call
INIT_LIST_HEAD(&filter->trap_list) is not going to scale.
So let's do what should have been done in the first place and keep a
bool in struct ocelot_vcap_filter which denotes whether we are looking
at a trapping rule or not. Iterating now happens over the main VCAP IS2
block->rules. The advantage is that we no longer risk having stale
references to a freed filter, since it is only present in that list.
Fixes: e42bd4ed09aa ("net: mscc: ocelot: keep traps in a list")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-05 07:54:59 +08:00
|
|
|
block_vcap_is2 = &ocelot->block[VCAP_IS2];
|
net: dsa: felix: break at first CPU port during init and teardown
The NXP LS1028A switch has two Ethernet ports towards the CPU, but only
one of them is capable of acting as an NPI port at a time (inject and
extract packets using DSA tags).
However, using the alternative ocelot-8021q tagging protocol, it should
be possible to use both CPU ports symmetrically, but for that we need to
mark both ports in the device tree as DSA masters.
In the process of doing that, it can be seen that traffic to/from the
network stack gets broken, and this is because the Felix driver iterates
through all DSA CPU ports and configures them as NPI ports. But since
there can only be a single NPI port, we effectively end up in a
situation where DSA thinks the default CPU port is the first one, but
the hardware port configured to be an NPI is the last one.
I would like to treat this as a bug, because if the updated device trees
are going to start circulating, it would be really good for existing
kernels to support them, too.
Fixes: adb3dccf090b ("net: dsa: felix: convert to the new .change_tag_protocol DSA API")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 19:40:44 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
/* Make sure all traps are set up for that destination */
|
net: mscc: ocelot: mark traps with a bool instead of keeping them in a list
Since the blamed commit, VCAP filters can appear on more than one list.
If their action is "trap", they are chained on ocelot->traps via
filter->trap_list. This is in addition to their normal placement on the
VCAP block->rules list head.
Therefore, when we free a VCAP filter, we must remove it from all lists
it is a member of, including ocelot->traps.
There are at least 2 bugs which are direct consequences of this design
decision.
First is the incorrect usage of list_empty(), meant to denote whether
"filter" is chained into ocelot->traps via filter->trap_list.
This does not do the correct thing, because list_empty() checks whether
"head->next == head", but in our case, head->next == head->prev == NULL.
So we dereference NULL pointers and die when we call list_del().
Second is the fact that not all places that should remove the filter
from ocelot->traps do so. One example is ocelot_vcap_block_remove_filter(),
which is where we have the main kfree(filter). By keeping freed filters
in ocelot->traps we end up in a use-after-free in
felix_update_trapping_destinations().
Attempting to fix all the buggy patterns is a whack-a-mole game which
makes the driver unmaintainable. Actually this is what the previous
patch version attempted to do:
https://patchwork.kernel.org/project/netdevbpf/patch/20220503115728.834457-3-vladimir.oltean@nxp.com/
but it introduced another set of bugs, because there are other places in
which create VCAP filters, not just ocelot_vcap_filter_create():
- ocelot_trap_add()
- felix_tag_8021q_vlan_add_rx()
- felix_tag_8021q_vlan_add_tx()
Relying on the convention that all those code paths must call
INIT_LIST_HEAD(&filter->trap_list) is not going to scale.
So let's do what should have been done in the first place and keep a
bool in struct ocelot_vcap_filter which denotes whether we are looking
at a trapping rule or not. Iterating now happens over the main VCAP IS2
block->rules. The advantage is that we no longer risk having stale
references to a freed filter, since it is only present in that list.
Fixes: e42bd4ed09aa ("net: mscc: ocelot: keep traps in a list")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-05 07:54:59 +08:00
|
|
|
list_for_each_entry(trap, &block_vcap_is2->rules, list) {
|
|
|
|
if (!trap->is_trap)
|
|
|
|
continue;
|
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
/* Figure out the current trapping destination */
|
|
|
|
if (using_tag_8021q) {
|
|
|
|
/* Redirect to the tag_8021q CPU port. If timestamps
|
|
|
|
* are necessary, also copy trapped packets to the CPU
|
|
|
|
* port module.
|
|
|
|
*/
|
|
|
|
mask_mode = OCELOT_MASK_MODE_REDIRECT;
|
|
|
|
port_mask = BIT(cpu);
|
|
|
|
cpu_copy_ena = !!trap->take_ts;
|
|
|
|
} else {
|
|
|
|
/* Trap packets only to the CPU port module, which is
|
|
|
|
* redirected to the NPI port (the DSA CPU port)
|
|
|
|
*/
|
|
|
|
mask_mode = OCELOT_MASK_MODE_PERMIT_DENY;
|
|
|
|
port_mask = 0;
|
|
|
|
cpu_copy_ena = true;
|
|
|
|
}
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
if (trap->action.mask_mode == mask_mode &&
|
|
|
|
trap->action.port_mask == port_mask &&
|
|
|
|
trap->action.cpu_copy_ena == cpu_copy_ena)
|
|
|
|
continue;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
trap->action.mask_mode = mask_mode;
|
|
|
|
trap->action.port_mask = port_mask;
|
|
|
|
trap->action.cpu_copy_ena = cpu_copy_ena;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
err = ocelot_vcap_filter_replace(ocelot, trap);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-03-08 17:15:12 +08:00
|
|
|
static int felix_setup_tag_8021q(struct dsa_switch *ds, int cpu)
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2022-02-16 22:30:09 +08:00
|
|
|
struct dsa_port *dp;
|
|
|
|
int err;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
|
|
|
felix_8021q_cpu_port_init(ocelot, cpu);
|
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_available_port(dp, ds) {
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
/* This overwrites ocelot_init():
|
|
|
|
* Do not forward BPDU frames to the CPU port module,
|
|
|
|
* for 2 reasons:
|
|
|
|
* - When these packets are injected from the tag_8021q
|
|
|
|
* CPU port, we want them to go out, not loop back
|
|
|
|
* into the system.
|
|
|
|
* - STP traffic ingressing on a user port should go to
|
|
|
|
* the tag_8021q CPU port, not to the hardware CPU
|
|
|
|
* port module.
|
|
|
|
*/
|
|
|
|
ocelot_write_gix(ocelot,
|
|
|
|
ANA_PORT_CPU_FWD_BPDU_CFG_BPDU_REDIR_ENA(0),
|
2022-02-16 22:30:09 +08:00
|
|
|
ANA_PORT_CPU_FWD_BPDU_CFG, dp->index);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
}
|
|
|
|
|
2021-07-20 01:14:49 +08:00
|
|
|
err = dsa_tag_8021q_register(ds, htons(ETH_P_8021AD));
|
net: dsa: let the core manage the tag_8021q context
The basic problem description is as follows:
Be there 3 switches in a daisy chain topology:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
The CPU will not be able to ping through the user ports of the
bottom-most switch (like for example sw2p0), simply because tag_8021q
was not coded up for this scenario - it has always assumed DSA switch
trees with a single switch.
To add support for the topology above, we must admit that the RX VLAN of
sw2p0 must be added on some ports of switches 0 and 1 as well. This is
in fact a textbook example of thing that can use the cross-chip notifier
framework that DSA has set up in switch.c.
There is only one problem: core DSA (switch.c) is not able right now to
make the connection between a struct dsa_switch *ds and a struct
dsa_8021q_context *ctx. Right now, it is drivers who call into
tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer,
and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del}
methods.
But with cross-chip notifiers, it is possible for tag_8021q to call
drivers without drivers having ever asked for anything. A good example
is right above: when sw2p0 wants to set itself up for tag_8021q,
the .tag_8021q_vlan_add method needs to be called for switches 1 and 0,
so that they transport sw2p0's VLANs towards the CPU without dropping
them.
So instead of letting drivers manage the tag_8021q context, add a
tag_8021q_ctx pointer inside of struct dsa_switch, which will be
populated when dsa_tag_8021q_register() returns success.
The patch is fairly long-winded because we are partly reverting commit
5899ee367ab3 ("net: dsa: tag_8021q: add a context structure") which made
the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we
can access "ctx" directly from "ds", this is no longer needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 01:14:48 +08:00
|
|
|
if (err)
|
|
|
|
return err;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
2022-05-06 00:22:12 +08:00
|
|
|
err = ocelot_migrate_mdbs(ocelot, BIT(ocelot->num_phys_ports),
|
|
|
|
BIT(cpu));
|
2022-03-08 17:15:12 +08:00
|
|
|
if (err)
|
2022-05-06 00:22:11 +08:00
|
|
|
goto out_tag_8021q_unregister;
|
2022-03-03 03:14:14 +08:00
|
|
|
|
2022-03-08 17:15:12 +08:00
|
|
|
felix_migrate_flood_to_tag_8021q_port(ds, cpu);
|
2022-03-03 03:14:13 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
err = felix_update_trapping_destinations(ds, true);
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
if (err)
|
2022-03-03 03:14:14 +08:00
|
|
|
goto out_migrate_flood;
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
/* The ownership of the CPU port module's queues might have just been
|
|
|
|
* transferred to the tag_8021q tagger from the NPI-based tagger.
|
|
|
|
* So there might still be all sorts of crap in the queues. On the
|
|
|
|
* other hand, the MMIO-based matching of PTP frames is very brittle,
|
|
|
|
* so we need to be careful that there are no extra frames to be
|
|
|
|
* dequeued over MMIO, since we would never know to discard them.
|
|
|
|
*/
|
|
|
|
ocelot_drain_cpu_queue(ocelot, 0);
|
|
|
|
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
return 0;
|
|
|
|
|
2022-03-03 03:14:14 +08:00
|
|
|
out_migrate_flood:
|
2022-03-08 17:15:12 +08:00
|
|
|
felix_migrate_flood_to_npi_port(ds, cpu);
|
2022-05-06 00:22:12 +08:00
|
|
|
ocelot_migrate_mdbs(ocelot, BIT(cpu), BIT(ocelot->num_phys_ports));
|
net: dsa: let the core manage the tag_8021q context
The basic problem description is as follows:
Be there 3 switches in a daisy chain topology:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
The CPU will not be able to ping through the user ports of the
bottom-most switch (like for example sw2p0), simply because tag_8021q
was not coded up for this scenario - it has always assumed DSA switch
trees with a single switch.
To add support for the topology above, we must admit that the RX VLAN of
sw2p0 must be added on some ports of switches 0 and 1 as well. This is
in fact a textbook example of thing that can use the cross-chip notifier
framework that DSA has set up in switch.c.
There is only one problem: core DSA (switch.c) is not able right now to
make the connection between a struct dsa_switch *ds and a struct
dsa_8021q_context *ctx. Right now, it is drivers who call into
tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer,
and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del}
methods.
But with cross-chip notifiers, it is possible for tag_8021q to call
drivers without drivers having ever asked for anything. A good example
is right above: when sw2p0 wants to set itself up for tag_8021q,
the .tag_8021q_vlan_add method needs to be called for switches 1 and 0,
so that they transport sw2p0's VLANs towards the CPU without dropping
them.
So instead of letting drivers manage the tag_8021q context, add a
tag_8021q_ctx pointer inside of struct dsa_switch, which will be
populated when dsa_tag_8021q_register() returns success.
The patch is fairly long-winded because we are partly reverting commit
5899ee367ab3 ("net: dsa: tag_8021q: add a context structure") which made
the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we
can access "ctx" directly from "ds", this is no longer needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 01:14:48 +08:00
|
|
|
out_tag_8021q_unregister:
|
|
|
|
dsa_tag_8021q_unregister(ds);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_teardown_tag_8021q(struct dsa_switch *ds, int cpu)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2022-02-16 22:30:09 +08:00
|
|
|
struct dsa_port *dp;
|
|
|
|
int err;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
err = felix_update_trapping_destinations(ds, false);
|
net: dsa: felix: setup MMIO filtering rules for PTP when using tag_8021q
Since the tag_8021q tagger is software-defined, it has no means by
itself for retrieving hardware timestamps of PTP event messages.
Because we do want to support PTP on ocelot even with tag_8021q, we need
to use the CPU port module for that. The RX timestamp is present in the
Extraction Frame Header. And because we can't use NPI mode which redirects
the CPU queues to an "external CPU" (meaning the ARM CPU running Linux),
then we need to poll the CPU port module through the MMIO registers to
retrieve TX and RX timestamps.
Sadly, on NXP LS1028A, the Felix switch was integrated into the SoC
without wiring the extraction IRQ line to the ARM GIC. So, if we want to
be notified of any PTP packets received on the CPU port module, we have
a problem.
There is a possible workaround, which is to use the Ethernet CPU port as
a notification channel that packets are available on the CPU port module
as well. When a PTP packet is received by the DSA tagger (without timestamp,
of course), we go to the CPU extraction queues, poll for it there, then
we drop the original Ethernet packet and masquerade the packet retrieved
over MMIO (plus the timestamp) as the original when we inject it up the
stack.
Create a quirk in struct felix is selected by the Felix driver (but not
by Seville, since that doesn't support PTP at all). We want to do this
such that the workaround is minimally invasive for future switches that
don't require this workaround.
The only traffic for which we need timestamps is PTP traffic, so add a
redirection rule to the CPU port module for this. Currently we only have
the need for PTP over L2, so redirection rules for UDP ports 319 and 320
are TBD for now.
Note that for the workaround of matching of PTP-over-Ethernet-port with
PTP-over-MMIO queues to work properly, both channels need to be
absolutely lossless. There are two parts to achieving that:
- We keep flow control enabled on the tag_8021q CPU port
- We put the DSA master interface in promiscuous mode, so it will never
drop a PTP frame (for the profiles we are interested in, these are
sent to the multicast MAC addresses of 01-80-c2-00-00-0e and
01-1b-19-00-00-00).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:00 +08:00
|
|
|
if (err)
|
|
|
|
dev_err(ds->dev, "felix_teardown_mmio_filtering returned %d",
|
|
|
|
err);
|
|
|
|
|
net: dsa: let the core manage the tag_8021q context
The basic problem description is as follows:
Be there 3 switches in a daisy chain topology:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
The CPU will not be able to ping through the user ports of the
bottom-most switch (like for example sw2p0), simply because tag_8021q
was not coded up for this scenario - it has always assumed DSA switch
trees with a single switch.
To add support for the topology above, we must admit that the RX VLAN of
sw2p0 must be added on some ports of switches 0 and 1 as well. This is
in fact a textbook example of thing that can use the cross-chip notifier
framework that DSA has set up in switch.c.
There is only one problem: core DSA (switch.c) is not able right now to
make the connection between a struct dsa_switch *ds and a struct
dsa_8021q_context *ctx. Right now, it is drivers who call into
tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer,
and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del}
methods.
But with cross-chip notifiers, it is possible for tag_8021q to call
drivers without drivers having ever asked for anything. A good example
is right above: when sw2p0 wants to set itself up for tag_8021q,
the .tag_8021q_vlan_add method needs to be called for switches 1 and 0,
so that they transport sw2p0's VLANs towards the CPU without dropping
them.
So instead of letting drivers manage the tag_8021q context, add a
tag_8021q_ctx pointer inside of struct dsa_switch, which will be
populated when dsa_tag_8021q_register() returns success.
