OpenCloudOS-Kernel/drivers/usb/gadget/amd5536udc.c

3465 lines
85 KiB
C
Raw Normal View History

/*
* amd5536.c -- AMD 5536 UDC high/full speed USB device controller
*
* Copyright (C) 2005-2007 AMD (http://www.amd.com)
* Author: Thomas Dahlmann
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
* It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
* provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
*
* Make sure that UDC is assigned to port 4 by BIOS settings (port can also
* be used as host port) and UOC bits PAD_EN and APU are set (should be done
* by BIOS init).
*
* UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
* work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
* can be used with gadget ether.
*/
/* debug control */
/* #define UDC_VERBOSE */
/* Driver strings */
#define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
#define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
/* system */
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/dmapool.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <asm/unaligned.h>
/* gadget stack */
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
/* udc specific */
#include "amd5536udc.h"
static void udc_tasklet_disconnect(unsigned long);
static void empty_req_queue(struct udc_ep *);
static int udc_probe(struct udc *dev);
static void udc_basic_init(struct udc *dev);
static void udc_setup_endpoints(struct udc *dev);
static void udc_soft_reset(struct udc *dev);
static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
unsigned long buf_len, gfp_t gfp_flags);
static int udc_remote_wakeup(struct udc *dev);
static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
static void udc_pci_remove(struct pci_dev *pdev);
/* description */
static const char mod_desc[] = UDC_MOD_DESCRIPTION;
static const char name[] = "amd5536udc";
/* structure to hold endpoint function pointers */
static const struct usb_ep_ops udc_ep_ops;
/* received setup data */
static union udc_setup_data setup_data;
/* pointer to device object */
static struct udc *udc;
/* irq spin lock for soft reset */
static DEFINE_SPINLOCK(udc_irq_spinlock);
/* stall spin lock */
static DEFINE_SPINLOCK(udc_stall_spinlock);
/*
* slave mode: pending bytes in rx fifo after nyet,
* used if EPIN irq came but no req was available
*/
static unsigned int udc_rxfifo_pending;
/* count soft resets after suspend to avoid loop */
static int soft_reset_occured;
static int soft_reset_after_usbreset_occured;
/* timer */
static struct timer_list udc_timer;
static int stop_timer;
/* set_rde -- Is used to control enabling of RX DMA. Problem is
* that UDC has only one bit (RDE) to enable/disable RX DMA for
* all OUT endpoints. So we have to handle race conditions like
* when OUT data reaches the fifo but no request was queued yet.
* This cannot be solved by letting the RX DMA disabled until a
* request gets queued because there may be other OUT packets
* in the FIFO (important for not blocking control traffic).
* The value of set_rde controls the correspondig timer.
*
* set_rde -1 == not used, means it is alloed to be set to 0 or 1
* set_rde 0 == do not touch RDE, do no start the RDE timer
* set_rde 1 == timer function will look whether FIFO has data
* set_rde 2 == set by timer function to enable RX DMA on next call
*/
static int set_rde = -1;
static DECLARE_COMPLETION(on_exit);
static struct timer_list udc_pollstall_timer;
static int stop_pollstall_timer;
static DECLARE_COMPLETION(on_pollstall_exit);
/* tasklet for usb disconnect */
static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
(unsigned long) &udc);
/* endpoint names used for print */
static const char ep0_string[] = "ep0in";
static const char *ep_string[] = {
ep0_string,
"ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
"ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
"ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
"ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
"ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
"ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
"ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
};
/* DMA usage flag */
static int use_dma = 1;
/* packet per buffer dma */
static int use_dma_ppb = 1;
/* with per descr. update */
static int use_dma_ppb_du;
/* buffer fill mode */
static int use_dma_bufferfill_mode;
/* full speed only mode */
static int use_fullspeed;
/* tx buffer size for high speed */
static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
/* module parameters */
module_param(use_dma, bool, S_IRUGO);
MODULE_PARM_DESC(use_dma, "true for DMA");
module_param(use_dma_ppb, bool, S_IRUGO);
MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
module_param(use_dma_ppb_du, bool, S_IRUGO);
MODULE_PARM_DESC(use_dma_ppb_du,
"true for DMA in packet per buffer mode with descriptor update");
module_param(use_fullspeed, bool, S_IRUGO);
MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
/*---------------------------------------------------------------------------*/
/* Prints UDC device registers and endpoint irq registers */
static void print_regs(struct udc *dev)
{
DBG(dev, "------- Device registers -------\n");
DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
DBG(dev, "\n");
DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
DBG(dev, "\n");
DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
DBG(dev, "\n");
DBG(dev, "USE DMA = %d\n", use_dma);
if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
DBG(dev, "DMA mode = PPBNDU (packet per buffer "
"WITHOUT desc. update)\n");
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
} else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
DBG(dev, "DMA mode = PPBDU (packet per buffer "
"WITH desc. update)\n");
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
}
if (use_dma && use_dma_bufferfill_mode) {
DBG(dev, "DMA mode = BF (buffer fill mode)\n");
dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
}
if (!use_dma) {
dev_info(&dev->pdev->dev, "FIFO mode\n");
}
DBG(dev, "-------------------------------------------------------\n");
}
/* Masks unused interrupts */
static int udc_mask_unused_interrupts(struct udc *dev)
{
u32 tmp;
/* mask all dev interrupts */
tmp = AMD_BIT(UDC_DEVINT_SVC) |
AMD_BIT(UDC_DEVINT_ENUM) |
AMD_BIT(UDC_DEVINT_US) |
AMD_BIT(UDC_DEVINT_UR) |
AMD_BIT(UDC_DEVINT_ES) |
AMD_BIT(UDC_DEVINT_SI) |
AMD_BIT(UDC_DEVINT_SOF)|
AMD_BIT(UDC_DEVINT_SC);
writel(tmp, &dev->regs->irqmsk);
/* mask all ep interrupts */
writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
return 0;
}
/* Enables endpoint 0 interrupts */
static int udc_enable_ep0_interrupts(struct udc *dev)
{
u32 tmp;
DBG(dev, "udc_enable_ep0_interrupts()\n");
/* read irq mask */
tmp = readl(&dev->regs->ep_irqmsk);
/* enable ep0 irq's */
tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
writel(tmp, &dev->regs->ep_irqmsk);
return 0;
}
/* Enables device interrupts for SET_INTF and SET_CONFIG */
static int udc_enable_dev_setup_interrupts(struct udc *dev)
{
u32 tmp;
DBG(dev, "enable device interrupts for setup data\n");
/* read irq mask */
tmp = readl(&dev->regs->irqmsk);
/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
& AMD_UNMASK_BIT(UDC_DEVINT_SC)
& AMD_UNMASK_BIT(UDC_DEVINT_UR)
& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
writel(tmp, &dev->regs->irqmsk);
return 0;
}
/* Calculates fifo start of endpoint based on preceeding endpoints */
static int udc_set_txfifo_addr(struct udc_ep *ep)
{
struct udc *dev;
u32 tmp;
int i;
if (!ep || !(ep->in))
return -EINVAL;
dev = ep->dev;
ep->txfifo = dev->txfifo;
/* traverse ep's */
for (i = 0; i < ep->num; i++) {
if (dev->ep[i].regs) {
/* read fifo size */
tmp = readl(&dev->ep[i].regs->bufin_framenum);
tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
ep->txfifo += tmp;
}
}
return 0;
}
/* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
static u32 cnak_pending;
static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
{
if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
cnak_pending |= 1 << (num);
ep->naking = 1;
} else
cnak_pending = cnak_pending & (~(1 << (num)));
}
/* Enables endpoint, is called by gadget driver */
static int
udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
{
struct udc_ep *ep;
struct udc *dev;
u32 tmp;
unsigned long iflags;
u8 udc_csr_epix;
unsigned maxpacket;
if (!usbep
|| usbep->name == ep0_string
|| !desc
|| desc->bDescriptorType != USB_DT_ENDPOINT)
return -EINVAL;
ep = container_of(usbep, struct udc_ep, ep);
dev = ep->dev;
DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
spin_lock_irqsave(&dev->lock, iflags);
ep->desc = desc;
ep->halted = 0;
/* set traffic type */
tmp = readl(&dev->ep[ep->num].regs->ctl);
tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
writel(tmp, &dev->ep[ep->num].regs->ctl);
/* set max packet size */
maxpacket = le16_to_cpu(desc->wMaxPacketSize);
tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
ep->ep.maxpacket = maxpacket;
writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
/* IN ep */
if (ep->in) {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num;
/* set buffer size (tx fifo entries) */
tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
/* double buffering: fifo size = 2 x max packet size */
tmp = AMD_ADDBITS(
tmp,
maxpacket * UDC_EPIN_BUFF_SIZE_MULT
/ UDC_DWORD_BYTES,
UDC_EPIN_BUFF_SIZE);
writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
/* calc. tx fifo base addr */
udc_set_txfifo_addr(ep);
/* flush fifo */
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_F);
writel(tmp, &ep->regs->ctl);
/* OUT ep */
} else {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
/* set max packet size UDC CSR */
tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
tmp = AMD_ADDBITS(tmp, maxpacket,
UDC_CSR_NE_MAX_PKT);
writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
if (use_dma && !ep->in) {
/* alloc and init BNA dummy request */
ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
ep->bna_occurred = 0;
}
if (ep->num != UDC_EP0OUT_IX)
dev->data_ep_enabled = 1;
}
/* set ep values */
tmp = readl(&dev->csr->ne[udc_csr_epix]);
/* max packet */
tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
/* ep number */
tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
/* ep direction */
tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
/* ep type */
tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
/* ep config */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
/* ep interface */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
/* ep alt */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
/* write reg */
writel(tmp, &dev->csr->ne[udc_csr_epix]);
/* enable ep irq */
tmp = readl(&dev->regs->ep_irqmsk);
tmp &= AMD_UNMASK_BIT(ep->num);
writel(tmp, &dev->regs->ep_irqmsk);
/*
* clear NAK by writing CNAK
* avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
*/
if (!use_dma || ep->in) {
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &ep->regs->ctl);
ep->naking = 0;
UDC_QUEUE_CNAK(ep, ep->num);
}
tmp = desc->bEndpointAddress;
DBG(dev, "%s enabled\n", usbep->name);
spin_unlock_irqrestore(&dev->lock, iflags);
return 0;
}
/* Resets endpoint */
static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
{
u32 tmp;
VDBG(ep->dev, "ep-%d reset\n", ep->num);
ep->desc = NULL;
ep->ep.ops = &udc_ep_ops;
INIT_LIST_HEAD(&ep->queue);
ep->ep.maxpacket = (u16) ~0;
/* set NAK */
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_SNAK);
writel(tmp, &ep->regs->ctl);
ep->naking = 1;
/* disable interrupt */
tmp = readl(&regs->ep_irqmsk);
tmp |= AMD_BIT(ep->num);
writel(tmp, &regs->ep_irqmsk);
if (ep->in) {
/* unset P and IN bit of potential former DMA */
tmp = readl(&ep->regs->ctl);
tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
writel(tmp, &ep->regs->ctl);
tmp = readl(&ep->regs->sts);
tmp |= AMD_BIT(UDC_EPSTS_IN);
writel(tmp, &ep->regs->sts);
/* flush the fifo */
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_F);
writel(tmp, &ep->regs->ctl);
}
/* reset desc pointer */
writel(0, &ep->regs->desptr);
}
/* Disables endpoint, is called by gadget driver */
static int udc_ep_disable(struct usb_ep *usbep)
{
struct udc_ep *ep = NULL;
unsigned long iflags;
if (!usbep)
return -EINVAL;
ep = container_of(usbep, struct udc_ep, ep);
if (usbep->name == ep0_string || !ep->desc)
return -EINVAL;
DBG(ep->dev, "Disable ep-%d\n", ep->num);
spin_lock_irqsave(&ep->dev->lock, iflags);
udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
empty_req_queue(ep);
ep_init(ep->dev->regs, ep);
spin_unlock_irqrestore(&ep->dev->lock, iflags);
return 0;
}
/* Allocates request packet, called by gadget driver */
static struct usb_request *
udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
{
struct udc_request *req;
struct udc_data_dma *dma_desc;
struct udc_ep *ep;
if (!usbep)
return NULL;
ep = container_of(usbep, struct udc_ep, ep);
VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
req = kzalloc(sizeof(struct udc_request), gfp);
if (!req)
return NULL;
req->req.dma = DMA_DONT_USE;
INIT_LIST_HEAD(&req->queue);
if (ep->dma) {
/* ep0 in requests are allocated from data pool here */
dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
&req->td_phys);
if (!dma_desc) {
kfree(req);
return NULL;
}
VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
"td_phys = %lx\n",
req, dma_desc,
(unsigned long)req->td_phys);
/* prevent from using desc. - set HOST BUSY */
dma_desc->status = AMD_ADDBITS(dma_desc->status,
UDC_DMA_STP_STS_BS_HOST_BUSY,
UDC_DMA_STP_STS_BS);
dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE);
req->td_data = dma_desc;
req->td_data_last = NULL;
req->chain_len = 1;
}
return &req->req;
}
/* Frees request packet, called by gadget driver */
static void
udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
{
struct udc_ep *ep;
struct udc_request *req;
if (!usbep || !usbreq)
return;
ep = container_of(usbep, struct udc_ep, ep);
req = container_of(usbreq, struct udc_request, req);
VDBG(ep->dev, "free_req req=%p\n", req);
BUG_ON(!list_empty(&req->queue));
if (req->td_data) {
VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
/* free dma chain if created */
if (req->chain_len > 1) {
udc_free_dma_chain(ep->dev, req);
}
pci_pool_free(ep->dev->data_requests, req->td_data,
req->td_phys);
}
kfree(req);
}
/* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
static void udc_init_bna_dummy(struct udc_request *req)
{
if (req) {
/* set last bit */
req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
/* set next pointer to itself */
req->td_data->next = req->td_phys;
/* set HOST BUSY */
req->td_data->status
= AMD_ADDBITS(req->td_data->status,
UDC_DMA_STP_STS_BS_DMA_DONE,
UDC_DMA_STP_STS_BS);
#ifdef UDC_VERBOSE
pr_debug("bna desc = %p, sts = %08x\n",
req->td_data, req->td_data->status);
#endif
}
}
/* Allocate BNA dummy descriptor */
static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
{
struct udc_request *req = NULL;
struct usb_request *_req = NULL;
/* alloc the dummy request */
_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
if (_req) {
req = container_of(_req, struct udc_request, req);
ep->bna_dummy_req = req;
udc_init_bna_dummy(req);
}
return req;
}
/* Write data to TX fifo for IN packets */
static void
udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
{
u8 *req_buf;
u32 *buf;
int i, j;
unsigned bytes = 0;
unsigned remaining = 0;
if (!req || !ep)
return;
req_buf = req->buf + req->actual;
prefetch(req_buf);
remaining = req->length - req->actual;
buf = (u32 *) req_buf;
bytes = ep->ep.maxpacket;
if (bytes > remaining)
bytes = remaining;
/* dwords first */
for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
writel(*(buf + i), ep->txfifo);
}
/* remaining bytes must be written by byte access */
for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
ep->txfifo);
}
/* dummy write confirm */
writel(0, &ep->regs->confirm);
}
/* Read dwords from RX fifo for OUT transfers */
static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
{
int i;
VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
for (i = 0; i < dwords; i++) {
*(buf + i) = readl(dev->rxfifo);
}
return 0;
}
/* Read bytes from RX fifo for OUT transfers */
static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
{
int i, j;
u32 tmp;
VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
/* dwords first */
for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
}
/* remaining bytes must be read by byte access */
if (bytes % UDC_DWORD_BYTES) {
tmp = readl(dev->rxfifo);
for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
tmp = tmp >> UDC_BITS_PER_BYTE;
}
}
return 0;
}
/* Read data from RX fifo for OUT transfers */
static int
udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
{
u8 *buf;
unsigned buf_space;
unsigned bytes = 0;
unsigned finished = 0;
/* received number bytes */
bytes = readl(&ep->regs->sts);
bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
buf_space = req->req.length - req->req.actual;
buf = req->req.buf + req->req.actual;
if (bytes > buf_space) {
if ((buf_space % ep->ep.maxpacket) != 0) {
DBG(ep->dev,
"%s: rx %d bytes, rx-buf space = %d bytesn\n",
ep->ep.name, bytes, buf_space);
req->req.status = -EOVERFLOW;
}
bytes = buf_space;
}
req->req.actual += bytes;
/* last packet ? */
if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
|| ((req->req.actual == req->req.length) && !req->req.zero))
finished = 1;
/* read rx fifo bytes */
VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
udc_rxfifo_read_bytes(ep->dev, buf, bytes);
return finished;
}
/* create/re-init a DMA descriptor or a DMA descriptor chain */
static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
{
int retval = 0;
u32 tmp;
VDBG(ep->dev, "prep_dma\n");
VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
ep->num, req->td_data);
/* set buffer pointer */
req->td_data->bufptr = req->req.dma;
/* set last bit */
req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
if (use_dma_ppb) {
retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
if (retval != 0) {
if (retval == -ENOMEM)
DBG(ep->dev, "Out of DMA memory\n");
return retval;
}
if (ep->in) {
if (req->req.length == ep->ep.maxpacket) {
/* write tx bytes */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
ep->ep.maxpacket,
UDC_DMA_IN_STS_TXBYTES);
}
}
}
if (ep->in) {
VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
"maxpacket=%d ep%d\n",
use_dma_ppb, req->req.length,
ep->ep.maxpacket, ep->num);
/*
* if bytes < max packet then tx bytes must
* be written in packet per buffer mode
*/
if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
|| ep->num == UDC_EP0OUT_IX
|| ep->num == UDC_EP0IN_IX) {
/* write tx bytes */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
req->req.length,
UDC_DMA_IN_STS_TXBYTES);
/* reset frame num */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
0,
UDC_DMA_IN_STS_FRAMENUM);
}
/* set HOST BUSY */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
UDC_DMA_STP_STS_BS_HOST_BUSY,
UDC_DMA_STP_STS_BS);
} else {
VDBG(ep->dev, "OUT set host ready\n");
/* set HOST READY */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
UDC_DMA_STP_STS_BS_HOST_READY,
UDC_DMA_STP_STS_BS);
/* clear NAK by writing CNAK */
if (ep->naking) {
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &ep->regs->ctl);
ep->naking = 0;
UDC_QUEUE_CNAK(ep, ep->num);
}
}
return retval;
}
/* Completes request packet ... caller MUST hold lock */
static void
complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
__releases(ep->dev->lock)
__acquires(ep->dev->lock)
{
struct udc *dev;
unsigned halted;
VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
