OpenCloudOS-Kernel/net/sched/cls_flow.c

744 lines
16 KiB
C
Raw Normal View History

/*
* net/sched/cls_flow.c Generic flow classifier
*
* Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#include <net/netfilter/nf_conntrack.h>
#endif
struct flow_head {
struct list_head filters;
};
struct flow_filter {
struct list_head list;
struct tcf_exts exts;
struct tcf_ematch_tree ematches;
struct timer_list perturb_timer;
u32 perturb_period;
u32 handle;
u32 nkeys;
u32 keymask;
u32 mode;
u32 mask;
u32 xor;
u32 rshift;
u32 addend;
u32 divisor;
u32 baseclass;
u32 hashrnd;
};
static const struct tcf_ext_map flow_ext_map = {
.action = TCA_FLOW_ACT,
.police = TCA_FLOW_POLICE,
};
static inline u32 addr_fold(void *addr)
{
unsigned long a = (unsigned long)addr;
return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}
static u32 flow_get_src(const struct sk_buff *skb, int nhoff)
{
__be32 *data = NULL, hdata;
switch (skb->protocol) {
case htons(ETH_P_IP):
data = skb_header_pointer(skb,
nhoff + offsetof(struct iphdr,
saddr),
4, &hdata);
break;
case htons(ETH_P_IPV6):
data = skb_header_pointer(skb,
nhoff + offsetof(struct ipv6hdr,
saddr.s6_addr32[3]),
4, &hdata);
break;
}
if (data)
return ntohl(*data);
return addr_fold(skb->sk);
}
static u32 flow_get_dst(const struct sk_buff *skb, int nhoff)
{
__be32 *data = NULL, hdata;
switch (skb->protocol) {
case htons(ETH_P_IP):
data = skb_header_pointer(skb,
nhoff + offsetof(struct iphdr,
daddr),
4, &hdata);
break;
case htons(ETH_P_IPV6):
data = skb_header_pointer(skb,
nhoff + offsetof(struct ipv6hdr,
daddr.s6_addr32[3]),
4, &hdata);
break;
}
if (data)
return ntohl(*data);
return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
}
static u32 flow_get_proto(const struct sk_buff *skb, int nhoff)
{
__u8 *data = NULL, hdata;
switch (skb->protocol) {
case htons(ETH_P_IP):
data = skb_header_pointer(skb,
nhoff + offsetof(struct iphdr,
protocol),
1, &hdata);
break;
case htons(ETH_P_IPV6):
data = skb_header_pointer(skb,
nhoff + offsetof(struct ipv6hdr,
nexthdr),
1, &hdata);
break;
}
if (data)
return *data;
return 0;
}
/* helper function to get either src or dst port */
static __be16 *flow_get_proto_common(const struct sk_buff *skb, int nhoff,
__be16 *_port, int dst)
{
__be16 *port = NULL;
int poff;
switch (skb->protocol) {
case htons(ETH_P_IP): {
struct iphdr *iph, _iph;
iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
if (!iph)
break;
if (ip_is_fragment(iph))
break;
poff = proto_ports_offset(iph->protocol);
if (poff >= 0)
port = skb_header_pointer(skb,
nhoff + iph->ihl * 4 + poff + dst,
sizeof(*_port), _port);
break;
}
case htons(ETH_P_IPV6): {
struct ipv6hdr *iph, _iph;
iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
if (!iph)
break;
poff = proto_ports_offset(iph->nexthdr);
if (poff >= 0)
port = skb_header_pointer(skb,
nhoff + sizeof(*iph) + poff + dst,
sizeof(*_port), _port);
break;
}
}
return port;
}
static u32 flow_get_proto_src(const struct sk_buff *skb, int nhoff)
{
__be16 _port, *port = flow_get_proto_common(skb, nhoff, &_port, 0);
if (port)
return ntohs(*port);
return addr_fold(skb->sk);
}
static u32 flow_get_proto_dst(const struct sk_buff *skb, int nhoff)
{
__be16 _port, *port = flow_get_proto_common(skb, nhoff, &_port, 2);
if (port)
return ntohs(*port);
return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
}
static u32 flow_get_iif(const struct sk_buff *skb)
{
return skb->skb_iif;
}
static u32 flow_get_priority(const struct sk_buff *skb)
{
return skb->priority;
}
static u32 flow_get_mark(const struct sk_buff *skb)