The patch is fairly long-winded because we are partly reverting commit
5899ee367ab3 ("net: dsa: tag_8021q: add a context structure") which made
the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we
can access "ctx" directly from "ds", this is no longer needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 01:14:48 +08:00
|
|
|
dsa_tag_8021q_unregister(ds);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_available_port(dp, ds) {
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
/* Restore the logic from ocelot_init:
|
|
|
|
* do not forward BPDU frames to the front ports.
|
|
|
|
*/
|
|
|
|
ocelot_write_gix(ocelot,
|
|
|
|
ANA_PORT_CPU_FWD_BPDU_CFG_BPDU_REDIR_ENA(0xffff),
|
|
|
|
ANA_PORT_CPU_FWD_BPDU_CFG,
|
2022-02-16 22:30:09 +08:00
|
|
|
dp->index);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
felix_8021q_cpu_port_deinit(ocelot, cpu);
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
/* The CPU port module is connected to the Node Processor Interface (NPI). This
|
|
|
|
* is the mode through which frames can be injected from and extracted to an
|
|
|
|
* external CPU, over Ethernet. In NXP SoCs, the "external CPU" is the ARM CPU
|
|
|
|
* running Linux, and this forms a DSA setup together with the enetc or fman
|
|
|
|
* DSA master.
|
|
|
|
*/
|
|
|
|
static void felix_npi_port_init(struct ocelot *ocelot, int port)
|
|
|
|
{
|
|
|
|
ocelot->npi = port;
|
|
|
|
|
|
|
|
ocelot_write(ocelot, QSYS_EXT_CPU_CFG_EXT_CPUQ_MSK_M |
|
|
|
|
QSYS_EXT_CPU_CFG_EXT_CPU_PORT(port),
|
|
|
|
QSYS_EXT_CPU_CFG);
|
|
|
|
|
|
|
|
/* NPI port Injection/Extraction configuration */
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PORT_MODE_INCL_XTR_HDR,
|
|
|
|
ocelot->npi_xtr_prefix);
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PORT_MODE_INCL_INJ_HDR,
|
|
|
|
ocelot->npi_inj_prefix);
|
|
|
|
|
|
|
|
/* Disable transmission of pause frames */
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_npi_port_deinit(struct ocelot *ocelot, int port)
|
|
|
|
{
|
|
|
|
/* Restore hardware defaults */
|
|
|
|
int unused_port = ocelot->num_phys_ports + 2;
|
|
|
|
|
|
|
|
ocelot->npi = -1;
|
|
|
|
|
|
|
|
ocelot_write(ocelot, QSYS_EXT_CPU_CFG_EXT_CPU_PORT(unused_port),
|
|
|
|
QSYS_EXT_CPU_CFG);
|
|
|
|
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PORT_MODE_INCL_XTR_HDR,
|
|
|
|
OCELOT_TAG_PREFIX_DISABLED);
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PORT_MODE_INCL_INJ_HDR,
|
|
|
|
OCELOT_TAG_PREFIX_DISABLED);
|
|
|
|
|
|
|
|
/* Enable transmission of pause frames */
|
|
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 1);
|
|
|
|
}
|
|
|
|
|
2022-03-08 17:15:12 +08:00
|
|
|
static int felix_setup_tag_npi(struct dsa_switch *ds, int cpu)
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2022-03-03 03:14:13 +08:00
|
|
|
int err;
|
|
|
|
|
2022-05-06 00:22:12 +08:00
|
|
|
err = ocelot_migrate_mdbs(ocelot, BIT(cpu),
|
|
|
|
BIT(ocelot->num_phys_ports));
|
2022-03-08 17:15:12 +08:00
|
|
|
if (err)
|
2022-05-06 00:22:11 +08:00
|
|
|
return err;
|
2022-03-03 03:14:14 +08:00
|
|
|
|
2022-03-08 17:15:12 +08:00
|
|
|
felix_migrate_flood_to_npi_port(ds, cpu);
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
|
|
|
|
felix_npi_port_init(ocelot, cpu);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_teardown_tag_npi(struct dsa_switch *ds, int cpu)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
felix_npi_port_deinit(ocelot, cpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_set_tag_protocol(struct dsa_switch *ds, int cpu,
|
2022-03-08 17:15:12 +08:00
|
|
|
enum dsa_tag_protocol proto)
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
switch (proto) {
|
net: dsa: tag_ocelot: create separate tagger for Seville
The ocelot tagger is a hot mess currently, it relies on memory
initialized by the attached driver for basic frame transmission.
This is against all that DSA tagging protocols stand for, which is that
the transmission and reception of a DSA-tagged frame, the data path,
should be independent from the switch control path, because the tag
protocol is in principle hot-pluggable and reusable across switches
(even if in practice it wasn't until very recently). But if another
driver like dsa_loop wants to make use of tag_ocelot, it couldn't.
This was done to have common code between Felix and Ocelot, which have
one bit difference in the frame header format. Quoting from commit
67c2404922c2 ("net: dsa: felix: create a template for the DSA tags on
xmit"):
Other alternatives have been analyzed, such as:
- Create a separate tag_seville.c: too much code duplication for just 1
bit field difference.
- Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like
tag_brcm.c, which would have a separate .xmit function. Again, too
much code duplication for just 1 bit field difference.
- Allocate the template from the init function of the tag_ocelot.c
module, instead of from the driver: couldn't figure out a method of
accessing the correct port template corresponding to the correct
tagger in the .xmit function.
The really interesting part is that Seville should have had its own
tagging protocol defined - it is not compatible on the wire with Ocelot,
even for that single bit. In principle, a packet generated by
DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain
way, but when booted on NXP T1040 it would look differently. The reverse
is also true: a packet generated by a Seville switch would be
interpreted incorrectly by Wireshark if it was told it was generated by
an Ocelot switch.
Actually things are a bit more nuanced. If we concentrate only on the
DSA tag, what I said above is true, but Ocelot/Seville also support an
optional DSA tag prefix, which can be short or long, and it is possible
to distinguish the two taggers based on an integer constant put in that
prefix. Nonetheless, creating a separate tagger is still justified,
since the tag prefix is optional, and without it, there is again no way
to distinguish.
Claiming backwards binary compatibility is a bit more tough, since I've
already changed the format of tag_ocelot once, in commit 5124197ce58b
("net: dsa: tag_ocelot: use a short prefix on both ingress and egress").
Therefore I am not very concerned with treating this as a bugfix and
backporting it to stable kernels (which would be another mess due to the
fact that there would be lots of conflicts with the other DSA_TAG_PROTO*
definitions). It's just simpler to say that the string values of the
taggers have ABI value starting with kernel 5.12, which will be when the
changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging
goes live.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:37:58 +08:00
|
|
|
case DSA_TAG_PROTO_SEVILLE:
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
case DSA_TAG_PROTO_OCELOT:
|
2022-03-08 17:15:12 +08:00
|
|
|
err = felix_setup_tag_npi(ds, cpu);
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
break;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
case DSA_TAG_PROTO_OCELOT_8021Q:
|
2022-03-08 17:15:12 +08:00
|
|
|
err = felix_setup_tag_8021q(ds, cpu);
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
break;
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
default:
|
|
|
|
err = -EPROTONOSUPPORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_del_tag_protocol(struct dsa_switch *ds, int cpu,
|
|
|
|
enum dsa_tag_protocol proto)
|
|
|
|
{
|
|
|
|
switch (proto) {
|
net: dsa: tag_ocelot: create separate tagger for Seville
The ocelot tagger is a hot mess currently, it relies on memory
initialized by the attached driver for basic frame transmission.
This is against all that DSA tagging protocols stand for, which is that
the transmission and reception of a DSA-tagged frame, the data path,
should be independent from the switch control path, because the tag
protocol is in principle hot-pluggable and reusable across switches
(even if in practice it wasn't until very recently). But if another
driver like dsa_loop wants to make use of tag_ocelot, it couldn't.
This was done to have common code between Felix and Ocelot, which have
one bit difference in the frame header format. Quoting from commit
67c2404922c2 ("net: dsa: felix: create a template for the DSA tags on
xmit"):
Other alternatives have been analyzed, such as:
- Create a separate tag_seville.c: too much code duplication for just 1
bit field difference.
- Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like
tag_brcm.c, which would have a separate .xmit function. Again, too
much code duplication for just 1 bit field difference.
- Allocate the template from the init function of the tag_ocelot.c
module, instead of from the driver: couldn't figure out a method of
accessing the correct port template corresponding to the correct
tagger in the .xmit function.
The really interesting part is that Seville should have had its own
tagging protocol defined - it is not compatible on the wire with Ocelot,
even for that single bit. In principle, a packet generated by
DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain
way, but when booted on NXP T1040 it would look differently. The reverse
is also true: a packet generated by a Seville switch would be
interpreted incorrectly by Wireshark if it was told it was generated by
an Ocelot switch.
Actually things are a bit more nuanced. If we concentrate only on the
DSA tag, what I said above is true, but Ocelot/Seville also support an
optional DSA tag prefix, which can be short or long, and it is possible
to distinguish the two taggers based on an integer constant put in that
prefix. Nonetheless, creating a separate tagger is still justified,
since the tag prefix is optional, and without it, there is again no way
to distinguish.
Claiming backwards binary compatibility is a bit more tough, since I've
already changed the format of tag_ocelot once, in commit 5124197ce58b
("net: dsa: tag_ocelot: use a short prefix on both ingress and egress").
Therefore I am not very concerned with treating this as a bugfix and
backporting it to stable kernels (which would be another mess due to the
fact that there would be lots of conflicts with the other DSA_TAG_PROTO*
definitions). It's just simpler to say that the string values of the
taggers have ABI value starting with kernel 5.12, which will be when the
changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging
goes live.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:37:58 +08:00
|
|
|
case DSA_TAG_PROTO_SEVILLE:
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
case DSA_TAG_PROTO_OCELOT:
|
|
|
|
felix_teardown_tag_npi(ds, cpu);
|
|
|
|
break;
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
case DSA_TAG_PROTO_OCELOT_8021Q:
|
|
|
|
felix_teardown_tag_8021q(ds, cpu);
|
|
|
|
break;
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
/* This always leaves the switch in a consistent state, because although the
|
|
|
|
* tag_8021q setup can fail, the NPI setup can't. So either the change is made,
|
|
|
|
* or the restoration is guaranteed to work.
|
|
|
|
*/
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
static int felix_change_tag_protocol(struct dsa_switch *ds, int cpu,
|
|
|
|
enum dsa_tag_protocol proto)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
enum dsa_tag_protocol old_proto = felix->tag_proto;
|
2022-04-13 01:22:09 +08:00
|
|
|
bool cpu_port_active = false;
|
|
|
|
struct dsa_port *dp;
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
int err;
|
|
|
|
|
net: dsa: tag_ocelot: create separate tagger for Seville
The ocelot tagger is a hot mess currently, it relies on memory
initialized by the attached driver for basic frame transmission.
This is against all that DSA tagging protocols stand for, which is that
the transmission and reception of a DSA-tagged frame, the data path,
should be independent from the switch control path, because the tag
protocol is in principle hot-pluggable and reusable across switches
(even if in practice it wasn't until very recently). But if another
driver like dsa_loop wants to make use of tag_ocelot, it couldn't.
This was done to have common code between Felix and Ocelot, which have
one bit difference in the frame header format. Quoting from commit
67c2404922c2 ("net: dsa: felix: create a template for the DSA tags on
xmit"):
Other alternatives have been analyzed, such as:
- Create a separate tag_seville.c: too much code duplication for just 1
bit field difference.
- Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like
tag_brcm.c, which would have a separate .xmit function. Again, too
much code duplication for just 1 bit field difference.
- Allocate the template from the init function of the tag_ocelot.c
module, instead of from the driver: couldn't figure out a method of
accessing the correct port template corresponding to the correct
tagger in the .xmit function.
The really interesting part is that Seville should have had its own
tagging protocol defined - it is not compatible on the wire with Ocelot,
even for that single bit. In principle, a packet generated by
DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain
way, but when booted on NXP T1040 it would look differently. The reverse
is also true: a packet generated by a Seville switch would be
interpreted incorrectly by Wireshark if it was told it was generated by
an Ocelot switch.
Actually things are a bit more nuanced. If we concentrate only on the
DSA tag, what I said above is true, but Ocelot/Seville also support an
optional DSA tag prefix, which can be short or long, and it is possible
to distinguish the two taggers based on an integer constant put in that
prefix. Nonetheless, creating a separate tagger is still justified,
since the tag prefix is optional, and without it, there is again no way
to distinguish.
Claiming backwards binary compatibility is a bit more tough, since I've
already changed the format of tag_ocelot once, in commit 5124197ce58b
("net: dsa: tag_ocelot: use a short prefix on both ingress and egress").
Therefore I am not very concerned with treating this as a bugfix and
backporting it to stable kernels (which would be another mess due to the
fact that there would be lots of conflicts with the other DSA_TAG_PROTO*
definitions). It's just simpler to say that the string values of the
taggers have ABI value starting with kernel 5.12, which will be when the
changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging
goes live.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:37:58 +08:00
|
|
|
if (proto != DSA_TAG_PROTO_SEVILLE &&
|
|
|
|
proto != DSA_TAG_PROTO_OCELOT &&
|
net: dsa: felix: perform switch setup for tag_8021q
Unlike sja1105, the only other user of the software-defined tag_8021q.c
tagger format, the implementation we choose for the Felix DSA switch
driver preserves full functionality under a vlan_filtering bridge
(i.e. IP termination works through the DSA user ports under all
circumstances).
The tag_8021q protocol just wants:
- Identifying the ingress switch port based on the RX VLAN ID, as seen
by the CPU. We achieve this by using the TCAM engines (which are also
used for tc-flower offload) to push the RX VLAN as a second, outer
tag, on egress towards the CPU port.
- Steering traffic injected into the switch from the network stack
towards the correct front port based on the TX VLAN, and consuming
(popping) that header on the switch's egress.
A tc-flower pseudocode of the static configuration done by the driver
would look like this:
$ tc qdisc add dev <cpu-port> clsact
$ for eth in swp0 swp1 swp2 swp3; do \
tc filter add dev <cpu-port> egress flower indev ${eth} \
action vlan push id <rxvlan> protocol 802.1ad; \
tc filter add dev <cpu-port> ingress protocol 802.1Q flower
vlan_id <txvlan> action vlan pop \
action mirred egress redirect dev ${eth}; \
done
but of course since DSA does not register network interfaces for the CPU
port, this configuration would be impossible for the user to do. Also,
due to the same reason, it is impossible for the user to inadvertently
delete these rules using tc. These rules do not collide in any way with
tc-flower, they just consume some TCAM space, which is something we can
live with.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:09 +08:00
|
|
|
proto != DSA_TAG_PROTO_OCELOT_8021Q)
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
return -EPROTONOSUPPORT;
|
|
|
|
|
2022-04-13 01:22:09 +08:00
|
|
|
/* We don't support multiple CPU ports, yet the DT blob may have
|
|
|
|
* multiple CPU ports defined. The first CPU port is the active one,
|
|
|
|
* the others are inactive. In this case, DSA will call
|
|
|
|
* ->change_tag_protocol() multiple times, once per CPU port.
|
|
|
|
* Since we implement the tagging protocol change towards "ocelot" or
|
|
|
|
* "seville" as effectively initializing the NPI port, what we are
|
|
|
|
* doing is effectively changing who the NPI port is to the last @cpu
|
|
|
|
* argument passed, which is an unused DSA CPU port and not the one
|
|
|
|
* that should actively pass traffic.
|
|
|
|
* Suppress DSA's calls on CPU ports that are inactive.
|
|
|
|
*/
|
|
|
|
dsa_switch_for_each_user_port(dp, ds) {
|
|
|
|
if (dp->cpu_dp->index == cpu) {
|
|
|
|
cpu_port_active = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!cpu_port_active)
|
|
|
|
return 0;
|
|
|
|
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
felix_del_tag_protocol(ds, cpu, old_proto);
|
|
|
|
|
2022-03-08 17:15:12 +08:00
|
|
|
err = felix_set_tag_protocol(ds, cpu, proto);
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
if (err) {
|
2022-03-08 17:15:12 +08:00
|
|
|
felix_set_tag_protocol(ds, cpu, old_proto);
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
felix->tag_proto = proto;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static enum dsa_tag_protocol felix_get_tag_protocol(struct dsa_switch *ds,
|
2020-01-08 13:06:05 +08:00
|
|
|
int port,
|
|
|
|
enum dsa_tag_protocol mp)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
|
|
|
|
return felix->tag_proto;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
net: dsa: felix: manage host flooding using a specific driver callback
At the time - commit 7569459a52c9 ("net: dsa: manage flooding on the CPU
ports") - not introducing a dedicated switch callback for host flooding
made sense, because for the only user, the felix driver, there was
nothing different to do for the CPU port than set the flood flags on the
CPU port just like on any other bridge port.