dev = ep->dev;
/* unmap DMA */
if (req->dma_mapping) {
if (ep->in)
pci_unmap_single(dev->pdev,
req->req.dma,
req->req.length,
PCI_DMA_TODEVICE);
else
pci_unmap_single(dev->pdev,
req->req.dma,
req->req.length,
PCI_DMA_FROMDEVICE);
req->dma_mapping = 0;
req->req.dma = DMA_DONT_USE;
}
halted = ep->halted;
ep->halted = 1;
/* set new status if pending */
if (req->req.status == -EINPROGRESS)
req->req.status = sts;
/* remove from ep queue */
list_del_init(&req->queue);
VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
&req->req, req->req.length, ep->ep.name, sts);
spin_unlock(&dev->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&dev->lock);
ep->halted = halted;
}
/* frees pci pool descriptors of a DMA chain */
static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
{
int ret_val = 0;
struct udc_data_dma *td;
struct udc_data_dma *td_last = NULL;
unsigned int i;
DBG(dev, "free chain req = %p\n", req);
/* do not free first desc., will be done by free for request */
td_last = req->td_data;
td = phys_to_virt(td_last->next);
for (i = 1; i < req->chain_len; i++) {
pci_pool_free(dev->data_requests, td,
(dma_addr_t) td_last->next);
td_last = td;
td = phys_to_virt(td_last->next);
}
return ret_val;
}
/* Iterates to the end of a DMA chain and returns last descriptor */
static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
{
struct udc_data_dma *td;
td = req->td_data;
while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
td = phys_to_virt(td->next);
}
return td;
}
/* Iterates to the end of a DMA chain and counts bytes received */
static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
{
struct udc_data_dma *td;
u32 count;
td = req->td_data;
/* received number bytes */
count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
td = phys_to_virt(td->next);
/* received number bytes */
if (td) {
count += AMD_GETBITS(td->status,
UDC_DMA_OUT_STS_RXBYTES);
}
}
return count;
}
/* Creates or re-inits a DMA chain */
static int udc_create_dma_chain(
struct udc_ep *ep,
struct udc_request *req,
unsigned long buf_len, gfp_t gfp_flags
)
{
unsigned long bytes = req->req.length;
unsigned int i;
dma_addr_t dma_addr;
struct udc_data_dma *td = NULL;
struct udc_data_dma *last = NULL;
unsigned long txbytes;
unsigned create_new_chain = 0;
unsigned len;
VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
bytes, buf_len);
dma_addr = DMA_DONT_USE;
/* unset L bit in first desc for OUT */
if (!ep->in) {
req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
}
/* alloc only new desc's if not already available */
len = req->req.length / ep->ep.maxpacket;
if (req->req.length % ep->ep.maxpacket) {
len++;
}
if (len > req->chain_len) {
/* shorter chain already allocated before */
if (req->chain_len > 1) {
udc_free_dma_chain(ep->dev, req);
}
req->chain_len = len;
create_new_chain = 1;
}
td = req->td_data;
/* gen. required number of descriptors and buffers */
for (i = buf_len; i < bytes; i += buf_len) {
/* create or determine next desc. */
if (create_new_chain) {
td = pci_pool_alloc(ep->dev->data_requests,
gfp_flags, &dma_addr);
if (!td)
return -ENOMEM;
td->status = 0;
} else if (i == buf_len) {
/* first td */
td = (struct udc_data_dma *) phys_to_virt(
req->td_data->next);
td->status = 0;
} else {
td = (struct udc_data_dma *) phys_to_virt(last->next);
td->status = 0;
}
if (td)
td->bufptr = req->req.dma + i; /* assign buffer */
else
break;
/* short packet ? */
if ((bytes - i) >= buf_len) {
txbytes = buf_len;
} else {
/* short packet */
txbytes = bytes - i;
}
/* link td and assign tx bytes */
if (i == buf_len) {
if (create_new_chain) {
req->td_data->next = dma_addr;
} else {
/* req->td_data->next = virt_to_phys(td); */
}
/* write tx bytes */
if (ep->in) {
/* first desc */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
ep->ep.maxpacket,
UDC_DMA_IN_STS_TXBYTES);
/* second desc */
td->status = AMD_ADDBITS(td->status,
txbytes,
UDC_DMA_IN_STS_TXBYTES);
}
} else {
if (create_new_chain) {
last->next = dma_addr;
} else {
/* last->next = virt_to_phys(td); */
}
if (ep->in) {
/* write tx bytes */
td->status = AMD_ADDBITS(td->status,
txbytes,
UDC_DMA_IN_STS_TXBYTES);
}
}
last = td;
}
/* set last bit */
if (td) {
td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
/* last desc. points to itself */
req->td_data_last = td;
}
return 0;
}
/* Enabling RX DMA */
static void udc_set_rde(struct udc *dev)
{
u32 tmp;
VDBG(dev, "udc_set_rde()\n");
/* stop RDE timer */
if (timer_pending(&udc_timer)) {
set_rde = 0;
mod_timer(&udc_timer, jiffies - 1);
}
/* set RDE */
tmp = readl(&dev->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_RDE);
writel(tmp, &dev->regs->ctl);
}
/* Queues a request packet, called by gadget driver */
static int
udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
{
int retval = 0;
u8 open_rxfifo = 0;
unsigned long iflags;
struct udc_ep *ep;
struct udc_request *req;
struct udc *dev;
u32 tmp;
/* check the inputs */
req = container_of(usbreq, struct udc_request, req);
if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
|| !list_empty(&req->queue))
return -EINVAL;
ep = container_of(usbep, struct udc_ep, ep);
if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
return -EINVAL;
VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
/* map dma (usually done before) */
if (ep->dma && usbreq->length != 0
&& (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
VDBG(dev, "DMA map req %p\n", req);
if (ep->in)
usbreq->dma = pci_map_single(dev->pdev,
usbreq->buf,
usbreq->length,
PCI_DMA_TODEVICE);
else
usbreq->dma = pci_map_single(dev->pdev,
usbreq->buf,
usbreq->length,
PCI_DMA_FROMDEVICE);
req->dma_mapping = 1;
}
VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
usbep->name, usbreq, usbreq->length,
req->td_data, usbreq->buf);
spin_lock_irqsave(&dev->lock, iflags);
usbreq->actual = 0;
usbreq->status = -EINPROGRESS;
req->dma_done = 0;
/* on empty queue just do first transfer */
if (list_empty(&ep->queue)) {
/* zlp */
if (usbreq->length == 0) {
/* IN zlp's are handled by hardware */
complete_req(ep, req, 0);
VDBG(dev, "%s: zlp\n", ep->ep.name);
/*
* if set_config or set_intf is waiting for ack by zlp
* then set CSR_DONE
*/
if (dev->set_cfg_not_acked) {
tmp = readl(&dev->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
writel(tmp, &dev->regs->ctl);
dev->set_cfg_not_acked = 0;
}
/* setup command is ACK'ed now by zlp */
if (dev->waiting_zlp_ack_ep0in) {
/* clear NAK by writing CNAK in EP0_IN */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
dev->ep[UDC_EP0IN_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
UDC_EP0IN_IX);
dev->waiting_zlp_ack_ep0in = 0;
}
goto finished;
}
if (ep->dma) {
retval = prep_dma(ep, req, gfp);
if (retval != 0)
goto finished;
/* write desc pointer to enable DMA */
if (ep->in) {
/* set HOST READY */
req->td_data->status =
AMD_ADDBITS(req->td_data->status,
UDC_DMA_IN_STS_BS_HOST_READY,
UDC_DMA_IN_STS_BS);
}
/* disabled rx dma while descriptor update */
if (!ep->in) {
/* stop RDE timer */
if (timer_pending(&udc_timer)) {
set_rde = 0;
mod_timer(&udc_timer, jiffies - 1);
}
/* clear RDE */
tmp = readl(&dev->regs->ctl);
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
writel(tmp, &dev->regs->ctl);
open_rxfifo = 1;
/*
* if BNA occurred then let BNA dummy desc.
* point to current desc.
*/
if (ep->bna_occurred) {
VDBG(dev, "copy to BNA dummy desc.\n");
memcpy(ep->bna_dummy_req->td_data,
req->td_data,
sizeof(struct udc_data_dma));
}
}
/* write desc pointer */
writel(req->td_phys, &ep->regs->desptr);
/* clear NAK by writing CNAK */
if (ep->naking) {
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &ep->regs->ctl);
ep->naking = 0;
UDC_QUEUE_CNAK(ep, ep->num);
}
if (ep->in) {
/* enable ep irq */
tmp = readl(&dev->regs->ep_irqmsk);
tmp &= AMD_UNMASK_BIT(ep->num);
writel(tmp, &dev->regs->ep_irqmsk);
}
}
} else if (ep->dma) {
/*
* prep_dma not used for OUT ep's, this is not possible
* for PPB modes, because of chain creation reasons
*/
if (ep->in) {
retval = prep_dma(ep, req, gfp);
if (retval != 0)
goto finished;
}
}
VDBG(dev, "list_add\n");
/* add request to ep queue */
if (req) {
list_add_tail(&req->queue, &ep->queue);
/* open rxfifo if out data queued */
if (open_rxfifo) {
/* enable DMA */
req->dma_going = 1;
udc_set_rde(dev);
if (ep->num != UDC_EP0OUT_IX)
dev->data_ep_queued = 1;
}
/* stop OUT naking */
if (!ep->in) {
if (!use_dma && udc_rxfifo_pending) {
DBG(dev, "udc_queue(): pending bytes in "
"rxfifo after nyet\n");
/*
* read pending bytes afer nyet:
* referring to isr
*/
if (udc_rxfifo_read(ep, req)) {
/* finish */
complete_req(ep, req, 0);
}
udc_rxfifo_pending = 0;
}
}
}
finished:
spin_unlock_irqrestore(&dev->lock, iflags);
return retval;
}
/* Empty request queue of an endpoint; caller holds spinlock */
static void empty_req_queue(struct udc_ep *ep)
{
struct udc_request *req;
ep->halted = 1;
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct udc_request,
queue);
complete_req(ep, req, -ESHUTDOWN);
}
}
/* Dequeues a request packet, called by gadget driver */
static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
{
struct udc_ep *ep;
struct udc_request *req;
unsigned halted;
unsigned long iflags;
ep = container_of(usbep, struct udc_ep, ep);
if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
&& ep->num != UDC_EP0OUT_IX)))
return -EINVAL;
req = container_of(usbreq, struct udc_request, req);
spin_lock_irqsave(&ep->dev->lock, iflags);
halted = ep->halted;
ep->halted = 1;
/* request in processing or next one */
if (ep->queue.next == &req->queue) {
if (ep->dma && req->dma_going) {
if (ep->in)
ep->cancel_transfer = 1;
else {
u32 tmp;
u32 dma_sts;
/* stop potential receive DMA */
tmp = readl(&udc->regs->ctl);
writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
&udc->regs->ctl);
/*
* Cancel transfer later in ISR
* if descriptor was touched.
