OpenCloudOS-Kernel/include/linux/kprobes.h

524 lines
14 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#ifndef _LINUX_KPROBES_H
#define _LINUX_KPROBES_H
/*
* Kernel Probes (KProbes)
* include/linux/kprobes.h
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes suggestions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
* 2005-May Hien Nguyen <hien@us.ibm.com> and Jim Keniston
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> added function-return probes.
*/
kprobes: move kprobe declarations to asm-generic/kprobes.h Often all is needed is these small helpers, instead of compiler.h or a full kprobes.h. This is important for asm helpers, in fact even some asm/kprobes.h make use of these helpers... instead just keep a generic asm file with helpers useful for asm code with the least amount of clutter as possible. Likewise we need now to also address what to do about this file for both when architectures have CONFIG_HAVE_KPROBES, and when they do not. Then for when architectures have CONFIG_HAVE_KPROBES but have disabled CONFIG_KPROBES. Right now most asm/kprobes.h do not have guards against CONFIG_KPROBES, this means most architecture code cannot include asm/kprobes.h safely. Correct this and add guards for architectures missing them. Additionally provide architectures that not have kprobes support with the default asm-generic solution. This lets us force asm/kprobes.h on the header include/linux/kprobes.h always, but most importantly we can now safely include just asm/kprobes.h on architecture code without bringing the full kitchen sink of header files. Two architectures already provided a guard against CONFIG_KPROBES on its kprobes.h: sh, arch. The rest of the architectures needed gaurds added. We avoid including any not-needed headers on asm/kprobes.h unless kprobes have been enabled. In a subsequent atomic change we can try now to remove compiler.h from include/linux/kprobes.h. During this sweep I've also identified a few architectures defining a common macro needed for both kprobes and ftrace, that of the definition of the breakput instruction up. Some refer to this as BREAKPOINT_INSTRUCTION. This must be kept outside of the #ifdef CONFIG_KPROBES guard. [mcgrof@kernel.org: fix arm64 build] Link: http://lkml.kernel.org/r/CAB=NE6X1WMByuARS4mZ1g9+W=LuVBnMDnh_5zyN0CLADaVh=Jw@mail.gmail.com [sfr@canb.auug.org.au: fixup for kprobes declarations moving] Link: http://lkml.kernel.org/r/20170214165933.13ebd4f4@canb.auug.org.au Link: http://lkml.kernel.org/r/20170203233139.32682-1-mcgrof@kernel.org Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-28 06:26:56 +08:00
#include <linux/compiler.h>
#include <linux/linkage.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <linux/ftrace.h>
#include <linux/refcount.h>
#include <linux/freelist.h>
kprobes: move kprobe declarations to asm-generic/kprobes.h Often all is needed is these small helpers, instead of compiler.h or a full kprobes.h. This is important for asm helpers, in fact even some asm/kprobes.h make use of these helpers... instead just keep a generic asm file with helpers useful for asm code with the least amount of clutter as possible. Likewise we need now to also address what to do about this file for both when architectures have CONFIG_HAVE_KPROBES, and when they do not. Then for when architectures have CONFIG_HAVE_KPROBES but have disabled CONFIG_KPROBES. Right now most asm/kprobes.h do not have guards against CONFIG_KPROBES, this means most architecture code cannot include asm/kprobes.h safely. Correct this and add guards for architectures missing them. Additionally provide architectures that not have kprobes support with the default asm-generic solution. This lets us force asm/kprobes.h on the header include/linux/kprobes.h always, but most importantly we can now safely include just asm/kprobes.h on architecture code without bringing the full kitchen sink of header files. Two architectures already provided a guard against CONFIG_KPROBES on its kprobes.h: sh, arch. The rest of the architectures needed gaurds added. We avoid including any not-needed headers on asm/kprobes.h unless kprobes have been enabled. In a subsequent atomic change we can try now to remove compiler.h from include/linux/kprobes.h. During this sweep I've also identified a few architectures defining a common macro needed for both kprobes and ftrace, that of the definition of the breakput instruction up. Some refer to this as BREAKPOINT_INSTRUCTION. This must be kept outside of the #ifdef CONFIG_KPROBES guard. [mcgrof@kernel.org: fix arm64 build] Link: http://lkml.kernel.org/r/CAB=NE6X1WMByuARS4mZ1g9+W=LuVBnMDnh_5zyN0CLADaVh=Jw@mail.gmail.com [sfr@canb.auug.org.au: fixup for kprobes declarations moving] Link: http://lkml.kernel.org/r/20170214165933.13ebd4f4@canb.auug.org.au Link: http://lkml.kernel.org/r/20170203233139.32682-1-mcgrof@kernel.org Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-28 06:26:56 +08:00
#include <asm/kprobes.h>
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
#ifdef CONFIG_KPROBES
/* kprobe_status settings */
#define KPROBE_HIT_ACTIVE 0x00000001
#define KPROBE_HIT_SS 0x00000002
#define KPROBE_REENTER 0x00000004
#define KPROBE_HIT_SSDONE 0x00000008
#else /* CONFIG_KPROBES */