There are 2 reasons why this approach is not good enough, however.
(1) Other drivers, like sja1105, support configuring flooding as a
function of {ingress port, egress port}, whereas the DSA
->port_bridge_flags() function only operates on an egress port.
So with that driver we'd have useless host flooding from user ports
which don't need it.
(2) Even with the felix driver, support for multiple CPU ports makes it
difficult to piggyback on ->port_bridge_flags(). The way in which
the felix driver is going to support host-filtered addresses with
multiple CPU ports is that it will direct these addresses towards
both CPU ports (in a sort of multicast fashion), then restrict the
forwarding to only one of the two using the forwarding masks.
Consequently, flooding will also be enabled towards both CPU ports.
However, ->port_bridge_flags() gets passed the index of a single CPU
port, and that leaves the flood settings out of sync between the 2
CPU ports.
This is to say, it's better to have a specific driver method for host
flooding, which takes the user port as argument. This solves problem (1)
by allowing the driver to do different things for different user ports,
and problem (2) by abstracting the operation and letting the driver do
whatever, rather than explicitly making the DSA core point to the CPU
port it thinks needs to be touched.
This new method also creates a problem, which is that cross-chip setups
are not handled. However I don't have hardware right now where I can
test what is the proper thing to do, and there isn't hardware compatible
with multi-switch trees that supports host flooding. So it remains a
problem to be tackled in the future.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-11 17:50:17 +08:00
|
|
|
static void felix_port_set_host_flood(struct dsa_switch *ds, int port,
|
|
|
|
bool uc, bool mc)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
unsigned long mask, val;
|
|
|
|
|
|
|
|
if (uc)
|
|
|
|
felix->host_flood_uc_mask |= BIT(port);
|
|
|
|
else
|
|
|
|
felix->host_flood_uc_mask &= ~BIT(port);
|
|
|
|
|
|
|
|
if (mc)
|
|
|
|
felix->host_flood_mc_mask |= BIT(port);
|
|
|
|
else
|
|
|
|
felix->host_flood_mc_mask &= ~BIT(port);
|
|
|
|
|
|
|
|
if (felix->tag_proto == DSA_TAG_PROTO_OCELOT_8021Q)
|
|
|
|
mask = dsa_cpu_ports(ds);
|
|
|
|
else
|
|
|
|
mask = BIT(ocelot->num_phys_ports);
|
|
|
|
|
|
|
|
val = (felix->host_flood_uc_mask) ? mask : 0;
|
|
|
|
ocelot_rmw_rix(ocelot, val, mask, ANA_PGID_PGID, PGID_UC);
|
|
|
|
|
|
|
|
val = (felix->host_flood_mc_mask) ? mask : 0;
|
|
|
|
ocelot_rmw_rix(ocelot, val, mask, ANA_PGID_PGID, PGID_MC);
|
|
|
|
ocelot_rmw_rix(ocelot, val, mask, ANA_PGID_PGID, PGID_MCIPV4);
|
|
|
|
ocelot_rmw_rix(ocelot, val, mask, ANA_PGID_PGID, PGID_MCIPV6);
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static int felix_set_ageing_time(struct dsa_switch *ds,
|
|
|
|
unsigned int ageing_time)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_set_ageing_time(ocelot, ageing_time);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-01-07 22:42:29 +08:00
|
|
|
static void felix_port_fast_age(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = ocelot_mact_flush(ocelot, port);
|
|
|
|
if (err)
|
|
|
|
dev_err(ds->dev, "Flushing MAC table on port %d returned %pe\n",
|
|
|
|
port, ERR_PTR(err));
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static int felix_fdb_dump(struct dsa_switch *ds, int port,
|
|
|
|
dsa_fdb_dump_cb_t *cb, void *data)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_fdb_dump(ocelot, port, cb, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_fdb_add(struct dsa_switch *ds, int port,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const unsigned char *addr, u16 vid,
|
|
|
|
struct dsa_db db)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2022-05-11 17:50:13 +08:00
|
|
|
struct dsa_port *dp = dsa_to_port(ds, port);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
2022-05-11 17:50:13 +08:00
|
|
|
if (dsa_port_is_cpu(dp) && !bridge_dev &&
|
net: dsa: felix: avoid early deletion of host FDB entries
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c319846086 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-08 17:15:15 +08:00
|
|
|
dsa_fdb_present_in_other_db(ds, port, addr, vid, db))
|
|
|
|
return 0;
|
|
|
|
|
2022-05-11 17:50:13 +08:00
|
|
|
if (dsa_port_is_cpu(dp))
|
|
|
|
port = PGID_CPU;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
return ocelot_fdb_add(ocelot, port, addr, vid, bridge_dev);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_fdb_del(struct dsa_switch *ds, int port,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const unsigned char *addr, u16 vid,
|
|
|
|
struct dsa_db db)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2022-05-11 17:50:13 +08:00
|
|
|
struct dsa_port *dp = dsa_to_port(ds, port);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
2022-05-11 17:50:13 +08:00
|
|
|
if (dsa_port_is_cpu(dp) && !bridge_dev &&
|
net: dsa: felix: avoid early deletion of host FDB entries
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c319846086 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-08 17:15:15 +08:00
|
|
|
dsa_fdb_present_in_other_db(ds, port, addr, vid, db))
|
|
|
|
return 0;
|
|
|
|
|
2022-05-11 17:50:13 +08:00
|
|
|
if (dsa_port_is_cpu(dp))
|
|
|
|
port = PGID_CPU;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
return ocelot_fdb_del(ocelot, port, addr, vid, bridge_dev);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2022-02-23 22:00:54 +08:00
|
|
|
static int felix_lag_fdb_add(struct dsa_switch *ds, struct dsa_lag lag,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const unsigned char *addr, u16 vid,
|
|
|
|
struct dsa_db db)
|
2022-02-23 22:00:54 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2022-02-23 22:00:54 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
|
|
|
return ocelot_lag_fdb_add(ocelot, lag.dev, addr, vid, bridge_dev);
|
2022-02-23 22:00:54 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_lag_fdb_del(struct dsa_switch *ds, struct dsa_lag lag,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const unsigned char *addr, u16 vid,
|
|
|
|
struct dsa_db db)
|
2022-02-23 22:00:54 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2022-02-23 22:00:54 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
|
|
|
return ocelot_lag_fdb_del(ocelot, lag.dev, addr, vid, bridge_dev);
|
2022-02-23 22:00:54 +08:00
|
|
|
}
|
|
|
|
|
2021-01-09 08:01:52 +08:00
|
|
|
static int felix_mdb_add(struct dsa_switch *ds, int port,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const struct switchdev_obj_port_mdb *mdb,
|
|
|
|
struct dsa_db db)
|
2020-06-21 19:46:01 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2020-06-21 19:46:01 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
net: dsa: felix: avoid early deletion of host FDB entries
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c319846086 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-08 17:15:15 +08:00
|
|
|
if (dsa_is_cpu_port(ds, port) && !bridge_dev &&
|
|
|
|
dsa_mdb_present_in_other_db(ds, port, mdb, db))
|
|
|
|
return 0;
|
|
|
|
|
2022-05-11 17:50:14 +08:00
|
|
|
if (port == ocelot->npi)
|
|
|
|
port = ocelot->num_phys_ports;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
return ocelot_port_mdb_add(ocelot, port, mdb, bridge_dev);
|
2020-06-21 19:46:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_mdb_del(struct dsa_switch *ds, int port,
|
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:22 +08:00
|
|
|
const struct switchdev_obj_port_mdb *mdb,
|
|
|
|
struct dsa_db db)
|
2020-06-21 19:46:01 +08:00
|
|
|
{
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
struct net_device *bridge_dev = felix_classify_db(db);
|
2020-06-21 19:46:01 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
if (IS_ERR(bridge_dev))
|
|
|
|
return PTR_ERR(bridge_dev);
|
|
|
|
|
net: dsa: felix: avoid early deletion of host FDB entries
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c319846086 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-08 17:15:15 +08:00
|
|
|
if (dsa_is_cpu_port(ds, port) && !bridge_dev &&
|
|
|
|
dsa_mdb_present_in_other_db(ds, port, mdb, db))
|
|
|
|
return 0;
|
|
|
|
|
2022-05-11 17:50:14 +08:00
|
|
|
if (port == ocelot->npi)
|
|
|
|
port = ocelot->num_phys_ports;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
return ocelot_port_mdb_del(ocelot, port, mdb, bridge_dev);
|
2020-06-21 19:46:01 +08:00
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static void felix_bridge_stp_state_set(struct dsa_switch *ds, int port,
|
|
|
|
u8 state)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_bridge_stp_state_set(ocelot, port, state);
|
|
|
|
}
|
|
|
|
|
2021-02-12 23:15:59 +08:00
|
|
|
static int felix_pre_bridge_flags(struct dsa_switch *ds, int port,
|
|
|
|
struct switchdev_brport_flags val,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_pre_bridge_flags(ocelot, port, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_bridge_flags(struct dsa_switch *ds, int port,
|
|
|
|
struct switchdev_brport_flags val,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
2022-05-11 17:50:15 +08:00
|
|
|
if (port == ocelot->npi)
|
|
|
|
port = ocelot->num_phys_ports;
|
|
|
|
|
2021-02-12 23:15:59 +08:00
|
|
|
ocelot_port_bridge_flags(ocelot, port, val);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static int felix_bridge_join(struct dsa_switch *ds, int port,
|
2022-02-25 17:22:23 +08:00
|
|
|
struct dsa_bridge bridge, bool *tx_fwd_offload,
|
|
|
|
struct netlink_ext_ack *extack)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
return ocelot_port_bridge_join(ocelot, port, bridge.dev, bridge.num,
|
|
|
|
extack);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_bridge_leave(struct dsa_switch *ds, int port,
|
net: dsa: keep the bridge_dev and bridge_num as part of the same structure
The main desire behind this is to provide coherent bridge information to
the fast path without locking.
For example, right now we set dp->bridge_dev and dp->bridge_num from
separate code paths, it is theoretically possible for a packet
transmission to read these two port properties consecutively and find a
bridge number which does not correspond with the bridge device.
Another desire is to start passing more complex bridge information to
dsa_switch_ops functions. For example, with FDB isolation, it is
expected that drivers will need to be passed the bridge which requested
an FDB/MDB entry to be offloaded, and along with that bridge_dev, the
associated bridge_num should be passed too, in case the driver might
want to implement an isolation scheme based on that number.
We already pass the {bridge_dev, bridge_num} pair to the TX forwarding
offload switch API, however we'd like to remove that and squash it into
the basic bridge join/leave API. So that means we need to pass this
pair to the bridge join/leave API.
During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we
call the driver's .port_bridge_leave with what used to be our
dp->bridge_dev, but provided as an argument.
When bridge_dev and bridge_num get folded into a single structure, we
need to preserve this behavior in dsa_port_bridge_leave: we need a copy
of what used to be in dp->bridge.
Switch drivers check bridge membership by comparing dp->bridge_dev with
the provided bridge_dev, but now, if we provide the struct dsa_bridge as
a pointer, they cannot keep comparing dp->bridge to the provided
pointer, since this only points to an on-stack copy. To make this
obvious and prevent driver writers from forgetting and doing stupid
things, in this new API, the struct dsa_bridge is provided as a full
structure (not very large, contains an int and a pointer) instead of a
pointer. An explicit comparison function needs to be used to determine
bridge membership: dsa_port_offloads_bridge().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-07 00:57:56 +08:00
|
|
|
struct dsa_bridge bridge)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
net: dsa: keep the bridge_dev and bridge_num as part of the same structure
The main desire behind this is to provide coherent bridge information to
the fast path without locking.
For example, right now we set dp->bridge_dev and dp->bridge_num from
separate code paths, it is theoretically possible for a packet
transmission to read these two port properties consecutively and find a
bridge number which does not correspond with the bridge device.
Another desire is to start passing more complex bridge information to
dsa_switch_ops functions. For example, with FDB isolation, it is
expected that drivers will need to be passed the bridge which requested
an FDB/MDB entry to be offloaded, and along with that bridge_dev, the
associated bridge_num should be passed too, in case the driver might
want to implement an isolation scheme based on that number.
We already pass the {bridge_dev, bridge_num} pair to the TX forwarding
offload switch API, however we'd like to remove that and squash it into
the basic bridge join/leave API. So that means we need to pass this
pair to the bridge join/leave API.
During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we
call the driver's .port_bridge_leave with what used to be our
dp->bridge_dev, but provided as an argument.
When bridge_dev and bridge_num get folded into a single structure, we
need to preserve this behavior in dsa_port_bridge_leave: we need a copy
of what used to be in dp->bridge.