*/
dma_sts = AMD_GETBITS(req->td_data->status,
UDC_DMA_OUT_STS_BS);
if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
ep->cancel_transfer = 1;
else {
udc_init_bna_dummy(ep->req);
writel(ep->bna_dummy_req->td_phys,
&ep->regs->desptr);
}
writel(tmp, &udc->regs->ctl);
}
}
}
complete_req(ep, req, -ECONNRESET);
ep->halted = halted;
spin_unlock_irqrestore(&ep->dev->lock, iflags);
return 0;
}
/* Halt or clear halt of endpoint */
static int
udc_set_halt(struct usb_ep *usbep, int halt)
{
struct udc_ep *ep;
u32 tmp;
unsigned long iflags;
int retval = 0;
if (!usbep)
return -EINVAL;
pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
ep = container_of(usbep, struct udc_ep, ep);
if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
return -EINVAL;
if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
spin_lock_irqsave(&udc_stall_spinlock, iflags);
/* halt or clear halt */
if (halt) {
if (ep->num == 0)
ep->dev->stall_ep0in = 1;
else {
/*
* set STALL
* rxfifo empty not taken into acount
*/
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_S);
writel(tmp, &ep->regs->ctl);
ep->halted = 1;
/* setup poll timer */
if (!timer_pending(&udc_pollstall_timer)) {
udc_pollstall_timer.expires = jiffies +
HZ * UDC_POLLSTALL_TIMER_USECONDS
/ (1000 * 1000);
if (!stop_pollstall_timer) {
DBG(ep->dev, "start polltimer\n");
add_timer(&udc_pollstall_timer);
}
}
}
} else {
/* ep is halted by set_halt() before */
if (ep->halted) {
tmp = readl(&ep->regs->ctl);
/* clear stall bit */
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
/* clear NAK by writing CNAK */
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &ep->regs->ctl);
ep->halted = 0;
UDC_QUEUE_CNAK(ep, ep->num);
}
}
spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
return retval;
}
/* gadget interface */
static const struct usb_ep_ops udc_ep_ops = {
.enable = udc_ep_enable,
.disable = udc_ep_disable,
.alloc_request = udc_alloc_request,
.free_request = udc_free_request,
.queue = udc_queue,
.dequeue = udc_dequeue,
.set_halt = udc_set_halt,
/* fifo ops not implemented */
};
/*-------------------------------------------------------------------------*/
/* Get frame counter (not implemented) */
static int udc_get_frame(struct usb_gadget *gadget)
{
return -EOPNOTSUPP;
}
/* Remote wakeup gadget interface */
static int udc_wakeup(struct usb_gadget *gadget)
{
struct udc *dev;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct udc, gadget);
udc_remote_wakeup(dev);
return 0;
}
/* gadget operations */
static const struct usb_gadget_ops udc_ops = {
.wakeup = udc_wakeup,
.get_frame = udc_get_frame,
};
/* Setups endpoint parameters, adds endpoints to linked list */
static void make_ep_lists(struct udc *dev)
{
/* make gadget ep lists */
INIT_LIST_HEAD(&dev->gadget.ep_list);
list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
&dev->gadget.ep_list);
list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
&dev->gadget.ep_list);
list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
&dev->gadget.ep_list);
/* fifo config */
dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
if (dev->gadget.speed == USB_SPEED_FULL)
dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
else if (dev->gadget.speed == USB_SPEED_HIGH)
dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
}
/* init registers at driver load time */
static int startup_registers(struct udc *dev)
{
u32 tmp;
/* init controller by soft reset */
udc_soft_reset(dev);
/* mask not needed interrupts */
udc_mask_unused_interrupts(dev);
/* put into initial config */
udc_basic_init(dev);
/* link up all endpoints */
udc_setup_endpoints(dev);
/* program speed */
tmp = readl(&dev->regs->cfg);
if (use_fullspeed) {
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
} else {
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
}
writel(tmp, &dev->regs->cfg);
return 0;
}
/* Inits UDC context */
static void udc_basic_init(struct udc *dev)
{
u32 tmp;
DBG(dev, "udc_basic_init()\n");
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* stop RDE timer */
if (timer_pending(&udc_timer)) {
set_rde = 0;
mod_timer(&udc_timer, jiffies - 1);
}
/* stop poll stall timer */
if (timer_pending(&udc_pollstall_timer)) {
mod_timer(&udc_pollstall_timer, jiffies - 1);
}
/* disable DMA */
tmp = readl(&dev->regs->ctl);
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
writel(tmp, &dev->regs->ctl);
/* enable dynamic CSR programming */
tmp = readl(&dev->regs->cfg);
tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
/* set self powered */
tmp |= AMD_BIT(UDC_DEVCFG_SP);
/* set remote wakeupable */
tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
writel(tmp, &dev->regs->cfg);
make_ep_lists(dev);
dev->data_ep_enabled = 0;
dev->data_ep_queued = 0;
}
/* Sets initial endpoint parameters */
static void udc_setup_endpoints(struct udc *dev)
{
struct udc_ep *ep;
u32 tmp;
u32 reg;
DBG(dev, "udc_setup_endpoints()\n");
/* read enum speed */
tmp = readl(&dev->regs->sts);
tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
dev->gadget.speed = USB_SPEED_HIGH;
} else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
dev->gadget.speed = USB_SPEED_FULL;
}
/* set basic ep parameters */
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
ep = &dev->ep[tmp];
ep->dev = dev;
ep->ep.name = ep_string[tmp];
ep->num = tmp;
/* txfifo size is calculated at enable time */
ep->txfifo = dev->txfifo;
/* fifo size */
if (tmp < UDC_EPIN_NUM) {
ep->fifo_depth = UDC_TXFIFO_SIZE;
ep->in = 1;
} else {
ep->fifo_depth = UDC_RXFIFO_SIZE;
ep->in = 0;
}
ep->regs = &dev->ep_regs[tmp];
/*
* ep will be reset only if ep was not enabled before to avoid
* disabling ep interrupts when ENUM interrupt occurs but ep is
* not enabled by gadget driver
*/
if (!ep->desc) {
ep_init(dev->regs, ep);
}
if (use_dma) {
/*
* ep->dma is not really used, just to indicate that
* DMA is active: remove this
* dma regs = dev control regs
*/
ep->dma = &dev->regs->ctl;
/* nak OUT endpoints until enable - not for ep0 */
if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
&& tmp > UDC_EPIN_NUM) {
/* set NAK */
reg = readl(&dev->ep[tmp].regs->ctl);
reg |= AMD_BIT(UDC_EPCTL_SNAK);
writel(reg, &dev->ep[tmp].regs->ctl);
dev->ep[tmp].naking = 1;
}
}
}
/* EP0 max packet */
if (dev->gadget.speed == USB_SPEED_FULL) {
dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
UDC_FS_EP0OUT_MAX_PKT_SIZE;
} else if (dev->gadget.speed == USB_SPEED_HIGH) {
dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
}
/*
* with suspend bug workaround, ep0 params for gadget driver
* are set at gadget driver bind() call
*/
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
dev->ep[UDC_EP0IN_IX].halted = 0;
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
/* init cfg/alt/int */
dev->cur_config = 0;
dev->cur_intf = 0;
dev->cur_alt = 0;
}
/* Bringup after Connect event, initial bringup to be ready for ep0 events */
static void usb_connect(struct udc *dev)
{
dev_info(&dev->pdev->dev, "USB Connect\n");
dev->connected = 1;
/* put into initial config */
udc_basic_init(dev);
/* enable device setup interrupts */
udc_enable_dev_setup_interrupts(dev);
}
/*
* Calls gadget with disconnect event and resets the UDC and makes
* initial bringup to be ready for ep0 events
*/
static void usb_disconnect(struct udc *dev)
{
dev_info(&dev->pdev->dev, "USB Disconnect\n");
dev->connected = 0;
/* mask interrupts */
udc_mask_unused_interrupts(dev);
/* REVISIT there doesn't seem to be a point to having this
* talk to a tasklet ... do it directly, we already hold
* the spinlock needed to process the disconnect.
*/
tasklet_schedule(&disconnect_tasklet);
}
/* Tasklet for disconnect to be outside of interrupt context */
static void udc_tasklet_disconnect(unsigned long par)
{
struct udc *dev = (struct udc *)(*((struct udc **) par));
u32 tmp;
DBG(dev, "Tasklet disconnect\n");
spin_lock_irq(&dev->lock);
if (dev->driver) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
/* empty queues */
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
empty_req_queue(&dev->ep[tmp]);
}
}
/* disable ep0 */
ep_init(dev->regs,
&dev->ep[UDC_EP0IN_IX]);
if (!soft_reset_occured) {
/* init controller by soft reset */
udc_soft_reset(dev);
soft_reset_occured++;
}
/* re-enable dev interrupts */
udc_enable_dev_setup_interrupts(dev);
/* back to full speed ? */
if (use_fullspeed) {
tmp = readl(&dev->regs->cfg);
tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
writel(tmp, &dev->regs->cfg);
}
spin_unlock_irq(&dev->lock);
}
/* Reset the UDC core */
static void udc_soft_reset(struct udc *dev)
{
unsigned long flags;
DBG(dev, "Soft reset\n");
/*
* reset possible waiting interrupts, because int.
* status is lost after soft reset,
* ep int. status reset
*/
writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
/* device int. status reset */
writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
spin_lock_irqsave(&udc_irq_spinlock, flags);
writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
readl(&dev->regs->cfg);
spin_unlock_irqrestore(&udc_irq_spinlock, flags);
}
/* RDE timer callback to set RDE bit */
static void udc_timer_function(unsigned long v)
{
u32 tmp;
spin_lock_irq(&udc_irq_spinlock);
if (set_rde > 0) {
/*
* open the fifo if fifo was filled on last timer call
* conditionally
*/
if (set_rde > 1) {
/* set RDE to receive setup data */
tmp = readl(&udc->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_RDE);
writel(tmp, &udc->regs->ctl);
set_rde = -1;
} else if (readl(&udc->regs->sts)
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
/*
* if fifo empty setup polling, do not just
* open the fifo
*/
udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
if (!stop_timer) {
add_timer(&udc_timer);
}
} else {
/*
* fifo contains data now, setup timer for opening
* the fifo when timer expires to be able to receive
* setup packets, when data packets gets queued by
* gadget layer then timer will forced to expire with
* set_rde=0 (RDE is set in udc_queue())
*/
set_rde++;
/* debug: lhadmot_timer_start = 221070 */
udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
if (!stop_timer) {
add_timer(&udc_timer);
}
}
} else
set_rde = -1; /* RDE was set by udc_queue() */
spin_unlock_irq(&udc_irq_spinlock);
if (stop_timer)
complete(&on_exit);
}
/* Handle halt state, used in stall poll timer */
static void udc_handle_halt_state(struct udc_ep *ep)
{
u32 tmp;
/* set stall as long not halted */
if (ep->halted == 1) {
tmp = readl(&ep->regs->ctl);
/* STALL cleared ? */
if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
/*
* FIXME: MSC spec requires that stall remains
* even on receivng of CLEAR_FEATURE HALT. So
* we would set STALL again here to be compliant.
* But with current mass storage drivers this does
* not work (would produce endless host retries).
* So we clear halt on CLEAR_FEATURE.