{
return skb->mark;
}
static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
return addr_fold(skb->nfct);
#else
return 0;
#endif
}
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#define CTTUPLE(skb, member) \
({ \
enum ip_conntrack_info ctinfo; \
const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
if (ct == NULL) \
goto fallback; \
ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
})
#else
#define CTTUPLE(skb, member) \
({ \
goto fallback; \
0; \
})
#endif
static u32 flow_get_nfct_src(const struct sk_buff *skb, int nhoff)
{
switch (skb->protocol) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, src.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
}
fallback:
return flow_get_src(skb, nhoff);
}
static u32 flow_get_nfct_dst(const struct sk_buff *skb, int nhoff)
{
switch (skb->protocol) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, dst.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
}
fallback:
return flow_get_dst(skb, nhoff);
}
static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, int nhoff)
{
return ntohs(CTTUPLE(skb, src.u.all));
fallback:
return flow_get_proto_src(skb, nhoff);
}
static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, int nhoff)
{
return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
return flow_get_proto_dst(skb, nhoff);
}
static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
#ifdef CONFIG_IP_ROUTE_CLASSID
if (skb_dst(skb))
return skb_dst(skb)->tclassid;
#endif
return 0;
}
static u32 flow_get_skuid(const struct sk_buff *skb)
{
if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
return skb->sk->sk_socket->file->f_cred->fsuid;
return 0;
}
static u32 flow_get_skgid(const struct sk_buff *skb)
{
if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
return skb->sk->sk_socket->file->f_cred->fsgid;
return 0;
}
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
u16 uninitialized_var(tag);
if (vlan_get_tag(skb, &tag) < 0)
return 0;
return tag & VLAN_VID_MASK;
}
static u32 flow_get_rxhash(struct sk_buff *skb)
{
return skb_get_rxhash(skb);
}
static u32 flow_key_get(struct sk_buff *skb, int key)
{
int nhoff = skb_network_offset(skb);
switch (key) {
case FLOW_KEY_SRC:
return flow_get_src(skb, nhoff);
case FLOW_KEY_DST:
return flow_get_dst(skb, nhoff);
case FLOW_KEY_PROTO:
return flow_get_proto(skb, nhoff);
case FLOW_KEY_PROTO_SRC:
return flow_get_proto_src(skb, nhoff);
case FLOW_KEY_PROTO_DST:
return flow_get_proto_dst(skb, nhoff);
case FLOW_KEY_IIF:
return flow_get_iif(skb);
case FLOW_KEY_PRIORITY:
return flow_get_priority(skb);
case FLOW_KEY_MARK:
return flow_get_mark(skb);
case FLOW_KEY_NFCT:
return flow_get_nfct(skb);
case FLOW_KEY_NFCT_SRC:
return flow_get_nfct_src(skb, nhoff);
case FLOW_KEY_NFCT_DST:
return flow_get_nfct_dst(skb, nhoff);
case FLOW_KEY_NFCT_PROTO_SRC:
return flow_get_nfct_proto_src(skb, nhoff);
case FLOW_KEY_NFCT_PROTO_DST:
return flow_get_nfct_proto_dst(skb, nhoff);
case FLOW_KEY_RTCLASSID:
return flow_get_rtclassid(skb);
case FLOW_KEY_SKUID:
return flow_get_skuid(skb);
case FLOW_KEY_SKGID:
return flow_get_skgid(skb);
case FLOW_KEY_VLAN_TAG:
return flow_get_vlan_tag(skb);
case FLOW_KEY_RXHASH:
return flow_get_rxhash(skb);
default:
WARN_ON(1);
return 0;
}
}
static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct flow_head *head = tp->root;
struct flow_filter *f;
u32 keymask;
u32 classid;
unsigned int n, key;
int r;
list_for_each_entry(f, &head->filters, list) {
u32 keys[f->nkeys];
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