Switch drivers check bridge membership by comparing dp->bridge_dev with
the provided bridge_dev, but now, if we provide the struct dsa_bridge as
a pointer, they cannot keep comparing dp->bridge to the provided
pointer, since this only points to an on-stack copy. To make this
obvious and prevent driver writers from forgetting and doing stupid
things, in this new API, the struct dsa_bridge is provided as a full
structure (not very large, contains an int and a pointer) instead of a
pointer. An explicit comparison function needs to be used to determine
bridge membership: dsa_port_offloads_bridge().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-07 00:57:56 +08:00
|
|
|
ocelot_port_bridge_leave(ocelot, port, bridge.dev);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2021-02-06 06:02:21 +08:00
|
|
|
static int felix_lag_join(struct dsa_switch *ds, int port,
|
2022-02-23 22:00:49 +08:00
|
|
|
struct dsa_lag lag,
|
2021-02-06 06:02:21 +08:00
|
|
|
struct netdev_lag_upper_info *info)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
2022-02-23 22:00:49 +08:00
|
|
|
return ocelot_port_lag_join(ocelot, port, lag.dev, info);
|
2021-02-06 06:02:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_lag_leave(struct dsa_switch *ds, int port,
|
2022-02-23 22:00:49 +08:00
|
|
|
struct dsa_lag lag)
|
2021-02-06 06:02:21 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
2022-02-23 22:00:49 +08:00
|
|
|
ocelot_port_lag_leave(ocelot, port, lag.dev);
|
2021-02-06 06:02:21 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_lag_change(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct dsa_port *dp = dsa_to_port(ds, port);
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_port_lag_change(ocelot, port, dp->lag_tx_enabled);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static int felix_vlan_prepare(struct dsa_switch *ds, int port,
|
2021-08-20 01:40:06 +08:00
|
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
|
|
struct netlink_ext_ack *extack)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
2020-10-31 18:29:15 +08:00
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: switchdev: remove vid_begin -> vid_end range from VLAN objects
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 08:01:46 +08:00
|
|
|
u16 flags = vlan->flags;
|
2020-10-31 18:29:15 +08:00
|
|
|
|
2020-10-31 18:29:16 +08:00
|
|
|
/* Ocelot switches copy frames as-is to the CPU, so the flags:
|
|
|
|
* egress-untagged or not, pvid or not, make no difference. This
|
|
|
|
* behavior is already better than what DSA just tries to approximate
|
|
|
|
* when it installs the VLAN with the same flags on the CPU port.
|
|
|
|
* Just accept any configuration, and don't let ocelot deny installing
|
|
|
|
* multiple native VLANs on the NPI port, because the switch doesn't
|
|
|
|
* look at the port tag settings towards the NPI interface anyway.
|
|
|
|
*/
|
|
|
|
if (port == ocelot->npi)
|
|
|
|
return 0;
|
|
|
|
|
net: switchdev: remove vid_begin -> vid_end range from VLAN objects
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 08:01:46 +08:00
|
|
|
return ocelot_vlan_prepare(ocelot, port, vlan->vid,
|
|
|
|
flags & BRIDGE_VLAN_INFO_PVID,
|
2021-08-20 01:40:06 +08:00
|
|
|
flags & BRIDGE_VLAN_INFO_UNTAGGED,
|
|
|
|
extack);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2021-02-14 04:43:19 +08:00
|
|
|
static int felix_vlan_filtering(struct dsa_switch *ds, int port, bool enabled,
|
|
|
|
struct netlink_ext_ack *extack)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
2021-08-20 01:40:07 +08:00
|
|
|
return ocelot_port_vlan_filtering(ocelot, port, enabled, extack);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2021-01-09 08:01:53 +08:00
|
|
|
static int felix_vlan_add(struct dsa_switch *ds, int port,
|
2021-02-14 04:43:18 +08:00
|
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
|
|
struct netlink_ext_ack *extack)
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2020-05-28 00:48:03 +08:00
|
|
|
u16 flags = vlan->flags;
|
2021-01-09 08:01:53 +08:00
|
|
|
int err;
|
|
|
|
|
2021-08-20 01:40:06 +08:00
|
|
|
err = felix_vlan_prepare(ds, port, vlan, extack);
|
2021-01-09 08:01:53 +08:00
|
|
|
if (err)
|
|
|
|
return err;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
2021-01-09 08:01:53 +08:00
|
|
|
return ocelot_vlan_add(ocelot, port, vlan->vid,
|
|
|
|
flags & BRIDGE_VLAN_INFO_PVID,
|
|
|
|
flags & BRIDGE_VLAN_INFO_UNTAGGED);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_vlan_del(struct dsa_switch *ds, int port,
|
|
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: switchdev: remove vid_begin -> vid_end range from VLAN objects
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 08:01:46 +08:00
|
|
|
|
|
|
|
return ocelot_vlan_del(ocelot, port, vlan->vid);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2022-02-26 00:19:25 +08:00
|
|
|
static void felix_phylink_get_caps(struct dsa_switch *ds, int port,
|
|
|
|
struct phylink_config *config)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
2022-02-26 00:19:41 +08:00
|
|
|
/* This driver does not make use of the speed, duplex, pause or the
|
|
|
|
* advertisement in its mac_config, so it is safe to mark this driver
|
|
|
|
* as non-legacy.
|
|
|
|
*/
|
|
|
|
config->legacy_pre_march2020 = false;
|
|
|
|
|
2022-02-26 00:19:25 +08:00
|
|
|
__set_bit(ocelot->ports[port]->phy_mode,
|
|
|
|
config->supported_interfaces);
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
static void felix_phylink_validate(struct dsa_switch *ds, int port,
|
|
|
|
unsigned long *supported,
|
|
|
|
struct phylink_link_state *state)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2020-07-14 00:57:09 +08:00
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
|
2020-07-14 00:57:09 +08:00
|
|
|
if (felix->info->phylink_validate)
|
|
|
|
felix->info->phylink_validate(ocelot, port, supported, state);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
}
|
|
|
|
|
2022-02-26 00:19:36 +08:00
|
|
|
static struct phylink_pcs *felix_phylink_mac_select_pcs(struct dsa_switch *ds,
|
|
|
|
int port,
|
|
|
|
phy_interface_t iface)
|
2020-07-06 00:16:26 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
2022-02-26 00:19:36 +08:00
|
|
|
struct phylink_pcs *pcs = NULL;
|
2020-07-06 00:16:26 +08:00
|
|
|
|
2021-12-08 01:00:28 +08:00
|
|
|
if (felix->pcs && felix->pcs[port])
|
2022-02-26 00:19:36 +08:00
|
|
|
pcs = felix->pcs[port];
|
|
|
|
|
|
|
|
return pcs;
|
2020-07-06 00:16:26 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_phylink_mac_link_down(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int link_an_mode,
|
|
|
|
phy_interface_t interface)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: dsa: felix: implement port flushing on .phylink_mac_link_down
There are several issues which may be seen when the link goes down while
forwarding traffic, all of which can be attributed to the fact that the
port flushing procedure from the reference manual was not closely
followed.
With flow control enabled on both the ingress port and the egress port,
it may happen when a link goes down that Ethernet packets are in flight.
In flow control mode, frames are held back and not dropped. When there
is enough traffic in flight (example: iperf3 TCP), then the ingress port
might enter congestion and never exit that state. This is a problem,
because it is the egress port's link that went down, and that has caused
the inability of the ingress port to send packets to any other port.
This is solved by flushing the egress port's queues when it goes down.
There is also a problem when performing stream splitting for
IEEE 802.1CB traffic (not yet upstream, but a sort of multicast,
basically). There, if one port from the destination ports mask goes
down, splitting the stream towards the other destinations will no longer
be performed. This can be traced down to this line:
ocelot_port_writel(ocelot_port, 0, DEV_MAC_ENA_CFG);
which should have been instead, as per the reference manual:
ocelot_port_rmwl(ocelot_port, 0, DEV_MAC_ENA_CFG_RX_ENA,
DEV_MAC_ENA_CFG);
Basically only DEV_MAC_ENA_CFG_RX_ENA should be disabled, but not
DEV_MAC_ENA_CFG_TX_ENA - I don't have further insight into why that is
the case, but apparently multicasting to several ports will cause issues
if at least one of them doesn't have DEV_MAC_ENA_CFG_TX_ENA set.
I am not sure what the state of the Ocelot VSC7514 driver is, but
probably not as bad as Felix/Seville, since VSC7514 uses phylib and has
the following in ocelot_adjust_link:
if (!phydev->link)
return;
therefore the port is not really put down when the link is lost, unlike
the DSA drivers which use .phylink_mac_link_down for that.
Nonetheless, I put ocelot_port_flush() in the common ocelot.c because it
needs to access some registers from drivers/net/ethernet/mscc/ocelot_rew.h
which are not exported in include/soc/mscc/ and a bugfix patch should
probably not move headers around.
Fixes: bdeced75b13f ("net: dsa: felix: Add PCS operations for PHYLINK")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-09 01:36:27 +08:00
|
|
|
|
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 09:47:48 +08:00
|
|
|
ocelot_phylink_mac_link_down(ocelot, port, link_an_mode, interface,
|
|
|
|
FELIX_MAC_QUIRKS);
|
2020-07-06 00:16:26 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_phylink_mac_link_up(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int link_an_mode,
|
|
|
|
phy_interface_t interface,
|
|
|
|
struct phy_device *phydev,
|
|
|
|
int speed, int duplex,
|
|
|
|
bool tx_pause, bool rx_pause)
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
|
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 09:47:48 +08:00
|
|
|
ocelot_phylink_mac_link_up(ocelot, port, phydev, link_an_mode,
|
|
|
|
interface, speed, duplex, tx_pause, rx_pause,
|
|
|
|
FELIX_MAC_QUIRKS);
|
2020-07-06 00:16:26 +08:00
|
|
|
|
|
|
|
if (felix->info->port_sched_speed_set)
|
|
|
|
felix->info->port_sched_speed_set(ocelot, port, speed);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
}
|
|
|
|
|
2020-05-13 10:25:08 +08:00
|
|
|
static void felix_port_qos_map_init(struct ocelot *ocelot, int port)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ocelot_rmw_gix(ocelot,
|
|
|
|
ANA_PORT_QOS_CFG_QOS_PCP_ENA,
|
|
|
|
ANA_PORT_QOS_CFG_QOS_PCP_ENA,
|
|
|
|
ANA_PORT_QOS_CFG,
|
|
|
|
port);
|
|
|
|
|
2021-01-15 10:11:16 +08:00
|
|
|
for (i = 0; i < OCELOT_NUM_TC * 2; i++) {
|
2020-05-13 10:25:08 +08:00
|
|
|
ocelot_rmw_ix(ocelot,
|
|
|
|
(ANA_PORT_PCP_DEI_MAP_DP_PCP_DEI_VAL & i) |
|
|
|
|
ANA_PORT_PCP_DEI_MAP_QOS_PCP_DEI_VAL(i),
|
|
|
|
ANA_PORT_PCP_DEI_MAP_DP_PCP_DEI_VAL |
|
|
|
|
ANA_PORT_PCP_DEI_MAP_QOS_PCP_DEI_VAL_M,
|
|
|
|
ANA_PORT_PCP_DEI_MAP,
|
|
|
|
port, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static void felix_get_strings(struct dsa_switch *ds, int port,
|
|
|
|
u32 stringset, u8 *data)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_get_strings(ocelot, port, stringset, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_get_ethtool_stats(ocelot, port, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_get_sset_count(struct dsa_switch *ds, int port, int sset)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_get_sset_count(ocelot, port, sset);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_get_ts_info(struct dsa_switch *ds, int port,
|
|
|
|
struct ethtool_ts_info *info)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_get_ts_info(ocelot, port, info);
|
|
|
|
}
|
|
|
|
|
2022-02-27 06:36:50 +08:00
|
|
|
static const u32 felix_phy_match_table[PHY_INTERFACE_MODE_MAX] = {
|
|
|
|
[PHY_INTERFACE_MODE_INTERNAL] = OCELOT_PORT_MODE_INTERNAL,
|
|
|
|
[PHY_INTERFACE_MODE_SGMII] = OCELOT_PORT_MODE_SGMII,
|
|
|
|
[PHY_INTERFACE_MODE_QSGMII] = OCELOT_PORT_MODE_QSGMII,
|
|
|
|
[PHY_INTERFACE_MODE_USXGMII] = OCELOT_PORT_MODE_USXGMII,
|
2022-05-11 00:43:20 +08:00
|
|
|
[PHY_INTERFACE_MODE_1000BASEX] = OCELOT_PORT_MODE_1000BASEX,
|
2022-02-27 06:36:50 +08:00
|
|
|
[PHY_INTERFACE_MODE_2500BASEX] = OCELOT_PORT_MODE_2500BASEX,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int felix_validate_phy_mode(struct felix *felix, int port,
|
|
|
|
phy_interface_t phy_mode)
|
|
|
|
{
|
|
|
|
u32 modes = felix->info->port_modes[port];
|
|
|
|
|
|
|
|
if (felix_phy_match_table[phy_mode] & modes)
|
|
|
|
return 0;
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
static int felix_parse_ports_node(struct felix *felix,
|
|
|
|
struct device_node *ports_node,
|
|
|
|
phy_interface_t *port_phy_modes)
|
|
|
|
{
|
|
|
|
struct device *dev = felix->ocelot.dev;
|
|
|
|
struct device_node *child;
|
|
|
|
|
2020-01-17 02:41:53 +08:00
|
|
|
for_each_available_child_of_node(ports_node, child) {
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
phy_interface_t phy_mode;
|
|
|
|
u32 port;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* Get switch port number from DT */
|
|
|
|
if (of_property_read_u32(child, "reg", &port) < 0) {
|
|
|
|
dev_err(dev, "Port number not defined in device tree "
|
|
|
|
"(property \"reg\")\n");
|
|
|
|
of_node_put(child);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get PHY mode from DT */
|
|
|
|
err = of_get_phy_mode(child, &phy_mode);
|
|
|
|
if (err) {
|
|
|
|
dev_err(dev, "Failed to read phy-mode or "
|
|
|
|
"phy-interface-type property for port %d\n",
|
|
|
|
port);
|
|
|
|
of_node_put(child);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
2022-02-27 06:36:50 +08:00
|
|
|
err = felix_validate_phy_mode(felix, port, phy_mode);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
if (err < 0) {
|
|
|
|
dev_err(dev, "Unsupported PHY mode %s on port %d\n",
|
|
|
|
phy_modes(phy_mode), port);
|
2020-08-23 21:52:45 +08:00
|
|
|
of_node_put(child);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
port_phy_modes[port] = phy_mode;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_parse_dt(struct felix *felix, phy_interface_t *port_phy_modes)
|
|
|
|
{
|
|
|
|
struct device *dev = felix->ocelot.dev;
|
|
|
|
struct device_node *switch_node;
|
|
|
|
struct device_node *ports_node;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
switch_node = dev->of_node;
|
|
|
|
|
|
|
|
ports_node = of_get_child_by_name(switch_node, "ports");
|
2021-09-23 23:35:41 +08:00
|
|
|
if (!ports_node)
|
|
|
|
ports_node = of_get_child_by_name(switch_node, "ethernet-ports");
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
if (!ports_node) {
|
2021-09-23 23:35:41 +08:00
|
|
|
dev_err(dev, "Incorrect bindings: absent \"ports\" or \"ethernet-ports\" node\n");
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = felix_parse_ports_node(felix, ports_node, port_phy_modes);
|
|
|
|
of_node_put(ports_node);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
static int felix_init_structs(struct felix *felix, int num_phys_ports)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = &felix->ocelot;
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
phy_interface_t *port_phy_modes;
|
2020-05-22 16:54:34 +08:00
|
|
|
struct resource res;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
int port, i, err;
|
|
|
|
|
|
|
|
ocelot->num_phys_ports = num_phys_ports;
|
|
|
|
ocelot->ports = devm_kcalloc(ocelot->dev, num_phys_ports,
|
|
|
|
sizeof(struct ocelot_port *), GFP_KERNEL);
|
|
|
|
if (!ocelot->ports)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ocelot->map = felix->info->map;
|
|
|
|
ocelot->stats_layout = felix->info->stats_layout;
|
2020-05-04 06:20:26 +08:00
|
|
|
ocelot->num_mact_rows = felix->info->num_mact_rows;
|
2020-02-29 22:31:14 +08:00
|
|
|
ocelot->vcap = felix->info->vcap;
|
2021-11-18 18:12:02 +08:00
|
|
|
ocelot->vcap_pol.base = felix->info->vcap_pol_base;
|
|
|
|
ocelot->vcap_pol.max = felix->info->vcap_pol_max;
|
|
|
|
ocelot->vcap_pol.base2 = felix->info->vcap_pol_base2;
|
|
|
|
ocelot->vcap_pol.max2 = felix->info->vcap_pol_max2;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
ocelot->ops = felix->info->ops;
|
2021-01-29 09:00:03 +08:00
|
|
|
ocelot->npi_inj_prefix = OCELOT_TAG_PREFIX_SHORT;
|
|
|
|
ocelot->npi_xtr_prefix = OCELOT_TAG_PREFIX_SHORT;
|
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 10:11:20 +08:00
|
|
|
ocelot->devlink = felix->ds->devlink;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
port_phy_modes = kcalloc(num_phys_ports, sizeof(phy_interface_t),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!port_phy_modes)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
err = felix_parse_dt(felix, port_phy_modes);
|
|
|
|
if (err) {
|
|
|
|
kfree(port_phy_modes);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
for (i = 0; i < TARGET_MAX; i++) {
|
|
|
|
struct regmap *target;
|
|
|
|
|
|
|
|
if (!felix->info->target_io_res[i].name)
|
|
|
|
continue;
|
|
|
|
|
2020-05-22 16:54:34 +08:00
|
|
|
memcpy(&res, &felix->info->target_io_res[i], sizeof(res));
|
|
|
|
res.flags = IORESOURCE_MEM;
|
2020-07-14 00:57:09 +08:00
|
|
|
res.start += felix->switch_base;
|
|
|
|
res.end += felix->switch_base;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
2021-12-08 01:00:29 +08:00
|
|
|
target = felix->info->init_regmap(ocelot, &res);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
if (IS_ERR(target)) {
|
|
|
|
dev_err(ocelot->dev,
|
|
|
|
"Failed to map device memory space\n");
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
kfree(port_phy_modes);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
return PTR_ERR(target);
|
|
|
|
}
|
|
|
|
|
|
|
|
ocelot->targets[i] = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = ocelot_regfields_init(ocelot, felix->info->regfields);
|
|
|
|
if (err) {
|
|
|
|
dev_err(ocelot->dev, "failed to init reg fields map\n");
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
kfree(port_phy_modes);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (port = 0; port < num_phys_ports; port++) {
|
|
|
|
struct ocelot_port *ocelot_port;
|
2020-07-14 00:57:01 +08:00
|
|
|
struct regmap *target;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
|
|
|
ocelot_port = devm_kzalloc(ocelot->dev,
|
|
|
|
sizeof(struct ocelot_port),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!ocelot_port) {
|
|
|
|
dev_err(ocelot->dev,
|
|
|
|
"failed to allocate port memory\n");
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
kfree(port_phy_modes);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2020-05-22 16:54:34 +08:00
|
|
|
memcpy(&res, &felix->info->port_io_res[port], sizeof(res));
|
|
|
|
res.flags = IORESOURCE_MEM;
|
2020-07-14 00:57:09 +08:00
|
|
|
res.start += felix->switch_base;
|
|
|
|
res.end += felix->switch_base;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
2021-12-08 01:00:29 +08:00
|
|
|
target = felix->info->init_regmap(ocelot, &res);
|
2020-07-14 00:57:01 +08:00
|
|
|
if (IS_ERR(target)) {
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
dev_err(ocelot->dev,
|
2020-07-14 00:57:01 +08:00
|
|
|
"Failed to map memory space for port %d\n",
|
|
|
|
port);
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
kfree(port_phy_modes);
|
2020-07-14 00:57:01 +08:00
|
|
|
return PTR_ERR(target);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
ocelot_port->phy_mode = port_phy_modes[port];
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
ocelot_port->ocelot = ocelot;
|
2020-07-14 00:57:01 +08:00
|
|
|
ocelot_port->target = target;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
ocelot->ports[port] = ocelot_port;
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
kfree(port_phy_modes);
|
|
|
|
|
|
|
|
if (felix->info->mdio_bus_alloc) {
|
|
|
|
err = felix->info->mdio_bus_alloc(ocelot);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: purge skb from TX timestamping queue if it cannot be sent
At present, when a PTP packet which requires TX timestamping gets
dropped under congestion by the switch, things go downhill very fast.