*
DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
tmp |= AMD_BIT(UDC_EPCTL_S);
writel(tmp, &ep->regs->ctl);*/
/* clear NAK by writing CNAK */
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &ep->regs->ctl);
ep->halted = 0;
UDC_QUEUE_CNAK(ep, ep->num);
}
}
}
/* Stall timer callback to poll S bit and set it again after */
static void udc_pollstall_timer_function(unsigned long v)
{
struct udc_ep *ep;
int halted = 0;
spin_lock_irq(&udc_stall_spinlock);
/*
* only one IN and OUT endpoints are handled
* IN poll stall
*/
ep = &udc->ep[UDC_EPIN_IX];
udc_handle_halt_state(ep);
if (ep->halted)
halted = 1;
/* OUT poll stall */
ep = &udc->ep[UDC_EPOUT_IX];
udc_handle_halt_state(ep);
if (ep->halted)
halted = 1;
/* setup timer again when still halted */
if (!stop_pollstall_timer && halted) {
udc_pollstall_timer.expires = jiffies +
HZ * UDC_POLLSTALL_TIMER_USECONDS
/ (1000 * 1000);
add_timer(&udc_pollstall_timer);
}
spin_unlock_irq(&udc_stall_spinlock);
if (stop_pollstall_timer)
complete(&on_pollstall_exit);
}
/* Inits endpoint 0 so that SETUP packets are processed */
static void activate_control_endpoints(struct udc *dev)
{
u32 tmp;
DBG(dev, "activate_control_endpoints\n");
/* flush fifo */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_F);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
/* set ep0 directions */
dev->ep[UDC_EP0IN_IX].in = 1;
dev->ep[UDC_EP0OUT_IX].in = 0;
/* set buffer size (tx fifo entries) of EP0_IN */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
if (dev->gadget.speed == USB_SPEED_FULL)
tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
UDC_EPIN_BUFF_SIZE);
else if (dev->gadget.speed == USB_SPEED_HIGH)
tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
UDC_EPIN_BUFF_SIZE);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
/* set max packet size of EP0_IN */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
if (dev->gadget.speed == USB_SPEED_FULL)
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
UDC_EP_MAX_PKT_SIZE);
else if (dev->gadget.speed == USB_SPEED_HIGH)
tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
UDC_EP_MAX_PKT_SIZE);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
/* set max packet size of EP0_OUT */
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
if (dev->gadget.speed == USB_SPEED_FULL)
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
UDC_EP_MAX_PKT_SIZE);
else if (dev->gadget.speed == USB_SPEED_HIGH)
tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
UDC_EP_MAX_PKT_SIZE);
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
/* set max packet size of EP0 in UDC CSR */
tmp = readl(&dev->csr->ne[0]);
if (dev->gadget.speed == USB_SPEED_FULL)
tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
UDC_CSR_NE_MAX_PKT);
else if (dev->gadget.speed == USB_SPEED_HIGH)
tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
UDC_CSR_NE_MAX_PKT);
writel(tmp, &dev->csr->ne[0]);
if (use_dma) {
dev->ep[UDC_EP0OUT_IX].td->status |=
AMD_BIT(UDC_DMA_OUT_STS_L);
/* write dma desc address */
writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
&dev->ep[UDC_EP0OUT_IX].regs->subptr);
writel(dev->ep[UDC_EP0OUT_IX].td_phys,
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
/* stop RDE timer */
if (timer_pending(&udc_timer)) {
set_rde = 0;
mod_timer(&udc_timer, jiffies - 1);
}
/* stop pollstall timer */
if (timer_pending(&udc_pollstall_timer)) {
mod_timer(&udc_pollstall_timer, jiffies - 1);
}
/* enable DMA */
tmp = readl(&dev->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_MODE)
| AMD_BIT(UDC_DEVCTL_RDE)
| AMD_BIT(UDC_DEVCTL_TDE);
if (use_dma_bufferfill_mode) {
tmp |= AMD_BIT(UDC_DEVCTL_BF);
} else if (use_dma_ppb_du) {
tmp |= AMD_BIT(UDC_DEVCTL_DU);
}
writel(tmp, &dev->regs->ctl);
}
/* clear NAK by writing CNAK for EP0IN */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
dev->ep[UDC_EP0IN_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
/* clear NAK by writing CNAK for EP0OUT */
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
dev->ep[UDC_EP0OUT_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
}
/* Make endpoint 0 ready for control traffic */
static int setup_ep0(struct udc *dev)
{
activate_control_endpoints(dev);
/* enable ep0 interrupts */
udc_enable_ep0_interrupts(dev);
/* enable device setup interrupts */
udc_enable_dev_setup_interrupts(dev);
return 0;
}
/* Called by gadget driver to register itself */
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct udc *dev = udc;
int retval;
u32 tmp;
if (!driver || !driver->bind || !driver->setup
|| driver->speed != USB_SPEED_HIGH)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
driver->driver.bus = NULL;
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
retval = driver->bind(&dev->gadget);
/* Some gadget drivers use both ep0 directions.
* NOTE: to gadget driver, ep0 is just one endpoint...
*/
dev->ep[UDC_EP0OUT_IX].ep.driver_data =
dev->ep[UDC_EP0IN_IX].ep.driver_data;
if (retval) {
DBG(dev, "binding to %s returning %d\n",
driver->driver.name, retval);
dev->driver = NULL;
dev->gadget.dev.driver = NULL;
return retval;
}
/* get ready for ep0 traffic */
setup_ep0(dev);
/* clear SD */
tmp = readl(&dev->regs->ctl);
tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
writel(tmp, &dev->regs->ctl);
usb_connect(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
/* shutdown requests and disconnect from gadget */
static void
shutdown(struct udc *dev, struct usb_gadget_driver *driver)
__releases(dev->lock)
__acquires(dev->lock)
{
int tmp;
/* empty queues and init hardware */
udc_basic_init(dev);
for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
empty_req_queue(&dev->ep[tmp]);
}
if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
spin_unlock(&dev->lock);
driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
/* init */
udc_setup_endpoints(dev);
}
/* Called by gadget driver to unregister itself */
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct udc *dev = udc;
unsigned long flags;
u32 tmp;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver || !driver->unbind)
return -EINVAL;
spin_lock_irqsave(&dev->lock, flags);
udc_mask_unused_interrupts(dev);
shutdown(dev, driver);
spin_unlock_irqrestore(&dev->lock, flags);
driver->unbind(&dev->gadget);
dev->gadget.dev.driver = NULL;
dev->driver = NULL;
/* set SD */
tmp = readl(&dev->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_SD);
writel(tmp, &dev->regs->ctl);
DBG(dev, "%s: unregistered\n", driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/* Clear pending NAK bits */
static void udc_process_cnak_queue(struct udc *dev)
{
u32 tmp;
u32 reg;
/* check epin's */
DBG(dev, "CNAK pending queue processing\n");
for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
if (cnak_pending & (1 << tmp)) {
DBG(dev, "CNAK pending for ep%d\n", tmp);
/* clear NAK by writing CNAK */
reg = readl(&dev->ep[tmp].regs->ctl);
reg |= AMD_BIT(UDC_EPCTL_CNAK);
writel(reg, &dev->ep[tmp].regs->ctl);
dev->ep[tmp].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
}
}
/* ... and ep0out */
if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
/* clear NAK by writing CNAK */
reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
reg |= AMD_BIT(UDC_EPCTL_CNAK);
writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
dev->ep[UDC_EP0OUT_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
dev->ep[UDC_EP0OUT_IX].num);
}
}
/* Enabling RX DMA after setup packet */
static void udc_ep0_set_rde(struct udc *dev)
{
if (use_dma) {
/*
* only enable RXDMA when no data endpoint enabled
* or data is queued
*/
if (!dev->data_ep_enabled || dev->data_ep_queued) {
udc_set_rde(dev);
} else {
/*
* setup timer for enabling RDE (to not enable
* RXFIFO DMA for data endpoints to early)
*/
if (set_rde != 0 && !timer_pending(&udc_timer)) {
udc_timer.expires =
jiffies + HZ/UDC_RDE_TIMER_DIV;
set_rde = 1;
if (!stop_timer) {
add_timer(&udc_timer);
}
}
}
}
}
/* Interrupt handler for data OUT traffic */
static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
{
irqreturn_t ret_val = IRQ_NONE;
u32 tmp;
struct udc_ep *ep;
struct udc_request *req;
unsigned int count;
struct udc_data_dma *td = NULL;
unsigned dma_done;
VDBG(dev, "ep%d irq\n", ep_ix);
ep = &dev->ep[ep_ix];
tmp = readl(&ep->regs->sts);
if (use_dma) {
/* BNA event ? */
if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
ep->num, readl(&ep->regs->desptr));
/* clear BNA */
writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
if (!ep->cancel_transfer)
ep->bna_occurred = 1;
else
ep->cancel_transfer = 0;
ret_val = IRQ_HANDLED;
goto finished;
}
}
/* HE event ? */
if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
/* clear HE */
writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
ret_val = IRQ_HANDLED;
goto finished;
}
if (!list_empty(&ep->queue)) {
/* next request */
req = list_entry(ep->queue.next,
struct udc_request, queue);
} else {
req = NULL;
udc_rxfifo_pending = 1;
}
VDBG(dev, "req = %p\n", req);
/* fifo mode */
if (!use_dma) {
/* read fifo */
if (req && udc_rxfifo_read(ep, req)) {
ret_val = IRQ_HANDLED;
/* finish */
complete_req(ep, req, 0);
/* next request */
if (!list_empty(&ep->queue) && !ep->halted) {
req = list_entry(ep->queue.next,
struct udc_request, queue);
} else
req = NULL;
}
/* DMA */
} else if (!ep->cancel_transfer && req != NULL) {
ret_val = IRQ_HANDLED;
/* check for DMA done */
if (!use_dma_ppb) {
dma_done = AMD_GETBITS(req->td_data->status,
UDC_DMA_OUT_STS_BS);
/* packet per buffer mode - rx bytes */
} else {
/*
* if BNA occurred then recover desc. from
* BNA dummy desc.