continue;
keymask = f->keymask;
for (n = 0; n < f->nkeys; n++) {
key = ffs(keymask) - 1;
keymask &= ~(1 << key);
keys[n] = flow_key_get(skb, key);
}
if (f->mode == FLOW_MODE_HASH)
classid = jhash2(keys, f->nkeys, f->hashrnd);
else {
classid = keys[0];
classid = (classid & f->mask) ^ f->xor;
classid = (classid >> f->rshift) + f->addend;
}
if (f->divisor)
classid %= f->divisor;
res->class = 0;
res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
r = tcf_exts_exec(skb, &f->exts, res);
if (r < 0)
continue;
return r;
}
return -1;
}
static void flow_perturbation(unsigned long arg)
{
struct flow_filter *f = (struct flow_filter *)arg;
get_random_bytes(&f->hashrnd, 4);
if (f->perturb_period)
mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
[TCA_FLOW_KEYS] = { .type = NLA_U32 },
[TCA_FLOW_MODE] = { .type = NLA_U32 },
[TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
[TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
[TCA_FLOW_ADDEND] = { .type = NLA_U32 },
[TCA_FLOW_MASK] = { .type = NLA_U32 },
[TCA_FLOW_XOR] = { .type = NLA_U32 },
[TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
[TCA_FLOW_ACT] = { .type = NLA_NESTED },
[TCA_FLOW_POLICE] = { .type = NLA_NESTED },
[TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
[TCA_FLOW_PERTURB] = { .type = NLA_U32 },
};
static int flow_change(struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
unsigned long *arg)
{
struct flow_head *head = tp->root;
struct flow_filter *f;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_FLOW_MAX + 1];
struct tcf_exts e;
struct tcf_ematch_tree t;
unsigned int nkeys = 0;
unsigned int perturb_period = 0;
u32 baseclass = 0;
u32 keymask = 0;
u32 mode;
int err;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
if (err < 0)
return err;
if (tb[TCA_FLOW_BASECLASS]) {
baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
if (TC_H_MIN(baseclass) == 0)
return -EINVAL;
}
if (tb[TCA_FLOW_KEYS]) {
keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
nkeys = hweight32(keymask);
if (nkeys == 0)
return -EINVAL;
if (fls(keymask) - 1 > FLOW_KEY_MAX)
return -EOPNOTSUPP;
}
err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
if (err < 0)
return err;
err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
if (err < 0)
goto err1;
f = (struct flow_filter *)*arg;
if (f != NULL) {
err = -EINVAL;
if (f->handle != handle && handle)
goto err2;
mode = f->mode;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (mode == FLOW_MODE_HASH)
perturb_period = f->perturb_period;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
} else {
err = -EINVAL;
if (!handle)
goto err2;
if (!tb[TCA_FLOW_KEYS])
goto err2;
mode = FLOW_MODE_MAP;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
if (TC_H_MAJ(baseclass) == 0)
baseclass = TC_H_MAKE(tp->q->handle, baseclass);
if (TC_H_MIN(baseclass) == 0)
baseclass = TC_H_MAKE(baseclass, 1);
err = -ENOBUFS;
f = kzalloc(sizeof(*f), GFP_KERNEL);
if (f == NULL)
goto err2;
f->handle = handle;
f->mask = ~0U;
get_random_bytes(&f->hashrnd, 4);
f->perturb_timer.function = flow_perturbation;
f->perturb_timer.data = (unsigned long)f;
init_timer_deferrable(&f->perturb_timer);
}
tcf_exts_change(tp, &f->exts, &e);
tcf_em_tree_change(tp, &f->ematches, &t);
tcf_tree_lock(tp);
if (tb[TCA_FLOW_KEYS]) {
f->keymask = keymask;
f->nkeys = nkeys;
}
f->mode = mode;
if (tb[TCA_FLOW_MASK])
f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
if (tb[TCA_FLOW_XOR])
f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
if (tb[TCA_FLOW_RSHIFT])