The driver keeps a clone of that skb in a queue of packets awaiting TX
timestamp interrupts, but interrupts will never be raised for the
dropped packets.
Moreover, matching timestamped packets to timestamps is done by a 2-bit
timestamp ID, and this can wrap around and we can match on the wrong skb.
Since with the default NPI-based tagging protocol, we get no notification
about packet drops, the best we can do is eventually recover from the
drop of a PTP frame: its skb will be dead memory until another skb which
was assigned the same timestamp ID happens to find it.
However, with the ocelot-8021q tagger which injects packets using the
manual register interface, it appears that we can check for more
information, such as:
- whether the input queue has reached the high watermark or not
- whether the injection group's FIFO can accept additional data or not
so we know that a PTP frame is likely to get dropped before actually
sending it, and drop it ourselves (because DSA uses NETIF_F_LLTX, so it
can't return NETDEV_TX_BUSY to ask the qdisc to requeue the packet).
But when we do that, we can also remove the skb from the timestamping
queue, because there surely won't be any timestamp that matches it.
Fixes: 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 19:40:42 +08:00
|
|
|
static void ocelot_port_purge_txtstamp_skb(struct ocelot *ocelot, int port,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
struct sk_buff *clone = OCELOT_SKB_CB(skb)->clone;
|
|
|
|
struct sk_buff *skb_match = NULL, *skb_tmp;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!clone)
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&ocelot_port->tx_skbs.lock, flags);
|
|
|
|
|
|
|
|
skb_queue_walk_safe(&ocelot_port->tx_skbs, skb, skb_tmp) {
|
|
|
|
if (skb != clone)
|
|
|
|
continue;
|
|
|
|
__skb_unlink(skb, &ocelot_port->tx_skbs);
|
|
|
|
skb_match = skb;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&ocelot_port->tx_skbs.lock, flags);
|
|
|
|
|
|
|
|
WARN_ONCE(!skb_match,
|
|
|
|
"Could not find skb clone in TX timestamping list\n");
|
|
|
|
}
|
|
|
|
|
2021-10-12 19:40:41 +08:00
|
|
|
#define work_to_xmit_work(w) \
|
|
|
|
container_of((w), struct felix_deferred_xmit_work, work)
|
|
|
|
|
|
|
|
static void felix_port_deferred_xmit(struct kthread_work *work)
|
|
|
|
{
|
|
|
|
struct felix_deferred_xmit_work *xmit_work = work_to_xmit_work(work);
|
|
|
|
struct dsa_switch *ds = xmit_work->dp->ds;
|
|
|
|
struct sk_buff *skb = xmit_work->skb;
|
|
|
|
u32 rew_op = ocelot_ptp_rew_op(skb);
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
int port = xmit_work->dp->index;
|
|
|
|
int retries = 10;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (ocelot_can_inject(ocelot, 0))
|
|
|
|
break;
|
|
|
|
|
|
|
|
cpu_relax();
|
|
|
|
} while (--retries);
|
|
|
|
|
|
|
|
if (!retries) {
|
|
|
|
dev_err(ocelot->dev, "port %d failed to inject skb\n",
|
|
|
|
port);
|
net: dsa: felix: purge skb from TX timestamping queue if it cannot be sent
At present, when a PTP packet which requires TX timestamping gets
dropped under congestion by the switch, things go downhill very fast.
The driver keeps a clone of that skb in a queue of packets awaiting TX
timestamp interrupts, but interrupts will never be raised for the
dropped packets.
Moreover, matching timestamped packets to timestamps is done by a 2-bit
timestamp ID, and this can wrap around and we can match on the wrong skb.
Since with the default NPI-based tagging protocol, we get no notification
about packet drops, the best we can do is eventually recover from the
drop of a PTP frame: its skb will be dead memory until another skb which
was assigned the same timestamp ID happens to find it.
However, with the ocelot-8021q tagger which injects packets using the
manual register interface, it appears that we can check for more
information, such as:
- whether the input queue has reached the high watermark or not
- whether the injection group's FIFO can accept additional data or not
so we know that a PTP frame is likely to get dropped before actually
sending it, and drop it ourselves (because DSA uses NETIF_F_LLTX, so it
can't return NETDEV_TX_BUSY to ask the qdisc to requeue the packet).
But when we do that, we can also remove the skb from the timestamping
queue, because there surely won't be any timestamp that matches it.
Fixes: 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 19:40:42 +08:00
|
|
|
ocelot_port_purge_txtstamp_skb(ocelot, port, skb);
|
2021-10-12 19:40:41 +08:00
|
|
|
kfree_skb(skb);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ocelot_port_inject_frame(ocelot, port, 0, rew_op, skb);
|
|
|
|
|
|
|
|
consume_skb(skb);
|
|
|
|
kfree(xmit_work);
|
|
|
|
}
|
|
|
|
|
2021-12-10 07:34:38 +08:00
|
|
|
static int felix_connect_tag_protocol(struct dsa_switch *ds,
|
|
|
|
enum dsa_tag_protocol proto)
|
2021-10-12 19:40:41 +08:00
|
|
|
{
|
2021-12-10 07:34:38 +08:00
|
|
|
struct ocelot_8021q_tagger_data *tagger_data;
|
2021-10-12 19:40:41 +08:00
|
|
|
|
2021-12-10 07:34:38 +08:00
|
|
|
switch (proto) {
|
|
|
|
case DSA_TAG_PROTO_OCELOT_8021Q:
|
|
|
|
tagger_data = ocelot_8021q_tagger_data(ds);
|
|
|
|
tagger_data->xmit_work_fn = felix_port_deferred_xmit;
|
2021-10-12 19:40:41 +08:00
|
|
|
return 0;
|
2021-12-10 07:34:38 +08:00
|
|
|
case DSA_TAG_PROTO_OCELOT:
|
|
|
|
case DSA_TAG_PROTO_SEVILLE:
|
|
|
|
return 0;
|
|
|
|
default:
|
|
|
|
return -EPROTONOSUPPORT;
|
|
|
|
}
|
2021-10-12 19:40:41 +08:00
|
|
|
}
|
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
/* Hardware initialization done here so that we can allocate structures with
|
|
|
|
* devm without fear of dsa_register_switch returning -EPROBE_DEFER and causing
|
|
|
|
* us to allocate structures twice (leak memory) and map PCI memory twice
|
|
|
|
* (which will not work).
|
|
|
|
*/
|
|
|
|
static int felix_setup(struct dsa_switch *ds)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
2022-03-08 17:15:14 +08:00
|
|
|
unsigned long cpu_flood;
|
2022-02-16 22:30:09 +08:00
|
|
|
struct dsa_port *dp;
|
|
|
|
int err;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
|
|
|
err = felix_init_structs(felix, ds->num_ports);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
2020-09-18 09:07:27 +08:00
|
|
|
err = ocelot_init(ocelot);
|
|
|
|
if (err)
|
2021-02-16 19:32:13 +08:00
|
|
|
goto out_mdiobus_free;
|
2020-09-18 09:07:27 +08:00
|
|
|
|
2020-04-20 10:46:45 +08:00
|
|
|
if (ocelot->ptp) {
|
2020-09-18 18:57:52 +08:00
|
|
|
err = ocelot_init_timestamp(ocelot, felix->info->ptp_caps);
|
2020-04-20 10:46:45 +08:00
|
|
|
if (err) {
|
|
|
|
dev_err(ocelot->dev,
|
|
|
|
"Timestamp initialization failed\n");
|
|
|
|
ocelot->ptp = 0;
|
|
|
|
}
|
|
|
|
}
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_available_port(dp, ds) {
|
|
|
|
ocelot_init_port(ocelot, dp->index);
|
2020-05-13 10:25:08 +08:00
|
|
|
|
|
|
|
/* Set the default QoS Classification based on PCP and DEI
|
|
|
|
* bits of vlan tag.
|
|
|
|
*/
|
2022-02-16 22:30:09 +08:00
|
|
|
felix_port_qos_map_init(ocelot, dp->index);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 10:11:20 +08:00
|
|
|
err = ocelot_devlink_sb_register(ocelot);
|
|
|
|
if (err)
|
2021-02-16 19:32:13 +08:00
|
|
|
goto out_deinit_ports;
|
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 10:11:20 +08:00
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_cpu_port(dp, ds) {
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
/* The initial tag protocol is NPI which always returns 0, so
|
|
|
|
* there's no real point in checking for errors.
|
|
|
|
*/
|
2022-03-08 17:15:12 +08:00
|
|
|
felix_set_tag_protocol(ds, dp->index, felix->tag_proto);
|
2022-03-08 17:15:14 +08:00
|
|
|
|
|
|
|
/* Start off with flooding disabled towards the NPI port
|
|
|
|
* (actually CPU port module).
|
|
|
|
*/
|
|
|
|
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
|
|
|
|
ocelot_rmw_rix(ocelot, 0, cpu_flood, ANA_PGID_PGID, PGID_UC);
|
|
|
|
ocelot_rmw_rix(ocelot, 0, cpu_flood, ANA_PGID_PGID, PGID_MC);
|
|
|
|
|
net: dsa: felix: break at first CPU port during init and teardown
The NXP LS1028A switch has two Ethernet ports towards the CPU, but only
one of them is capable of acting as an NPI port at a time (inject and
extract packets using DSA tags).
However, using the alternative ocelot-8021q tagging protocol, it should
be possible to use both CPU ports symmetrically, but for that we need to
mark both ports in the device tree as DSA masters.
In the process of doing that, it can be seen that traffic to/from the
network stack gets broken, and this is because the Felix driver iterates
through all DSA CPU ports and configures them as NPI ports. But since
there can only be a single NPI port, we effectively end up in a
situation where DSA thinks the default CPU port is the first one, but
the hardware port configured to be an NPI is the last one.
I would like to treat this as a bug, because if the updated device trees
are going to start circulating, it would be really good for existing
kernels to support them, too.
Fixes: adb3dccf090b ("net: dsa: felix: convert to the new .change_tag_protocol DSA API")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 19:40:44 +08:00
|
|
|
break;
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
}
|
net: dsa: felix: Allow unknown unicast traffic towards the CPU port module
Compared to other DSA switches, in the Ocelot cores, the RX filtering is
a much more important concern.
Firstly, the primary use case for Ocelot is non-DSA, so there isn't any
secondary Ethernet MAC [the DSA master's one] to implicitly drop frames
having a DMAC we are not interested in. So the switch driver itself
needs to install FDB entries towards the CPU port module (PGID_CPU) for
the MAC address of each switch port, in each VLAN installed on the port.
Every address that is not whitelisted is implicitly dropped. This is in
order to achieve a behavior similar to N standalone net devices.
Secondly, even in the secondary use case of DSA, such as illustrated by
Felix with the NPI port mode, that secondary Ethernet MAC is present,
but its RX filter is bypassed. This is because the DSA tags themselves
are placed before Ethernet, so the DMAC that the switch ports see is
not seen by the DSA master too (since it's shifter to the right).
So RX filtering is pretty important. A good RX filter won't bother the
CPU in case the switch port receives a frame that it's not interested
in, and there exists no other line of defense.
Ocelot is pretty strict when it comes to RX filtering: non-IP multicast
and broadcast traffic is allowed to go to the CPU port module, but
unknown unicast isn't. This means that traffic reception for any other
MAC addresses than the ones configured on each switch port net device
won't work. This includes use cases such as macvlan or bridging with a
non-Ocelot (so-called "foreign") interface. But this seems to be fine
for the scenarios that the Linux system embedded inside an Ocelot switch
is intended for - it is simply not interested in unknown unicast
traffic, as explained in Allan Nielsen's presentation [0].
On the other hand, the Felix DSA switch is integrated in more
general-purpose Linux systems, so it can't afford to drop that sort of
traffic in hardware, even if it will end up doing so later, in software.
Actually, unknown unicast means more for Felix than it does for Ocelot.