*/
if (ep->bna_occurred) {
VDBG(dev, "Recover desc. from BNA dummy\n");
memcpy(req->td_data, ep->bna_dummy_req->td_data,
sizeof(struct udc_data_dma));
ep->bna_occurred = 0;
udc_init_bna_dummy(ep->req);
}
td = udc_get_last_dma_desc(req);
dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
}
if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
/* buffer fill mode - rx bytes */
if (!use_dma_ppb) {
/* received number bytes */
count = AMD_GETBITS(req->td_data->status,
UDC_DMA_OUT_STS_RXBYTES);
VDBG(dev, "rx bytes=%u\n", count);
/* packet per buffer mode - rx bytes */
} else {
VDBG(dev, "req->td_data=%p\n", req->td_data);
VDBG(dev, "last desc = %p\n", td);
/* received number bytes */
if (use_dma_ppb_du) {
/* every desc. counts bytes */
count = udc_get_ppbdu_rxbytes(req);
} else {
/* last desc. counts bytes */
count = AMD_GETBITS(td->status,
UDC_DMA_OUT_STS_RXBYTES);
if (!count && req->req.length
== UDC_DMA_MAXPACKET) {
/*
* on 64k packets the RXBYTES
* field is zero
*/
count = UDC_DMA_MAXPACKET;
}
}
VDBG(dev, "last desc rx bytes=%u\n", count);
}
tmp = req->req.length - req->req.actual;
if (count > tmp) {
if ((tmp % ep->ep.maxpacket) != 0) {
DBG(dev, "%s: rx %db, space=%db\n",
ep->ep.name, count, tmp);
req->req.status = -EOVERFLOW;
}
count = tmp;
}
req->req.actual += count;
req->dma_going = 0;
/* complete request */
complete_req(ep, req, 0);
/* next request */
if (!list_empty(&ep->queue) && !ep->halted) {
req = list_entry(ep->queue.next,
struct udc_request,
queue);
/*
* DMA may be already started by udc_queue()
* called by gadget drivers completion
* routine. This happens when queue
* holds one request only.
*/
if (req->dma_going == 0) {
/* next dma */
if (prep_dma(ep, req, GFP_ATOMIC) != 0)
goto finished;
/* write desc pointer */
writel(req->td_phys,
&ep->regs->desptr);
req->dma_going = 1;
/* enable DMA */
udc_set_rde(dev);
}
} else {
/*
* implant BNA dummy descriptor to allow
* RXFIFO opening by RDE
*/
if (ep->bna_dummy_req) {
/* write desc pointer */
writel(ep->bna_dummy_req->td_phys,
&ep->regs->desptr);
ep->bna_occurred = 0;
}
/*
* schedule timer for setting RDE if queue
* remains empty to allow ep0 packets pass
* through
*/
if (set_rde != 0
&& !timer_pending(&udc_timer)) {
udc_timer.expires =
jiffies
+ HZ*UDC_RDE_TIMER_SECONDS;
set_rde = 1;
if (!stop_timer) {
add_timer(&udc_timer);
}
}
if (ep->num != UDC_EP0OUT_IX)
dev->data_ep_queued = 0;
}
} else {
/*
* RX DMA must be reenabled for each desc in PPBDU mode
* and must be enabled for PPBNDU mode in case of BNA
*/
udc_set_rde(dev);
}
} else if (ep->cancel_transfer) {
ret_val = IRQ_HANDLED;
ep->cancel_transfer = 0;
}
/* check pending CNAKS */
if (cnak_pending) {
/* CNAk processing when rxfifo empty only */
if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
udc_process_cnak_queue(dev);
}
}
/* clear OUT bits in ep status */
writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
finished:
return ret_val;
}
/* Interrupt handler for data IN traffic */
static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
{
irqreturn_t ret_val = IRQ_NONE;
u32 tmp;
u32 epsts;
struct udc_ep *ep;
struct udc_request *req;
struct udc_data_dma *td;
unsigned dma_done;
unsigned len;
ep = &dev->ep[ep_ix];
epsts = readl(&ep->regs->sts);
if (use_dma) {
/* BNA ? */
if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
dev_err(&dev->pdev->dev,
"BNA ep%din occured - DESPTR = %08lx \n",
ep->num,
(unsigned long) readl(&ep->regs->desptr));
/* clear BNA */
writel(epsts, &ep->regs->sts);
ret_val = IRQ_HANDLED;
goto finished;
}
}
/* HE event ? */
if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
dev_err(&dev->pdev->dev,
"HE ep%dn occured - DESPTR = %08lx \n",
ep->num, (unsigned long) readl(&ep->regs->desptr));
/* clear HE */
writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
ret_val = IRQ_HANDLED;
goto finished;
}
/* DMA completion */
if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
VDBG(dev, "TDC set- completion\n");
ret_val = IRQ_HANDLED;
if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct udc_request, queue);
if (req) {
/*
* length bytes transfered
* check dma done of last desc. in PPBDU mode
*/
if (use_dma_ppb_du) {
td = udc_get_last_dma_desc(req);
if (td) {
dma_done =
AMD_GETBITS(td->status,
UDC_DMA_IN_STS_BS);
/* don't care DMA done */
req->req.actual =
req->req.length;
}
} else {
/* assume all bytes transferred */
req->req.actual = req->req.length;
}
if (req->req.actual == req->req.length) {
/* complete req */
complete_req(ep, req, 0);
req->dma_going = 0;
/* further request available ? */
if (list_empty(&ep->queue)) {
/* disable interrupt */
tmp = readl(
&dev->regs->ep_irqmsk);
tmp |= AMD_BIT(ep->num);
writel(tmp,
&dev->regs->ep_irqmsk);
}
}
}
}
ep->cancel_transfer = 0;
}
/*
* status reg has IN bit set and TDC not set (if TDC was handled,
* IN must not be handled (UDC defect) ?
*/
if ((epsts & AMD_BIT(UDC_EPSTS_IN))
&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
ret_val = IRQ_HANDLED;
if (!list_empty(&ep->queue)) {
/* next request */
req = list_entry(ep->queue.next,
struct udc_request, queue);
/* FIFO mode */
if (!use_dma) {
/* write fifo */
udc_txfifo_write(ep, &req->req);
len = req->req.length - req->req.actual;
if (len > ep->ep.maxpacket)
len = ep->ep.maxpacket;
req->req.actual += len;
if (req->req.actual == req->req.length
|| (len != ep->ep.maxpacket)) {
/* complete req */
complete_req(ep, req, 0);
}
/* DMA */
} else if (req && !req->dma_going) {
VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
req, req->td_data);
if (req->td_data) {
req->dma_going = 1;
/*
* unset L bit of first desc.
* for chain
*/
if (use_dma_ppb && req->req.length >
ep->ep.maxpacket) {
req->td_data->status &=
AMD_CLEAR_BIT(
UDC_DMA_IN_STS_L);
}
/* write desc pointer */
writel(req->td_phys, &ep->regs->desptr);
/* set HOST READY */
req->td_data->status =
AMD_ADDBITS(
req->td_data->status,
UDC_DMA_IN_STS_BS_HOST_READY,
UDC_DMA_IN_STS_BS);
/* set poll demand bit */
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_P);
writel(tmp, &ep->regs->ctl);
}
}
}
}
/* clear status bits */
writel(epsts, &ep->regs->sts);
finished:
return ret_val;
}
/* Interrupt handler for Control OUT traffic */
static irqreturn_t udc_control_out_isr(struct udc *dev)
__releases(dev->lock)
__acquires(dev->lock)
{
irqreturn_t ret_val = IRQ_NONE;
u32 tmp;
int setup_supported;
u32 count;
int set = 0;
struct udc_ep *ep;
struct udc_ep *ep_tmp;
ep = &dev->ep[UDC_EP0OUT_IX];
/* clear irq */
writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
/* check BNA and clear if set */
if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
VDBG(dev, "ep0: BNA set\n");
writel(AMD_BIT(UDC_EPSTS_BNA),
&dev->ep[UDC_EP0OUT_IX].regs->sts);
ep->bna_occurred = 1;
ret_val = IRQ_HANDLED;
goto finished;
}
/* type of data: SETUP or DATA 0 bytes */
tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
VDBG(dev, "data_typ = %x\n", tmp);
/* setup data */
if (tmp == UDC_EPSTS_OUT_SETUP) {
ret_val = IRQ_HANDLED;
ep->dev->stall_ep0in = 0;
dev->waiting_zlp_ack_ep0in = 0;
/* set NAK for EP0_IN */
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_SNAK);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
dev->ep[UDC_EP0IN_IX].naking = 1;
/* get setup data */
if (use_dma) {
/* clear OUT bits in ep status */
writel(UDC_EPSTS_OUT_CLEAR,
&dev->ep[UDC_EP0OUT_IX].regs->sts);
setup_data.data[0] =
dev->ep[UDC_EP0OUT_IX].td_stp->data12;
setup_data.data[1] =
dev->ep[UDC_EP0OUT_IX].td_stp->data34;
/* set HOST READY */
dev->ep[UDC_EP0OUT_IX].td_stp->status =
UDC_DMA_STP_STS_BS_HOST_READY;
} else {
/* read fifo */
udc_rxfifo_read_dwords(dev, setup_data.data, 2);
}
/* determine direction of control data */
if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
/* enable RDE */
udc_ep0_set_rde(dev);
set = 0;
} else {
dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
/*
* implant BNA dummy descriptor to allow RXFIFO opening
* by RDE
*/
if (ep->bna_dummy_req) {
/* write desc pointer */
writel(ep->bna_dummy_req->td_phys,
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
ep->bna_occurred = 0;
}
set = 1;
dev->ep[UDC_EP0OUT_IX].naking = 1;
/*
* setup timer for enabling RDE (to not enable
* RXFIFO DMA for data to early)
*/
set_rde = 1;
if (!timer_pending(&udc_timer)) {
udc_timer.expires = jiffies +
HZ/UDC_RDE_TIMER_DIV;
if (!stop_timer) {
add_timer(&udc_timer);
}
}
}
/*
* mass storage reset must be processed here because
* next packet may be a CLEAR_FEATURE HALT which would not
* clear the stall bit when no STALL handshake was received
* before (autostall can cause this)
*/
if (setup_data.data[0] == UDC_MSCRES_DWORD0
&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
DBG(dev, "MSC Reset\n");
/*
* clear stall bits
* only one IN and OUT endpoints are handled
*/
ep_tmp = &udc->ep[UDC_EPIN_IX];
udc_set_halt(&ep_tmp->ep, 0);
ep_tmp = &udc->ep[UDC_EPOUT_IX];
udc_set_halt(&ep_tmp->ep, 0);
}
/* call gadget with setup data received */
spin_unlock(&dev->lock);
setup_supported = dev->driver->setup(&dev->gadget,
&setup_data.request);
spin_lock(&dev->lock);
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
/* ep0 in returns data (not zlp) on IN phase */
if (setup_supported >= 0 && setup_supported <
UDC_EP0IN_MAXPACKET) {
/* clear NAK by writing CNAK in EP0_IN */
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