f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
if (tb[TCA_FLOW_ADDEND])
f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
if (tb[TCA_FLOW_DIVISOR])
f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
if (baseclass)
f->baseclass = baseclass;
f->perturb_period = perturb_period;
del_timer(&f->perturb_timer);
if (perturb_period)
mod_timer(&f->perturb_timer, jiffies + perturb_period);
if (*arg == 0)
list_add_tail(&f->list, &head->filters);
tcf_tree_unlock(tp);
*arg = (unsigned long)f;
return 0;
err2:
tcf_em_tree_destroy(tp, &t);
err1:
tcf_exts_destroy(tp, &e);
return err;
}
static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
{
del_timer_sync(&f->perturb_timer);
tcf_exts_destroy(tp, &f->exts);
tcf_em_tree_destroy(tp, &f->ematches);
kfree(f);
}
static int flow_delete(struct tcf_proto *tp, unsigned long arg)
{
struct flow_filter *f = (struct flow_filter *)arg;
tcf_tree_lock(tp);
list_del(&f->list);
tcf_tree_unlock(tp);
flow_destroy_filter(tp, f);
return 0;
}
static int flow_init(struct tcf_proto *tp)
{
struct flow_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (head == NULL)
return -ENOBUFS;
INIT_LIST_HEAD(&head->filters);
tp->root = head;
return 0;
}
static void flow_destroy(struct tcf_proto *tp)
{
struct flow_head *head = tp->root;
struct flow_filter *f, *next;
list_for_each_entry_safe(f, next, &head->filters, list) {
list_del(&f->list);
flow_destroy_filter(tp, f);
}
kfree(head);
}
static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
{
struct flow_head *head = tp->root;
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list)
if (f->handle == handle)
return (unsigned long)f;
return 0;
}
static void flow_put(struct tcf_proto *tp, unsigned long f)
{
}
static int flow_dump(struct tcf_proto *tp, unsigned long fh,
struct sk_buff *skb, struct tcmsg *t)
{
struct flow_filter *f = (struct flow_filter *)fh;
struct nlattr *nest;
if (f == NULL)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
if (f->mask != ~0 || f->xor != 0) {
NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
}
if (f->rshift)
NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
if (f->addend)
NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
if (f->divisor)
NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
if (f->baseclass)
NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
if (f->perturb_period)
NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
goto nla_put_failure;
#ifdef CONFIG_NET_EMATCH
if (f->ematches.hdr.nmatches &&
tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
goto nla_put_failure;
#endif
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nlmsg_trim(skb, nest);
return -1;
}
static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
struct flow_head *head = tp->root;
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list) {
if (arg->count < arg->skip)
goto skip;
if (arg->fn(tp, (unsigned long)f, arg) < 0) {
arg->stop = 1;
break;
}
skip:
arg->count++;
}
}
static struct tcf_proto_ops cls_flow_ops __read_mostly = {
.kind = "flow",
.classify = flow_classify,
.init = flow_init,
.destroy = flow_destroy,
.change = flow_change,
.delete = flow_delete,
.get = flow_get,
.put = flow_put,
.dump = flow_dump,
.walk = flow_walk,
.owner = THIS_MODULE,
};
static int __init cls_flow_init(void)
{
return register_tcf_proto_ops(&cls_flow_ops);
}
static void __exit cls_flow_exit(void)
{
unregister_tcf_proto_ops(&cls_flow_ops);
}
module_init(cls_flow_init);
module_exit(cls_flow_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("TC flow classifier");