Felix doesn't attempt to perform the whitelisting of switch port MAC
addresses towards PGID_CPU at all, mainly because it is too complicated
to be feasible: while the MAC addresses are unique in Ocelot, by default
in DSA all ports are equal and inherited from the DSA master. This adds
into account the question of reference counting MAC addresses (delayed
ocelot_mact_forget), not to mention reference counting for the VLAN IDs
that those MAC addresses are installed in. This reference counting
should be done in the DSA core, and the fact that it wasn't needed so
far is due to the fact that the other DSA switches don't have the DSA
tag placed before Ethernet, so the DSA master is able to whitelist the
MAC addresses in hardware.
So this means that even regular traffic termination on a Felix switch
port happens through flooding (because neither Felix nor Ocelot learn
source MAC addresses from CPU-injected frames).
So far we've explained that whitelisting towards PGID_CPU:
- helps to reduce the likelihood of spamming the CPU with frames it
won't process very far anyway
- is implemented in the ocelot driver
- is sufficient for the ocelot use cases
- is not feasible in DSA
- breaks use cases in DSA, in the current status (whitelisting enabled
but no MAC address whitelisted)
So the proposed patch allows unknown unicast frames to be sent to the
CPU port module. This is done for the Felix DSA driver only, as Ocelot
seems to be happy without it.
[0]: https://www.youtube.com/watch?v=B1HhxEcU7Jg
Suggested-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29 22:50:03 +08:00
|
|
|
|
2020-03-28 03:55:47 +08:00
|
|
|
ds->mtu_enforcement_ingress = true;
|
2021-01-06 17:51:36 +08:00
|
|
|
ds->assisted_learning_on_cpu_port = true;
|
net: mscc: ocelot: enforce FDB isolation when VLAN-unaware
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:25 +08:00
|
|
|
ds->fdb_isolation = true;
|
|
|
|
ds->max_num_bridges = ds->num_ports;
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
return 0;
|
2021-02-16 19:32:13 +08:00
|
|
|
|
|
|
|
out_deinit_ports:
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_available_port(dp, ds)
|
|
|
|
ocelot_deinit_port(ocelot, dp->index);
|
2021-02-16 19:32:13 +08:00
|
|
|
|
|
|
|
ocelot_deinit_timestamp(ocelot);
|
|
|
|
ocelot_deinit(ocelot);
|
|
|
|
|
|
|
|
out_mdiobus_free:
|
|
|
|
if (felix->info->mdio_bus_free)
|
|
|
|
felix->info->mdio_bus_free(ocelot);
|
|
|
|
|
|
|
|
return err;
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_teardown(struct dsa_switch *ds)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
2022-02-16 22:30:09 +08:00
|
|
|
struct dsa_port *dp;
|
net: dsa: felix: Add PCS operations for PHYLINK
Layerscape SoCs traditionally expose the SerDes configuration/status for
Ethernet protocols (PCS for SGMII/USXGMII/10GBase-R etc etc) in a register
format that is compatible with clause 22 or clause 45 (depending on
SerDes protocol). Each MAC has its own internal MDIO bus on which there
is one or more of these PCS's, responding to commands at a configurable
PHY address. The per-port internal MDIO bus (which is just for PCSs) is
totally separate and has nothing to do with the dedicated external MDIO
controller (which is just for PHYs), but the register map for the MDIO
controller is the same.
The VSC9959 (Felix) switch instantiated in the LS1028A is integrated
in hardware with the ENETC PCS of its DSA master, and reuses its MDIO
controller driver, so Felix has been made to depend on it in Kconfig.
+------------------------------------------------------------------------+
| +--------+ GMII (typically disabled via RCW) |
| ENETC PCI | ENETC |--------------------------+ |
| Root Complex | port 3 |-----------------------+ | |
| Integrated +--------+ | | |
| Endpoint | | |
| +--------+ 2.5G GMII | | |
| | ENETC |--------------+ | | |
| | port 2 |-----------+ | | | |
| +--------+ | | | | |
| +--------+ +--------+ |
| | Felix | | Felix | |
| | port 4 | | port 5 | |
| +--------+ +--------+ |
| |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | ENETC | | ENETC | | Felix | | Felix | | Felix | | Felix | |
| | port 0 | | port 1 | | port 0 | | port 1 | | port 2 | | port 3 | |
+------------------------------------------------------------------------+
| |||| SerDes | |||| |||| |||| |||| |
| +--------+block | +--------------------------------------------+ |
| | ENETC | | | ENETC port 2 internal MDIO bus | |
| | port 0 | | | PCS PCS PCS PCS | |
| | PCS | | | 0 1 2 3 | |
+-----------------|------------------------------------------------------+
v v v v v v
SGMII/ RGMII QSGMII/QSXGMII/4xSGMII/4x1000Base-X/4x2500Base-X
USXGMII/ (bypasses
1000Base-X/ SerDes)
2500Base-X
In the LS1028A SoC described above, the VSC9959 Felix switch is PF5 of
the ENETC root complex, and has 2 BARs:
- BAR 4: the switch's effective registers
- BAR 0: the MDIO controller register map lended from ENETC port 2
(PF2), for accessing its associated PCS's.
This explanation is necessary because the patch does some renaming
"pci_bar" -> "switch_pci_bar" for clarity, which would otherwise appear
a bit obtuse.
The fact that the internal MDIO bus is "borrowed" is relevant because
the register map is found in PF5 (the switch) but it triggers an access
fault if PF2 (the ENETC DSA master) is not enabled. This is not treated
in any way (and I don't think it can be treated).
All of this is so SoC-specific, that it was contained as much as
possible in the platform-integration file felix_vsc9959.c.
We need to parse and pre-validate the device tree because of 2 reasons:
- The PHY mode (SerDes protocol) cannot change at runtime due to SoC
design.
- There is a circular dependency in that we need to know what clause the
PCS speaks in order to find it on the internal MDIO bus. But the
clause of the PCS depends on what phy-mode it is configured for.
The goal of this patch is to make steps towards removing the bootloader
dependency for SGMII PCS pre-configuration, as well as to add support
for monitoring the in-band SGMII AN between the PCS and the system-side
link partner (PHY or other MAC).
In practice the bootloader dependency is not completely removed. U-Boot
pre-programs the PHY address at which each PCS can be found on the
internal MDIO bus (MDEV_PORT). This is needed because the PCS of each
port has the same out-of-reset PHY address of zero. The SerDes register
for changing MDEV_PORT is pretty deep in the SoC (outside the addresses
of the ENETC PCI BARs) and therefore inaccessible to us from here.
Felix VSC9959 and Ocelot VSC7514 are integrated very differently in
their respective SoCs, and for that reason Felix does not use the Ocelot
core library for PHYLINK. On one hand we don't want to impose the
fixed phy-mode limitation to Ocelot, and on the other hand Felix doesn't
need to force the MAC link speed the way Ocelot does, since the MAC is
connected to the PCS through a fixed GMII, and the PCS is the one who
does the rate adaptation at lower link speeds, which the MAC does not
even need to know about. In fact changing the GMII speed for Felix
irrecoverably breaks transmission through that port until a reset.
The pair with ENETC port 3 and Felix port 5 is optional and doesn't
support tagging. When we enable it, swp5 is a regular slave port, albeit
an internal one. The trouble is that it doesn't work, and that is
because the DSA PHYLIB adaptation layer doesn't treat fixed-link slave
ports. So that is yet another reason for wanting to convert Felix to the
native PHYLINK API.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-06 09:34:17 +08:00
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_cpu_port(dp, ds) {
|
|
|
|
felix_del_tag_protocol(ds, dp->index, felix->tag_proto);
|
net: dsa: felix: break at first CPU port during init and teardown
The NXP LS1028A switch has two Ethernet ports towards the CPU, but only
one of them is capable of acting as an NPI port at a time (inject and
extract packets using DSA tags).
However, using the alternative ocelot-8021q tagging protocol, it should
be possible to use both CPU ports symmetrically, but for that we need to
mark both ports in the device tree as DSA masters.
In the process of doing that, it can be seen that traffic to/from the
network stack gets broken, and this is because the Felix driver iterates
through all DSA CPU ports and configures them as NPI ports. But since
there can only be a single NPI port, we effectively end up in a
situation where DSA thinks the default CPU port is the first one, but
the hardware port configured to be an NPI is the last one.
I would like to treat this as a bug, because if the updated device trees
are going to start circulating, it would be really good for existing
kernels to support them, too.
Fixes: adb3dccf090b ("net: dsa: felix: convert to the new .change_tag_protocol DSA API")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12 19:40:44 +08:00
|
|
|
break;
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
}
|
|
|
|
|
2022-02-16 22:30:09 +08:00
|
|
|
dsa_switch_for_each_available_port(dp, ds)
|
|
|
|
ocelot_deinit_port(ocelot, dp->index);
|
2021-01-15 10:11:15 +08:00
|
|
|
|
2021-10-12 19:40:41 +08:00
|
|
|
ocelot_devlink_sb_unregister(ocelot);
|
|
|
|
ocelot_deinit_timestamp(ocelot);
|
|
|
|
ocelot_deinit(ocelot);
|
|
|
|
|
2021-01-15 10:11:15 +08:00
|
|
|
if (felix->info->mdio_bus_free)
|
|
|
|
felix->info->mdio_bus_free(ocelot);
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
}
|
|
|
|
|
2019-11-20 16:23:18 +08:00
|
|
|
static int felix_hwtstamp_get(struct dsa_switch *ds, int port,
|
|
|
|
struct ifreq *ifr)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_hwstamp_get(ocelot, port, ifr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_hwtstamp_set(struct dsa_switch *ds, int port,
|
|
|
|
struct ifreq *ifr)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
bool using_tag_8021q;
|
|
|
|
int err;
|
2019-11-20 16:23:18 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
err = ocelot_hwstamp_set(ocelot, port, ifr);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
using_tag_8021q = felix->tag_proto == DSA_TAG_PROTO_OCELOT_8021Q;
|
|
|
|
|
|
|
|
return felix_update_trapping_destinations(ds, using_tag_8021q);
|
2019-11-20 16:23:18 +08:00
|
|
|
}
|
|
|
|
|
2022-03-03 22:01:23 +08:00
|
|
|
static bool felix_check_xtr_pkt(struct ocelot *ocelot)
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
{
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
2022-03-03 22:01:24 +08:00
|
|
|
int err = 0, grp = 0;
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
|
|
|
|
if (felix->tag_proto != DSA_TAG_PROTO_OCELOT_8021Q)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!felix->info->quirk_no_xtr_irq)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
while (ocelot_read(ocelot, QS_XTR_DATA_PRESENT) & BIT(grp)) {
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int type;
|
|
|
|
|
|
|
|
err = ocelot_xtr_poll_frame(ocelot, grp, &skb);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* We trap to the CPU port module all PTP frames, but
|
|
|
|
* felix_rxtstamp() only gets called for event frames.
|
|
|
|
* So we need to avoid sending duplicate general
|
|
|
|
* message frames by running a second BPF classifier
|
|
|
|
* here and dropping those.
|
|
|
|
*/
|
|
|
|
__skb_push(skb, ETH_HLEN);
|
|
|
|
|
|
|
|
type = ptp_classify_raw(skb);
|
|
|
|
|
|
|
|
__skb_pull(skb, ETH_HLEN);
|
|
|
|
|
|
|
|
if (type == PTP_CLASS_NONE) {
|
|
|
|
kfree_skb(skb);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
netif_rx(skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
2022-03-03 22:01:25 +08:00
|
|
|
if (err < 0) {
|
|
|
|
dev_err_ratelimited(ocelot->dev,
|
|
|
|
"Error during packet extraction: %pe\n",
|
|
|
|
ERR_PTR(err));
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
ocelot_drain_cpu_queue(ocelot, 0);
|
2022-03-03 22:01:25 +08:00
|
|
|
}
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-11-20 16:23:18 +08:00
|
|
|
static bool felix_rxtstamp(struct dsa_switch *ds, int port,
|
|
|
|
struct sk_buff *skb, unsigned int type)
|
|
|
|
{
|
net: dsa: felix: fix broken VLAN-tagged PTP under VLAN-aware bridge
Normally it is expected that the dsa_device_ops :: rcv() method finishes
parsing the DSA tag and consumes it, then never looks at it again.
But commit c0bcf537667c ("net: dsa: ocelot: add hardware timestamping
support for Felix") added support for RX timestamping in a very
unconventional way. On this switch, a partial timestamp is available in
the DSA header, but the driver got away with not parsing that timestamp
right away, but instead delayed that parsing for a little longer:
dsa_switch_rcv():
nskb = cpu_dp->rcv(skb, dev); <------------- not here
-> ocelot_rcv()
...
skb = nskb;
skb_push(skb, ETH_HLEN);
skb->pkt_type = PACKET_HOST;
skb->protocol = eth_type_trans(skb, skb->dev);
...
if (dsa_skb_defer_rx_timestamp(p, skb)) <--- but here
-> felix_rxtstamp()
return 0;
When in felix_rxtstamp(), this driver accounted for the fact that
eth_type_trans() happened in the meanwhile, so it got a hold of the
extraction header again by subtracting (ETH_HLEN + OCELOT_TAG_LEN) bytes
from the current skb->data.
This worked for quite some time but was quite fragile from the very
beginning. Not to mention that having DSA tag parsing split in two
different files, under different folders (net/dsa/tag_ocelot.c vs
drivers/net/dsa/ocelot/felix.c) made it quite non-obvious for patches to
come that they might break this.
Finally, the blamed commit does the following: at the end of
ocelot_rcv(), it checks whether the skb payload contains a VLAN header.
If it does, and this port is under a VLAN-aware bridge, that VLAN ID
might not be correct in the sense that the packet might have suffered
VLAN rewriting due to TCAM rules (VCAP IS1). So we consume the VLAN ID
from the skb payload using __skb_vlan_pop(), and take the classified
VLAN ID from the DSA tag, and construct a hwaccel VLAN tag with the
classified VLAN, and the skb payload is VLAN-untagged.
The big problem is that __skb_vlan_pop() does:
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
aka it moves the Ethernet header 4 bytes to the right, and pulls 4 bytes
from the skb headroom (effectively also moving skb->data, by definition).
So for felix_rxtstamp()'s fragile logic, all bets are off now.
Instead of having the "extraction" pointer point to the DSA header,
it actually points to 4 bytes _inside_ the extraction header.
Corollary, the last 4 bytes of the "extraction" header are in fact 4
stale bytes of the destination MAC address from the Ethernet header,
from prior to the __skb_vlan_pop() movement.
So of course, RX timestamps are completely bogus when the system is
configured in this way.
The fix is actually very simple: just don't structure the code like that.
For better or worse, the DSA PTP timestamping API does not offer a
straightforward way for drivers to present their RX timestamps, but
other drivers (sja1105) have established a simple mechanism to carry
their RX timestamp from dsa_device_ops :: rcv() all the way to
dsa_switch_ops :: port_rxtstamp() and even later. That mechanism is to
simply save the partial timestamp to the skb->cb, and complete it later.
Question: why don't we simply populate the skb's struct
skb_shared_hwtstamps from ocelot_rcv(), and bother with this
complication of propagating the timestamp to felix_rxtstamp()?
Answer: dsa_switch_ops :: port_rxtstamp() answers the question whether
PTP packets need sleepable context to retrieve the full RX timestamp.
Currently felix_rxtstamp() answers "no, thanks" to that question, and
calls ocelot_ptp_gettime64() from softirq atomic context. This is
understandable, since Felix VSC9959 is a PCIe memory-mapped switch, so
hardware access does not require sleeping. But the felix driver is
preparing for the introduction of other switches where hardware access
is over a slow bus like SPI or MDIO:
https://lore.kernel.org/lkml/20210814025003.2449143-1-colin.foster@in-advantage.com/
So I would like to keep this code structure, so the rework needed when
that driver will need PTP support will be minimal (answer "yes, I need
deferred context for this skb's RX timestamp", then the partial
timestamp will still be found in the skb->cb.