dev->ep[UDC_EP0IN_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
/* if unsupported request then stall */
} else if (setup_supported < 0) {
tmp |= AMD_BIT(UDC_EPCTL_S);
writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
} else
dev->waiting_zlp_ack_ep0in = 1;
/* clear NAK by writing CNAK in EP0_OUT */
if (!set) {
tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_CNAK);
writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
dev->ep[UDC_EP0OUT_IX].naking = 0;
UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
}
if (!use_dma) {
/* clear OUT bits in ep status */
writel(UDC_EPSTS_OUT_CLEAR,
&dev->ep[UDC_EP0OUT_IX].regs->sts);
}
/* data packet 0 bytes */
} else if (tmp == UDC_EPSTS_OUT_DATA) {
/* clear OUT bits in ep status */
writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
/* get setup data: only 0 packet */
if (use_dma) {
/* no req if 0 packet, just reactivate */
if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
VDBG(dev, "ZLP\n");
/* set HOST READY */
dev->ep[UDC_EP0OUT_IX].td->status =
AMD_ADDBITS(
dev->ep[UDC_EP0OUT_IX].td->status,
UDC_DMA_OUT_STS_BS_HOST_READY,
UDC_DMA_OUT_STS_BS);
/* enable RDE */
udc_ep0_set_rde(dev);
ret_val = IRQ_HANDLED;
} else {
/* control write */
ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
/* re-program desc. pointer for possible ZLPs */
writel(dev->ep[UDC_EP0OUT_IX].td_phys,
&dev->ep[UDC_EP0OUT_IX].regs->desptr);
/* enable RDE */
udc_ep0_set_rde(dev);
}
} else {
/* received number bytes */
count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
/* out data for fifo mode not working */
count = 0;
/* 0 packet or real data ? */
if (count != 0) {
ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
} else {
/* dummy read confirm */
readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
ret_val = IRQ_HANDLED;
}
}
}
/* check pending CNAKS */
if (cnak_pending) {
/* CNAk processing when rxfifo empty only */
if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
udc_process_cnak_queue(dev);
}
}
finished:
return ret_val;
}
/* Interrupt handler for Control IN traffic */
static irqreturn_t udc_control_in_isr(struct udc *dev)
{
irqreturn_t ret_val = IRQ_NONE;
u32 tmp;
struct udc_ep *ep;
struct udc_request *req;
unsigned len;
ep = &dev->ep[UDC_EP0IN_IX];
/* clear irq */
writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
/* DMA completion */
if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
VDBG(dev, "isr: TDC clear \n");
ret_val = IRQ_HANDLED;
/* clear TDC bit */
writel(AMD_BIT(UDC_EPSTS_TDC),
&dev->ep[UDC_EP0IN_IX].regs->sts);
/* status reg has IN bit set ? */
} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
ret_val = IRQ_HANDLED;
if (ep->dma) {
/* clear IN bit */
writel(AMD_BIT(UDC_EPSTS_IN),
&dev->ep[UDC_EP0IN_IX].regs->sts);
}
if (dev->stall_ep0in) {
DBG(dev, "stall ep0in\n");
/* halt ep0in */
tmp = readl(&ep->regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_S);
writel(tmp, &ep->regs->ctl);
} else {
if (!list_empty(&ep->queue)) {
/* next request */
req = list_entry(ep->queue.next,
struct udc_request, queue);
if (ep->dma) {
/* write desc pointer */
writel(req->td_phys, &ep->regs->desptr);
/* set HOST READY */
req->td_data->status =
AMD_ADDBITS(
req->td_data->status,
UDC_DMA_STP_STS_BS_HOST_READY,
UDC_DMA_STP_STS_BS);
/* set poll demand bit */
tmp =
readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
tmp |= AMD_BIT(UDC_EPCTL_P);
writel(tmp,
&dev->ep[UDC_EP0IN_IX].regs->ctl);
/* all bytes will be transferred */
req->req.actual = req->req.length;
/* complete req */
complete_req(ep, req, 0);
} else {
/* write fifo */
udc_txfifo_write(ep, &req->req);
/* lengh bytes transfered */
len = req->req.length - req->req.actual;
if (len > ep->ep.maxpacket)
len = ep->ep.maxpacket;
req->req.actual += len;
if (req->req.actual == req->req.length
|| (len != ep->ep.maxpacket)) {
/* complete req */
complete_req(ep, req, 0);
}
}
}
}
ep->halted = 0;
dev->stall_ep0in = 0;
if (!ep->dma) {
/* clear IN bit */
writel(AMD_BIT(UDC_EPSTS_IN),
&dev->ep[UDC_EP0IN_IX].regs->sts);
}
}
return ret_val;
}
/* Interrupt handler for global device events */
static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
__releases(dev->lock)
__acquires(dev->lock)
{
irqreturn_t ret_val = IRQ_NONE;
u32 tmp;
u32 cfg;
struct udc_ep *ep;
u16 i;
u8 udc_csr_epix;
/* SET_CONFIG irq ? */
if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
ret_val = IRQ_HANDLED;
/* read config value */
tmp = readl(&dev->regs->sts);
cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
dev->cur_config = cfg;
dev->set_cfg_not_acked = 1;
/* make usb request for gadget driver */
memset(&setup_data, 0 , sizeof(union udc_setup_data));
setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
setup_data.request.wValue = cpu_to_le16(dev->cur_config);
/* programm the NE registers */
for (i = 0; i < UDC_EP_NUM; i++) {
ep = &dev->ep[i];
if (ep->in) {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num;
/* OUT ep */
} else {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
}
tmp = readl(&dev->csr->ne[udc_csr_epix]);
/* ep cfg */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
UDC_CSR_NE_CFG);
/* write reg */
writel(tmp, &dev->csr->ne[udc_csr_epix]);
/* clear stall bits */
ep->halted = 0;
tmp = readl(&ep->regs->ctl);
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
writel(tmp, &ep->regs->ctl);
}
/* call gadget zero with setup data received */
spin_unlock(&dev->lock);
tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
spin_lock(&dev->lock);
} /* SET_INTERFACE ? */
if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
ret_val = IRQ_HANDLED;
dev->set_cfg_not_acked = 1;
/* read interface and alt setting values */
tmp = readl(&dev->regs->sts);
dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
/* make usb request for gadget driver */
memset(&setup_data, 0 , sizeof(union udc_setup_data));
setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
setup_data.request.bRequestType = USB_RECIP_INTERFACE;
setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
dev->cur_alt, dev->cur_intf);
/* programm the NE registers */
for (i = 0; i < UDC_EP_NUM; i++) {
ep = &dev->ep[i];
if (ep->in) {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num;
/* OUT ep */
} else {
/* ep ix in UDC CSR register space */
udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
}
/* UDC CSR reg */
/* set ep values */
tmp = readl(&dev->csr->ne[udc_csr_epix]);
/* ep interface */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
UDC_CSR_NE_INTF);
/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
/* ep alt */
tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
UDC_CSR_NE_ALT);
/* write reg */
writel(tmp, &dev->csr->ne[udc_csr_epix]);
/* clear stall bits */
ep->halted = 0;
tmp = readl(&ep->regs->ctl);
tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
writel(tmp, &ep->regs->ctl);
}
/* call gadget zero with setup data received */
spin_unlock(&dev->lock);
tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
spin_lock(&dev->lock);
} /* USB reset */
if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
DBG(dev, "USB Reset interrupt\n");
ret_val = IRQ_HANDLED;
/* allow soft reset when suspend occurs */
soft_reset_occured = 0;
dev->waiting_zlp_ack_ep0in = 0;
dev->set_cfg_not_acked = 0;
/* mask not needed interrupts */
udc_mask_unused_interrupts(dev);
/* call gadget to resume and reset configs etc. */
spin_unlock(&dev->lock);
if (dev->sys_suspended && dev->driver->resume) {
dev->driver->resume(&dev->gadget);
dev->sys_suspended = 0;
}
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
/* disable ep0 to empty req queue */
empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
/* soft reset when rxfifo not empty */
tmp = readl(&dev->regs->sts);
if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
&& !soft_reset_after_usbreset_occured) {
udc_soft_reset(dev);
soft_reset_after_usbreset_occured++;
}
/*
* DMA reset to kill potential old DMA hw hang,
* POLL bit is already reset by ep_init() through
* disconnect()
*/
DBG(dev, "DMA machine reset\n");
tmp = readl(&dev->regs->cfg);
writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
writel(tmp, &dev->regs->cfg);
/* put into initial config */
udc_basic_init(dev);
/* enable device setup interrupts */
udc_enable_dev_setup_interrupts(dev);
/* enable suspend interrupt */
tmp = readl(&dev->regs->irqmsk);
tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
writel(tmp, &dev->regs->irqmsk);
} /* USB suspend */
if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
DBG(dev, "USB Suspend interrupt\n");
ret_val = IRQ_HANDLED;
if (dev->driver->suspend) {
spin_unlock(&dev->lock);
dev->sys_suspended = 1;
dev->driver->suspend(&dev->gadget);
spin_lock(&dev->lock);
}
} /* new speed ? */
if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
DBG(dev, "ENUM interrupt\n");
ret_val = IRQ_HANDLED;
soft_reset_after_usbreset_occured = 0;
/* disable ep0 to empty req queue */
empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
/* link up all endpoints */
udc_setup_endpoints(dev);
if (dev->gadget.speed == USB_SPEED_HIGH) {
dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
"high");
} else if (dev->gadget.speed == USB_SPEED_FULL) {
dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