Fixes: ea440cd2d9b2 ("net: dsa: tag_ocelot: use VLAN information from tagging header when available")
Reported-by: Po Liu <po.liu@nxp.com>
Cc: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-03 03:31:22 +08:00
|
|
|
u32 tstamp_lo = OCELOT_SKB_CB(skb)->tstamp_lo;
|
2019-11-20 16:23:18 +08:00
|
|
|
struct skb_shared_hwtstamps *shhwtstamps;
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct timespec64 ts;
|
net: dsa: felix: fix broken VLAN-tagged PTP under VLAN-aware bridge
Normally it is expected that the dsa_device_ops :: rcv() method finishes
parsing the DSA tag and consumes it, then never looks at it again.
But commit c0bcf537667c ("net: dsa: ocelot: add hardware timestamping
support for Felix") added support for RX timestamping in a very
unconventional way. On this switch, a partial timestamp is available in
the DSA header, but the driver got away with not parsing that timestamp
right away, but instead delayed that parsing for a little longer:
dsa_switch_rcv():
nskb = cpu_dp->rcv(skb, dev); <------------- not here
-> ocelot_rcv()
...
skb = nskb;
skb_push(skb, ETH_HLEN);
skb->pkt_type = PACKET_HOST;
skb->protocol = eth_type_trans(skb, skb->dev);
...
if (dsa_skb_defer_rx_timestamp(p, skb)) <--- but here
-> felix_rxtstamp()
return 0;
When in felix_rxtstamp(), this driver accounted for the fact that
eth_type_trans() happened in the meanwhile, so it got a hold of the
extraction header again by subtracting (ETH_HLEN + OCELOT_TAG_LEN) bytes
from the current skb->data.
This worked for quite some time but was quite fragile from the very
beginning. Not to mention that having DSA tag parsing split in two
different files, under different folders (net/dsa/tag_ocelot.c vs
drivers/net/dsa/ocelot/felix.c) made it quite non-obvious for patches to
come that they might break this.
Finally, the blamed commit does the following: at the end of
ocelot_rcv(), it checks whether the skb payload contains a VLAN header.
If it does, and this port is under a VLAN-aware bridge, that VLAN ID
might not be correct in the sense that the packet might have suffered
VLAN rewriting due to TCAM rules (VCAP IS1). So we consume the VLAN ID
from the skb payload using __skb_vlan_pop(), and take the classified
VLAN ID from the DSA tag, and construct a hwaccel VLAN tag with the
classified VLAN, and the skb payload is VLAN-untagged.
The big problem is that __skb_vlan_pop() does:
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
aka it moves the Ethernet header 4 bytes to the right, and pulls 4 bytes
from the skb headroom (effectively also moving skb->data, by definition).
So for felix_rxtstamp()'s fragile logic, all bets are off now.
Instead of having the "extraction" pointer point to the DSA header,
it actually points to 4 bytes _inside_ the extraction header.
Corollary, the last 4 bytes of the "extraction" header are in fact 4
stale bytes of the destination MAC address from the Ethernet header,
from prior to the __skb_vlan_pop() movement.
So of course, RX timestamps are completely bogus when the system is
configured in this way.
The fix is actually very simple: just don't structure the code like that.
For better or worse, the DSA PTP timestamping API does not offer a
straightforward way for drivers to present their RX timestamps, but
other drivers (sja1105) have established a simple mechanism to carry
their RX timestamp from dsa_device_ops :: rcv() all the way to
dsa_switch_ops :: port_rxtstamp() and even later. That mechanism is to
simply save the partial timestamp to the skb->cb, and complete it later.
Question: why don't we simply populate the skb's struct
skb_shared_hwtstamps from ocelot_rcv(), and bother with this
complication of propagating the timestamp to felix_rxtstamp()?
Answer: dsa_switch_ops :: port_rxtstamp() answers the question whether
PTP packets need sleepable context to retrieve the full RX timestamp.
Currently felix_rxtstamp() answers "no, thanks" to that question, and
calls ocelot_ptp_gettime64() from softirq atomic context. This is
understandable, since Felix VSC9959 is a PCIe memory-mapped switch, so
hardware access does not require sleeping. But the felix driver is
preparing for the introduction of other switches where hardware access
is over a slow bus like SPI or MDIO:
https://lore.kernel.org/lkml/20210814025003.2449143-1-colin.foster@in-advantage.com/
So I would like to keep this code structure, so the rework needed when
that driver will need PTP support will be minimal (answer "yes, I need
deferred context for this skb's RX timestamp", then the partial
timestamp will still be found in the skb->cb.
Fixes: ea440cd2d9b2 ("net: dsa: tag_ocelot: use VLAN information from tagging header when available")
Reported-by: Po Liu <po.liu@nxp.com>
Cc: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-03 03:31:22 +08:00
|
|
|
u32 tstamp_hi;
|
|
|
|
u64 tstamp;
|
2019-11-20 16:23:18 +08:00
|
|
|
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
/* If the "no XTR IRQ" workaround is in use, tell DSA to defer this skb
|
|
|
|
* for RX timestamping. Then free it, and poll for its copy through
|
|
|
|
* MMIO in the CPU port module, and inject that into the stack from
|
|
|
|
* ocelot_xtr_poll().
|
|
|
|
*/
|
2022-03-03 22:01:23 +08:00
|
|
|
if (felix_check_xtr_pkt(ocelot)) {
|
net: dsa: tag_ocelot_8021q: add support for PTP timestamping
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14 06:38:01 +08:00
|
|
|
kfree_skb(skb);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-11-20 16:23:18 +08:00
|
|
|
ocelot_ptp_gettime64(&ocelot->ptp_info, &ts);
|
|
|
|
tstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
|
|
|
|
|
|
|
|
tstamp_hi = tstamp >> 32;
|
|
|
|
if ((tstamp & 0xffffffff) < tstamp_lo)
|
|
|
|
tstamp_hi--;
|
|
|
|
|
|
|
|
tstamp = ((u64)tstamp_hi << 32) | tstamp_lo;
|
|
|
|
|
|
|
|
shhwtstamps = skb_hwtstamps(skb);
|
|
|
|
memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
|
|
|
|
shhwtstamps->hwtstamp = tstamp;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-04-27 12:21:59 +08:00
|
|
|
static void felix_txtstamp(struct dsa_switch *ds, int port,
|
|
|
|
struct sk_buff *skb)
|
2019-11-20 16:23:18 +08:00
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
2021-04-27 12:22:02 +08:00
|
|
|
struct sk_buff *clone = NULL;
|
2019-11-20 16:23:18 +08:00
|
|
|
|
2021-04-27 12:22:02 +08:00
|
|
|
if (!ocelot->ptp)
|
|
|
|
return;
|
2021-04-27 12:21:59 +08:00
|
|
|
|
2021-10-12 19:40:36 +08:00
|
|
|
if (ocelot_port_txtstamp_request(ocelot, port, skb, &clone)) {
|
|
|
|
dev_err_ratelimited(ds->dev,
|
|
|
|
"port %d delivering skb without TX timestamp\n",
|
|
|
|
port);
|
2021-04-27 12:22:02 +08:00
|
|
|
return;
|
2021-10-12 19:40:36 +08:00
|
|
|
}
|
2021-04-27 12:22:02 +08:00
|
|
|
|
|
|
|
if (clone)
|
2021-04-27 12:22:00 +08:00
|
|
|
OCELOT_SKB_CB(skb)->clone = clone;
|
2019-11-20 16:23:18 +08:00
|
|
|
}
|
|
|
|
|
2020-03-28 03:55:47 +08:00
|
|
|
static int felix_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_port_set_maxlen(ocelot, port, new_mtu);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_get_max_mtu(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_get_max_mtu(ocelot, port);
|
|
|
|
}
|
|
|
|
|
2020-02-29 22:31:14 +08:00
|
|
|
static int felix_cls_flower_add(struct dsa_switch *ds, int port,
|
|
|
|
struct flow_cls_offload *cls, bool ingress)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
bool using_tag_8021q;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = ocelot_cls_flower_replace(ocelot, port, cls, ingress);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
using_tag_8021q = felix->tag_proto == DSA_TAG_PROTO_OCELOT_8021Q;
|
2020-02-29 22:31:14 +08:00
|
|
|
|
net: dsa: felix: update destinations of existing traps with ocelot-8021q
Historically, the felix DSA driver has installed special traps such that
PTP over L2 works with the ocelot-8021q tagging protocol; commit
0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping") has the details.
Then the ocelot switch library also gained more comprehensive support
for PTP traps through commit 96ca08c05838 ("net: mscc: ocelot: set up
traps for PTP packets").
Right now, PTP over L2 works using ocelot-8021q via the traps it has set
for itself, but nothing else does. Consolidating the two code blocks
would make ocelot-8021q gain support for PTP over L4 and tc-flower
traps, and at the same time avoid some code and TCAM duplication.
The traps are similar in intent, but different in execution, so some
explanation is required. The traps set up by felix_setup_mmio_filtering()
are VCAP IS1 filters, which have a PAG that chains them to a VCAP IS2
filter, and the IS2 is where the 'trap' action resides. The traps set up
by ocelot_trap_add(), on the other hand, have a single filter, in VCAP
IS2. The reason for chaining VCAP IS1 and IS2 in Felix was to ensure
that the hardcoded traps take precedence and cannot be overridden by the
Ocelot switch library.
So in principle, the PTP traps needed for ocelot-8021q in the Felix
driver can rely on ocelot_trap_add(), but the filters need to be patched
to account for a quirk that LS1028A has: the quirk_no_xtr_irq described
in commit 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP
timestamping"). Live-patching is done by iterating through the trap list
every time we know it has been updated, and transforming a trap into a
redirect + CPU copy if ocelot-8021q is in use.
Making the DSA ocelot-8021q tagger work with the Ocelot traps means we
can eliminate the dedicated OCELOT_VCAP_IS1_TAG_8021Q_PTP_MMIO and
OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO cookies. To minimize the patch delta,
OCELOT_VCAP_IS2_MRP_TRAP takes the place of OCELOT_VCAP_IS2_TAG_8021Q_PTP_MMIO
(the alternative would have been to left-shift all cookie numbers by 1).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16 22:30:13 +08:00
|
|
|
return felix_update_trapping_destinations(ds, using_tag_8021q);
|
2020-02-29 22:31:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_cls_flower_del(struct dsa_switch *ds, int port,
|
|
|
|
struct flow_cls_offload *cls, bool ingress)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_cls_flower_destroy(ocelot, port, cls, ingress);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_cls_flower_stats(struct dsa_switch *ds, int port,
|
|
|
|
struct flow_cls_offload *cls, bool ingress)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_cls_flower_stats(ocelot, port, cls, ingress);
|
|
|
|
}
|
|
|
|
|
2020-03-29 19:52:00 +08:00
|
|
|
static int felix_port_policer_add(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_mall_policer_tc_entry *policer)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct ocelot_policer pol = {
|
|
|
|
.rate = div_u64(policer->rate_bytes_per_sec, 1000) * 8,
|
2020-06-29 14:54:16 +08:00
|
|
|
.burst = policer->burst,
|
2020-03-29 19:52:00 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
return ocelot_port_policer_add(ocelot, port, &pol);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_port_policer_del(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_port_policer_del(ocelot, port);
|
|
|
|
}
|
|
|
|
|
2022-03-17 04:41:44 +08:00
|
|
|
static int felix_port_mirror_add(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_mall_mirror_tc_entry *mirror,
|
|
|
|
bool ingress, struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_mirror_add(ocelot, port, mirror->to_local_port,
|
|
|
|
ingress, extack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void felix_port_mirror_del(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_mall_mirror_tc_entry *mirror)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
ocelot_port_mirror_del(ocelot, port, mirror->ingress);
|
|
|
|
}
|
|
|
|
|
2020-05-13 10:25:09 +08:00
|
|
|
static int felix_port_setup_tc(struct dsa_switch *ds, int port,
|
|
|
|
enum tc_setup_type type,
|
|
|
|
void *type_data)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
|
|
|
|
if (felix->info->port_setup_tc)
|
|
|
|
return felix->info->port_setup_tc(ds, port, type, type_data);
|
|
|
|
else
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 10:11:20 +08:00
|
|
|
static int felix_sb_pool_get(struct dsa_switch *ds, unsigned int sb_index,
|
|
|
|
u16 pool_index,
|
|
|
|
struct devlink_sb_pool_info *pool_info)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_pool_get(ocelot, sb_index, pool_index, pool_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_pool_set(struct dsa_switch *ds, unsigned int sb_index,
|
|
|
|
u16 pool_index, u32 size,
|
|
|
|
enum devlink_sb_threshold_type threshold_type,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_pool_set(ocelot, sb_index, pool_index, size,
|
|
|
|
threshold_type, extack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_port_pool_get(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 pool_index,
|
|
|
|
u32 *p_threshold)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_port_pool_get(ocelot, port, sb_index, pool_index,
|
|
|
|
p_threshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_port_pool_set(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 pool_index,
|
|
|
|
u32 threshold, struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_port_pool_set(ocelot, port, sb_index, pool_index,
|
|
|
|
threshold, extack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_tc_pool_bind_get(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 tc_index,
|
|
|
|
enum devlink_sb_pool_type pool_type,
|
|
|
|
u16 *p_pool_index, u32 *p_threshold)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_tc_pool_bind_get(ocelot, port, sb_index, tc_index,
|
|
|
|
pool_type, p_pool_index,
|
|
|
|
p_threshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_tc_pool_bind_set(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 tc_index,
|
|
|
|
enum devlink_sb_pool_type pool_type,
|
|
|
|
u16 pool_index, u32 threshold,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_tc_pool_bind_set(ocelot, port, sb_index, tc_index,
|
|
|
|
pool_type, pool_index, threshold,
|
|
|
|
extack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_occ_snapshot(struct dsa_switch *ds,
|
|
|
|
unsigned int sb_index)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_occ_snapshot(ocelot, sb_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_occ_max_clear(struct dsa_switch *ds,
|
|
|
|
unsigned int sb_index)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_occ_max_clear(ocelot, sb_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_occ_port_pool_get(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 pool_index,
|
|
|
|
u32 *p_cur, u32 *p_max)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_occ_port_pool_get(ocelot, port, sb_index, pool_index,
|
|
|
|
p_cur, p_max);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_sb_occ_tc_port_bind_get(struct dsa_switch *ds, int port,
|
|
|
|
unsigned int sb_index, u16 tc_index,
|
|
|
|
enum devlink_sb_pool_type pool_type,
|
|
|
|
u32 *p_cur, u32 *p_max)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_sb_occ_tc_port_bind_get(ocelot, port, sb_index, tc_index,
|
|
|
|
pool_type, p_cur, p_max);
|
|
|
|
}
|
|
|
|
|
2021-02-17 05:42:05 +08:00
|
|
|
static int felix_mrp_add(struct dsa_switch *ds, int port,
|
|
|
|
const struct switchdev_obj_mrp *mrp)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_mrp_add(ocelot, port, mrp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_mrp_del(struct dsa_switch *ds, int port,
|
|
|
|
const struct switchdev_obj_mrp *mrp)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_mrp_add(ocelot, port, mrp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
felix_mrp_add_ring_role(struct dsa_switch *ds, int port,
|
|
|
|
const struct switchdev_obj_ring_role_mrp *mrp)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_mrp_add_ring_role(ocelot, port, mrp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
felix_mrp_del_ring_role(struct dsa_switch *ds, int port,
|
|
|
|
const struct switchdev_obj_ring_role_mrp *mrp)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_mrp_del_ring_role(ocelot, port, mrp);
|
|
|
|
}
|
|
|
|
|
net: dsa: felix: configure default-prio and dscp priorities
Follow the established programming model for this driver and provide
shims in the felix DSA driver which call the implementations from the
ocelot switch lib. The ocelot switchdev driver wasn't integrated with
dcbnl due to lack of hardware availability.