"full");
}
/* init ep 0 */
activate_control_endpoints(dev);
/* enable ep0 interrupts */
udc_enable_ep0_interrupts(dev);
}
/* session valid change interrupt */
if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
DBG(dev, "USB SVC interrupt\n");
ret_val = IRQ_HANDLED;
/* check that session is not valid to detect disconnect */
tmp = readl(&dev->regs->sts);
if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
/* disable suspend interrupt */
tmp = readl(&dev->regs->irqmsk);
tmp |= AMD_BIT(UDC_DEVINT_US);
writel(tmp, &dev->regs->irqmsk);
DBG(dev, "USB Disconnect (session valid low)\n");
/* cleanup on disconnect */
usb_disconnect(udc);
}
}
return ret_val;
}
/* Interrupt Service Routine, see Linux Kernel Doc for parameters */
static irqreturn_t udc_irq(int irq, void *pdev)
{
struct udc *dev = pdev;
u32 reg;
u16 i;
u32 ep_irq;
irqreturn_t ret_val = IRQ_NONE;
spin_lock(&dev->lock);
/* check for ep irq */
reg = readl(&dev->regs->ep_irqsts);
if (reg) {
if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
ret_val |= udc_control_out_isr(dev);
if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
ret_val |= udc_control_in_isr(dev);
/*
* data endpoint
* iterate ep's
*/
for (i = 1; i < UDC_EP_NUM; i++) {
ep_irq = 1 << i;
if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
continue;
/* clear irq status */
writel(ep_irq, &dev->regs->ep_irqsts);
/* irq for out ep ? */
if (i > UDC_EPIN_NUM)
ret_val |= udc_data_out_isr(dev, i);
else
ret_val |= udc_data_in_isr(dev, i);
}
}
/* check for dev irq */
reg = readl(&dev->regs->irqsts);
if (reg) {
/* clear irq */
writel(reg, &dev->regs->irqsts);
ret_val |= udc_dev_isr(dev, reg);
}
spin_unlock(&dev->lock);
return ret_val;
}
/* Tears down device */
static void gadget_release(struct device *pdev)
{
struct amd5536udc *dev = dev_get_drvdata(pdev);
kfree(dev);
}
/* Cleanup on device remove */
static void udc_remove(struct udc *dev)
{
/* remove timer */
stop_timer++;
if (timer_pending(&udc_timer))
wait_for_completion(&on_exit);
if (udc_timer.data)
del_timer_sync(&udc_timer);
/* remove pollstall timer */
stop_pollstall_timer++;
if (timer_pending(&udc_pollstall_timer))
wait_for_completion(&on_pollstall_exit);
if (udc_pollstall_timer.data)
del_timer_sync(&udc_pollstall_timer);
udc = NULL;
}
/* Reset all pci context */
static void udc_pci_remove(struct pci_dev *pdev)
{
struct udc *dev;
dev = pci_get_drvdata(pdev);
/* gadget driver must not be registered */
BUG_ON(dev->driver != NULL);
/* dma pool cleanup */
if (dev->data_requests)
pci_pool_destroy(dev->data_requests);
if (dev->stp_requests) {
/* cleanup DMA desc's for ep0in */
pci_pool_free(dev->stp_requests,
dev->ep[UDC_EP0OUT_IX].td_stp,
dev->ep[UDC_EP0OUT_IX].td_stp_dma);
pci_pool_free(dev->stp_requests,
dev->ep[UDC_EP0OUT_IX].td,
dev->ep[UDC_EP0OUT_IX].td_phys);
pci_pool_destroy(dev->stp_requests);
}
/* reset controller */
writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
if (dev->irq_registered)
free_irq(pdev->irq, dev);
if (dev->regs)
iounmap(dev->regs);
if (dev->mem_region)
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (dev->active)
pci_disable_device(pdev);
device_unregister(&dev->gadget.dev);
pci_set_drvdata(pdev, NULL);
udc_remove(dev);
}
/* create dma pools on init */
static int init_dma_pools(struct udc *dev)
{
struct udc_stp_dma *td_stp;
struct udc_data_dma *td_data;
int retval;
/* consistent DMA mode setting ? */
if (use_dma_ppb) {
use_dma_bufferfill_mode = 0;
} else {
use_dma_ppb_du = 0;
use_dma_bufferfill_mode = 1;
}
/* DMA setup */
dev->data_requests = dma_pool_create("data_requests", NULL,
sizeof(struct udc_data_dma), 0, 0);
if (!dev->data_requests) {
DBG(dev, "can't get request data pool\n");
retval = -ENOMEM;
goto finished;
}
/* EP0 in dma regs = dev control regs */
dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
/* dma desc for setup data */
dev->stp_requests = dma_pool_create("setup requests", NULL,
sizeof(struct udc_stp_dma), 0, 0);
if (!dev->stp_requests) {
DBG(dev, "can't get stp request pool\n");
retval = -ENOMEM;
goto finished;
}
/* setup */
td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
if (td_stp == NULL) {
retval = -ENOMEM;
goto finished;
}
dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
/* data: 0 packets !? */
td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
&dev->ep[UDC_EP0OUT_IX].td_phys);
if (td_data == NULL) {
retval = -ENOMEM;
goto finished;
}
dev->ep[UDC_EP0OUT_IX].td = td_data;
return 0;
finished:
return retval;
}
/* Called by pci bus driver to init pci context */
static int udc_pci_probe(
struct pci_dev *pdev,
const struct pci_device_id *id
)
{
struct udc *dev;
unsigned long resource;
unsigned long len;
int retval = 0;
/* one udc only */
if (udc) {
dev_dbg(&pdev->dev, "already probed\n");
return -EBUSY;
}
/* init */
dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
if (!dev) {
retval = -ENOMEM;
goto finished;
}
/* pci setup */
if (pci_enable_device(pdev) < 0) {
kfree(dev);
dev = NULL;
retval = -ENODEV;
goto finished;
}
dev->active = 1;
/* PCI resource allocation */
resource = pci_resource_start(pdev, 0);
len = pci_resource_len(pdev, 0);
if (!request_mem_region(resource, len, name)) {
dev_dbg(&pdev->dev, "pci device used already\n");
kfree(dev);
dev = NULL;
retval = -EBUSY;
goto finished;
}
dev->mem_region = 1;
dev->virt_addr = ioremap_nocache(resource, len);
if (dev->virt_addr == NULL) {
dev_dbg(&pdev->dev, "start address cannot be mapped\n");
kfree(dev);
dev = NULL;
retval = -EFAULT;
goto finished;
}
if (!pdev->irq) {
dev_err(&dev->pdev->dev, "irq not set\n");
kfree(dev);
dev = NULL;
retval = -ENODEV;
goto finished;
}
if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
kfree(dev);
dev = NULL;
retval = -EBUSY;
goto finished;
}
dev->irq_registered = 1;
pci_set_drvdata(pdev, dev);
/* chip revision for Hs AMD5536 */
dev->chiprev = pdev->revision;
pci_set_master(pdev);
pci_try_set_mwi(pdev);
/* init dma pools */
if (use_dma) {
retval = init_dma_pools(dev);
if (retval != 0)
goto finished;
}
dev->phys_addr = resource;
dev->irq = pdev->irq;
dev->pdev = pdev;
dev->gadget.dev.parent = &pdev->dev;
dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
/* general probing */
if (udc_probe(dev) == 0)
return 0;
finished:
if (dev)
udc_pci_remove(pdev);
return retval;
}
/* general probe */
static int udc_probe(struct udc *dev)
{
char tmp[128];
u32 reg;
int retval;
/* mark timer as not initialized */
udc_timer.data = 0;
udc_pollstall_timer.data = 0;
/* device struct setup */
spin_lock_init(&dev->lock);
dev->gadget.ops = &udc_ops;
strcpy(dev->gadget.dev.bus_id, "gadget");
dev->gadget.dev.release = gadget_release;
dev->gadget.name = name;
dev->gadget.name = name;
dev->gadget.is_dualspeed = 1;
/* udc csr registers base */
dev->csr = dev->virt_addr + UDC_CSR_ADDR;
/* dev registers base */
dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
/* ep registers base */
dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
/* fifo's base */
dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
/* init registers, interrupts, ... */
startup_registers(dev);
dev_info(&dev->pdev->dev, "%s\n", mod_desc);
snprintf(tmp, sizeof tmp, "%d", dev->irq);
dev_info(&dev->pdev->dev,
"irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
tmp, dev->phys_addr, dev->chiprev,
(dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
strcpy(tmp, UDC_DRIVER_VERSION_STRING);
if (dev->chiprev == UDC_HSA0_REV) {
dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
retval = -ENODEV;
goto finished;
}
dev_info(&dev->pdev->dev,
"driver version: %s(for Geode5536 B1)\n", tmp);
udc = dev;
retval = device_register(&dev->gadget.dev);
if (retval)
goto finished;
/* timer init */
init_timer(&udc_timer);
udc_timer.function = udc_timer_function;
udc_timer.data = 1;
/* timer pollstall init */
init_timer(&udc_pollstall_timer);
udc_pollstall_timer.function = udc_pollstall_timer_function;
udc_pollstall_timer.data = 1;
/* set SD */
reg = readl(&dev->regs->ctl);
reg |= AMD_BIT(UDC_DEVCTL_SD);
writel(reg, &dev->regs->ctl);
/* print dev register info */
print_regs(dev);
return 0;
finished:
return retval;
}
/* Initiates a remote wakeup */
static int udc_remote_wakeup(struct udc *dev)
{
unsigned long flags;
u32 tmp;
DBG(dev, "UDC initiates remote wakeup\n");
spin_lock_irqsave(&dev->lock, flags);
tmp = readl(&dev->regs->ctl);
tmp |= AMD_BIT(UDC_DEVCTL_RES);
writel(tmp, &dev->regs->ctl);
tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
writel(tmp, &dev->regs->ctl);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/* PCI device parameters */
static const struct pci_device_id pci_id[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
.class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
.class_mask = 0xffffffff,
},
{},
};
MODULE_DEVICE_TABLE(pci, pci_id);
/* PCI functions */
static struct pci_driver udc_pci_driver = {
.name = (char *) name,
.id_table = pci_id,
.probe = udc_pci_probe,
.remove = udc_pci_remove,
};
/* Inits driver */
static int __init init(void)
{
return pci_register_driver(&udc_pci_driver);
}
module_init(init);
/* Cleans driver */
static void __exit cleanup(void)
{
pci_unregister_driver(&udc_pci_driver);
}
module_exit(cleanup);
MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
MODULE_AUTHOR("Thomas Dahlmann");
MODULE_LICENSE("GPL");