The switch doesn't have any fancy QoS classification enabled by default.
The provided getters will create a default-prio app table entry of 0,
and no dscp entry. However, the getters have been made to actually
retrieve the hardware configuration rather than static values, to be
future proof in case DSA will need this information from more call paths.
For default-prio, there is a single field per port, in ANA_PORT_QOS_CFG,
called QOS_DEFAULT_VAL.
DSCP classification is enabled per-port, again via ANA_PORT_QOS_CFG
(field QOS_DSCP_ENA), and individual DSCP values are configured as
trusted or not through register ANA_DSCP_CFG (replicated 64 times).
An untrusted DSCP value falls back to other QoS classification methods.
If trusted, the selected ANA_DSCP_CFG register also holds the QoS class
in the QOS_DSCP_VAL field.
The hardware also supports DSCP remapping (DSCP value X is translated to
DSCP value Y before the QoS class is determined based on the app table
entry for Y) and DSCP packet rewriting. The dcbnl framework, for being
so flexible in other useless areas, doesn't appear to support this.
So this functionality has been left out.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-12 05:15:20 +08:00
|
|
|
static int felix_port_get_default_prio(struct dsa_switch *ds, int port)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_get_default_prio(ocelot, port);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_port_set_default_prio(struct dsa_switch *ds, int port,
|
|
|
|
u8 prio)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_set_default_prio(ocelot, port, prio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_port_get_dscp_prio(struct dsa_switch *ds, int port, u8 dscp)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_get_dscp_prio(ocelot, port, dscp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_port_add_dscp_prio(struct dsa_switch *ds, int port, u8 dscp,
|
|
|
|
u8 prio)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_add_dscp_prio(ocelot, port, dscp, prio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int felix_port_del_dscp_prio(struct dsa_switch *ds, int port, u8 dscp,
|
|
|
|
u8 prio)
|
|
|
|
{
|
|
|
|
struct ocelot *ocelot = ds->priv;
|
|
|
|
|
|
|
|
return ocelot_port_del_dscp_prio(ocelot, port, dscp, prio);
|
|
|
|
}
|
|
|
|
|
2020-07-14 00:57:09 +08:00
|
|
|
const struct dsa_switch_ops felix_switch_ops = {
|
2021-01-15 10:11:14 +08:00
|
|
|
.get_tag_protocol = felix_get_tag_protocol,
|
net: dsa: felix: convert to the new .change_tag_protocol DSA API
In expectation of the new tag_ocelot_8021q tagger implementation, we
need to be able to do runtime switchover between one tagger and another.
So we must structure the existing code for the current NPI-based tagger
in a certain way.
We move the felix_npi_port_init function in expectation of the future
driver configuration necessary for tag_ocelot_8021q: we would like to
not have the NPI-related bits interspersed with the tag_8021q bits.
The conversion from this:
ocelot_write_rix(ocelot,
ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports, 0)),
ANA_PGID_PGID, PGID_UC);
to this:
cpu_flood = ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports));
ocelot_rmw_rix(ocelot, cpu_flood, cpu_flood, ANA_PGID_PGID, PGID_UC);
is perhaps non-trivial, but is nonetheless non-functional. The PGID_UC
(replicator for unknown unicast) is already configured out of hardware
reset to flood to all ports except ocelot->num_phys_ports (the CPU port
module). All we change is that we use a read-modify-write to only add
the CPU port module to the unknown unicast replicator, as opposed to
doing a full write to the register.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-29 09:00:07 +08:00
|
|
|
.change_tag_protocol = felix_change_tag_protocol,
|
2021-12-10 07:34:38 +08:00
|
|
|
.connect_tag_protocol = felix_connect_tag_protocol,
|
2021-01-15 10:11:14 +08:00
|
|
|
.setup = felix_setup,
|
|
|
|
.teardown = felix_teardown,
|
|
|
|
.set_ageing_time = felix_set_ageing_time,
|
|
|
|
.get_strings = felix_get_strings,
|
|
|
|
.get_ethtool_stats = felix_get_ethtool_stats,
|
|
|
|
.get_sset_count = felix_get_sset_count,
|
|
|
|
.get_ts_info = felix_get_ts_info,
|
2022-02-26 00:19:25 +08:00
|
|
|
.phylink_get_caps = felix_phylink_get_caps,
|
2021-01-15 10:11:14 +08:00
|
|
|
.phylink_validate = felix_phylink_validate,
|
2022-02-26 00:19:36 +08:00
|
|
|
.phylink_mac_select_pcs = felix_phylink_mac_select_pcs,
|
2021-01-15 10:11:14 +08:00
|
|
|
.phylink_mac_link_down = felix_phylink_mac_link_down,
|
|
|
|
.phylink_mac_link_up = felix_phylink_mac_link_up,
|
2022-01-07 22:42:29 +08:00
|
|
|
.port_fast_age = felix_port_fast_age,
|
2021-01-15 10:11:14 +08:00
|
|
|
.port_fdb_dump = felix_fdb_dump,
|
|
|
|
.port_fdb_add = felix_fdb_add,
|
|
|
|
.port_fdb_del = felix_fdb_del,
|
2022-02-23 22:00:54 +08:00
|
|
|
.lag_fdb_add = felix_lag_fdb_add,
|
|
|
|
.lag_fdb_del = felix_lag_fdb_del,
|
2021-01-15 10:11:14 +08:00
|
|
|
.port_mdb_add = felix_mdb_add,
|
|
|
|
.port_mdb_del = felix_mdb_del,
|
2021-02-12 23:15:59 +08:00
|
|
|
.port_pre_bridge_flags = felix_pre_bridge_flags,
|
|
|
|
.port_bridge_flags = felix_bridge_flags,
|
2021-01-15 10:11:14 +08:00
|
|
|
.port_bridge_join = felix_bridge_join,
|
|
|
|
.port_bridge_leave = felix_bridge_leave,
|
2021-02-06 06:02:21 +08:00
|
|
|
.port_lag_join = felix_lag_join,
|
|
|
|
.port_lag_leave = felix_lag_leave,
|
|
|
|
.port_lag_change = felix_lag_change,
|
2021-01-15 10:11:14 +08:00
|
|
|
.port_stp_state_set = felix_bridge_stp_state_set,
|
|
|
|
.port_vlan_filtering = felix_vlan_filtering,
|
|
|
|
.port_vlan_add = felix_vlan_add,
|
|
|
|
.port_vlan_del = felix_vlan_del,
|
|
|
|
.port_hwtstamp_get = felix_hwtstamp_get,
|
|
|
|
.port_hwtstamp_set = felix_hwtstamp_set,
|
|
|
|
.port_rxtstamp = felix_rxtstamp,
|
|
|
|
.port_txtstamp = felix_txtstamp,
|
|
|
|
.port_change_mtu = felix_change_mtu,
|
|
|
|
.port_max_mtu = felix_get_max_mtu,
|
|
|
|
.port_policer_add = felix_port_policer_add,
|
|
|
|
.port_policer_del = felix_port_policer_del,
|
2022-03-17 04:41:44 +08:00
|
|
|
.port_mirror_add = felix_port_mirror_add,
|
|
|
|
.port_mirror_del = felix_port_mirror_del,
|
2021-01-15 10:11:14 +08:00
|
|
|
.cls_flower_add = felix_cls_flower_add,
|
|
|
|
.cls_flower_del = felix_cls_flower_del,
|
|
|
|
.cls_flower_stats = felix_cls_flower_stats,
|
|
|
|
.port_setup_tc = felix_port_setup_tc,
|
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 10:11:20 +08:00
|
|
|
.devlink_sb_pool_get = felix_sb_pool_get,
|
|
|
|
.devlink_sb_pool_set = felix_sb_pool_set,
|
|
|
|
.devlink_sb_port_pool_get = felix_sb_port_pool_get,
|
|
|
|
.devlink_sb_port_pool_set = felix_sb_port_pool_set,
|
|
|
|
.devlink_sb_tc_pool_bind_get = felix_sb_tc_pool_bind_get,
|
|
|
|
.devlink_sb_tc_pool_bind_set = felix_sb_tc_pool_bind_set,
|
|
|
|
.devlink_sb_occ_snapshot = felix_sb_occ_snapshot,
|
|
|
|
.devlink_sb_occ_max_clear = felix_sb_occ_max_clear,
|
|
|
|
.devlink_sb_occ_port_pool_get = felix_sb_occ_port_pool_get,
|
|
|
|
.devlink_sb_occ_tc_port_bind_get= felix_sb_occ_tc_port_bind_get,
|
2021-02-17 05:42:05 +08:00
|
|
|
.port_mrp_add = felix_mrp_add,
|
|
|
|
.port_mrp_del = felix_mrp_del,
|
|
|
|
.port_mrp_add_ring_role = felix_mrp_add_ring_role,
|
|
|
|
.port_mrp_del_ring_role = felix_mrp_del_ring_role,
|
2021-07-20 01:14:49 +08:00
|
|
|
.tag_8021q_vlan_add = felix_tag_8021q_vlan_add,
|
|
|
|
.tag_8021q_vlan_del = felix_tag_8021q_vlan_del,
|
net: dsa: felix: configure default-prio and dscp priorities
Follow the established programming model for this driver and provide
shims in the felix DSA driver which call the implementations from the
ocelot switch lib. The ocelot switchdev driver wasn't integrated with
dcbnl due to lack of hardware availability.
The switch doesn't have any fancy QoS classification enabled by default.
The provided getters will create a default-prio app table entry of 0,
and no dscp entry. However, the getters have been made to actually
retrieve the hardware configuration rather than static values, to be
future proof in case DSA will need this information from more call paths.
For default-prio, there is a single field per port, in ANA_PORT_QOS_CFG,
called QOS_DEFAULT_VAL.
DSCP classification is enabled per-port, again via ANA_PORT_QOS_CFG
(field QOS_DSCP_ENA), and individual DSCP values are configured as
trusted or not through register ANA_DSCP_CFG (replicated 64 times).
An untrusted DSCP value falls back to other QoS classification methods.
If trusted, the selected ANA_DSCP_CFG register also holds the QoS class
in the QOS_DSCP_VAL field.
The hardware also supports DSCP remapping (DSCP value X is translated to
DSCP value Y before the QoS class is determined based on the app table
entry for Y) and DSCP packet rewriting. The dcbnl framework, for being
so flexible in other useless areas, doesn't appear to support this.
So this functionality has been left out.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-12 05:15:20 +08:00
|
|
|
.port_get_default_prio = felix_port_get_default_prio,
|
|
|
|
.port_set_default_prio = felix_port_set_default_prio,
|
|
|
|
.port_get_dscp_prio = felix_port_get_dscp_prio,
|
|
|
|
.port_add_dscp_prio = felix_port_add_dscp_prio,
|
|
|
|
.port_del_dscp_prio = felix_port_del_dscp_prio,
|
net: dsa: felix: manage host flooding using a specific driver callback
At the time - commit 7569459a52c9 ("net: dsa: manage flooding on the CPU
ports") - not introducing a dedicated switch callback for host flooding
made sense, because for the only user, the felix driver, there was
nothing different to do for the CPU port than set the flood flags on the
CPU port just like on any other bridge port.
There are 2 reasons why this approach is not good enough, however.
(1) Other drivers, like sja1105, support configuring flooding as a
function of {ingress port, egress port}, whereas the DSA
->port_bridge_flags() function only operates on an egress port.
So with that driver we'd have useless host flooding from user ports
which don't need it.
(2) Even with the felix driver, support for multiple CPU ports makes it
difficult to piggyback on ->port_bridge_flags(). The way in which
the felix driver is going to support host-filtered addresses with
multiple CPU ports is that it will direct these addresses towards
both CPU ports (in a sort of multicast fashion), then restrict the
forwarding to only one of the two using the forwarding masks.
Consequently, flooding will also be enabled towards both CPU ports.
However, ->port_bridge_flags() gets passed the index of a single CPU
port, and that leaves the flood settings out of sync between the 2
CPU ports.
This is to say, it's better to have a specific driver method for host
flooding, which takes the user port as argument. This solves problem (1)
by allowing the driver to do different things for different user ports,
and problem (2) by abstracting the operation and letting the driver do
whatever, rather than explicitly making the DSA core point to the CPU
port it thinks needs to be touched.
This new method also creates a problem, which is that cross-chip setups
are not handled. However I don't have hardware right now where I can
test what is the proper thing to do, and there isn't hardware compatible
with multi-switch trees that supports host flooding. So it remains a
problem to be tackled in the future.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-11 17:50:17 +08:00
|
|
|
.port_set_host_flood = felix_port_set_host_flood,
|
net: dsa: ocelot: add driver for Felix switch family
This supports an Ethernet switching core from Vitesse / Microsemi /
Microchip (VSC9959) which is part of the Ocelot family (a brand name),
and whose code name is Felix. The switch can be (and is) integrated on
different SoCs as a PCIe endpoint device.
The functionality is provided by the core of the Ocelot switch driver
(drivers/net/ethernet/mscc). In this regard, the current driver is an
instance of Microsemi's Ocelot core driver, with a DSA front-end. It
inherits its name from VSC9959's code name, to distinguish itself from
the switchdev ocelot driver.
The patch adds the logic for probing a PCI device and defines the
register map for the VSC9959 switch core, since it has some differences
in register addresses and bitfield mappings compared to the other Ocelot
switches (VSC7511, VSC7512, VSC7513, VSC7514).
The Felix driver declares the register map as part of the "instance
table". Currently the VSC9959 inside NXP LS1028A is the only instance,
but presumably it can support other switches in the Ocelot family, when
used in DSA mode (Linux running on the external CPU, and not on the
embedded MIPS).
In a few cases, some h/w operations have to be done differently on
VSC9959 due to missing bitfields. This is the case for the switch core
reset and init. Because for this operation Ocelot uses some bits that
are not present on Felix, the latter has to use a register from the
global registers block (GCB) instead.
Although it is a PCI driver, it relies on DT bindings for compatibility
with DSA (CPU port link, PHY library). It does not have any custom
device tree bindings, since we would like to minimize its dependency on
device tree though.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14 23:03:30 +08:00
|
|
|
};
|
2020-10-02 20:02:21 +08:00
|
|
|
|
|
|
|
struct net_device *felix_port_to_netdev(struct ocelot *ocelot, int port)
|
|
|
|
{
|
|
|
|
struct felix *felix = ocelot_to_felix(ocelot);
|
|
|
|
struct dsa_switch *ds = felix->ds;
|
|
|
|
|
|
|
|
if (!dsa_is_user_port(ds, port))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return dsa_to_port(ds, port)->slave;
|
|
|
|
}
|
|
|
|
|
|
|
|
int felix_netdev_to_port(struct net_device *dev)
|
|
|
|
{
|
|
|
|
struct dsa_port *dp;
|
|
|
|
|
|
|
|
dp = dsa_port_from_netdev(dev);
|
|
|
|
if (IS_ERR(dp))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return dp->index;
|
|
|
|
}
|