kprobes: move kprobe declarations to asm-generic/kprobes.h Often all is needed is these small helpers, instead of compiler.h or a full kprobes.h. This is important for asm helpers, in fact even some asm/kprobes.h make use of these helpers... instead just keep a generic asm file with helpers useful for asm code with the least amount of clutter as possible. Likewise we need now to also address what to do about this file for both when architectures have CONFIG_HAVE_KPROBES, and when they do not. Then for when architectures have CONFIG_HAVE_KPROBES but have disabled CONFIG_KPROBES. Right now most asm/kprobes.h do not have guards against CONFIG_KPROBES, this means most architecture code cannot include asm/kprobes.h safely. Correct this and add guards for architectures missing them. Additionally provide architectures that not have kprobes support with the default asm-generic solution. This lets us force asm/kprobes.h on the header include/linux/kprobes.h always, but most importantly we can now safely include just asm/kprobes.h on architecture code without bringing the full kitchen sink of header files. Two architectures already provided a guard against CONFIG_KPROBES on its kprobes.h: sh, arch. The rest of the architectures needed gaurds added. We avoid including any not-needed headers on asm/kprobes.h unless kprobes have been enabled. In a subsequent atomic change we can try now to remove compiler.h from include/linux/kprobes.h. During this sweep I've also identified a few architectures defining a common macro needed for both kprobes and ftrace, that of the definition of the breakput instruction up. Some refer to this as BREAKPOINT_INSTRUCTION. This must be kept outside of the #ifdef CONFIG_KPROBES guard. [mcgrof@kernel.org: fix arm64 build] Link: http://lkml.kernel.org/r/CAB=NE6X1WMByuARS4mZ1g9+W=LuVBnMDnh_5zyN0CLADaVh=Jw@mail.gmail.com [sfr@canb.auug.org.au: fixup for kprobes declarations moving] Link: http://lkml.kernel.org/r/20170214165933.13ebd4f4@canb.auug.org.au Link: http://lkml.kernel.org/r/20170203233139.32682-1-mcgrof@kernel.org Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-28 06:26:56 +08:00
#include <asm-generic/kprobes.h>
typedef int kprobe_opcode_t;
struct arch_specific_insn {
int dummy;
};
#endif /* CONFIG_KPROBES */
struct kprobe;
struct pt_regs;
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
struct kretprobe;
struct kretprobe_instance;
typedef int (*kprobe_pre_handler_t) (struct kprobe *, struct pt_regs *);
typedef void (*kprobe_post_handler_t) (struct kprobe *, struct pt_regs *,
unsigned long flags);
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
typedef int (*kretprobe_handler_t) (struct kretprobe_instance *,
struct pt_regs *);
struct kprobe {
struct hlist_node hlist;
/* list of kprobes for multi-handler support */
struct list_head list;
/*count the number of times this probe was temporarily disarmed */
unsigned long nmissed;
/* location of the probe point */
kprobe_opcode_t *addr;
/* Allow user to indicate symbol name of the probe point */
const char *symbol_name;
/* Offset into the symbol */
unsigned int offset;
/* Called before addr is executed. */
kprobe_pre_handler_t pre_handler;
/* Called after addr is executed, unless... */
kprobe_post_handler_t post_handler;
/* Saved opcode (which has been replaced with breakpoint) */
kprobe_opcode_t opcode;
/* copy of the original instruction */
struct arch_specific_insn ainsn;
/*
* Indicates various status flags.
* Protected by kprobe_mutex after this kprobe is registered.
*/
u32 flags;
};
/* Kprobe status flags */
#define KPROBE_FLAG_GONE 1 /* breakpoint has already gone */
#define KPROBE_FLAG_DISABLED 2 /* probe is temporarily disabled */
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
#define KPROBE_FLAG_OPTIMIZED 4 /*
* probe is really optimized.
* NOTE:
* this flag is only for optimized_kprobe.
*/
#define KPROBE_FLAG_FTRACE 8 /* probe is using ftrace */
/* Has this kprobe gone ? */
static inline int kprobe_gone(struct kprobe *p)
{
return p->flags & KPROBE_FLAG_GONE;
}
/* Is this kprobe disabled ? */
static inline int kprobe_disabled(struct kprobe *p)
{
return p->flags & (KPROBE_FLAG_DISABLED | KPROBE_FLAG_GONE);
}
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
/* Is this kprobe really running optimized path ? */
static inline int kprobe_optimized(struct kprobe *p)
{
return p->flags & KPROBE_FLAG_OPTIMIZED;
}
/* Is this kprobe uses ftrace ? */
static inline int kprobe_ftrace(struct kprobe *p)
{
return p->flags & KPROBE_FLAG_FTRACE;
}
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
/*
* Function-return probe -
* Note:
* User needs to provide a handler function, and initialize maxactive.
* maxactive - The maximum number of instances of the probed function that
* can be active concurrently.
* nmissed - tracks the number of times the probed function's return was
* ignored, due to maxactive being too low.
*
*/
struct kretprobe_holder {
struct kretprobe *rp;
refcount_t ref;
};
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
struct kretprobe {
struct kprobe kp;
kretprobe_handler_t handler;
kretprobe_handler_t entry_handler;
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
int maxactive;
int nmissed;
size_t data_size;
struct freelist_head freelist;
struct kretprobe_holder *rph;
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
};
struct kretprobe_instance {
union {
struct freelist_node freelist;
struct rcu_head rcu;
};
struct llist_node llist;
struct kretprobe_holder *rph;
[PATCH] Return probe redesign: architecture independent changes The following is the second version of the function return probe patches I sent out earlier this week. Changes since my last submission include: * Fix in ppc64 code removing an unneeded call to re-enable preemption * Fix a build problem in ia64 when kprobes was turned off * Added another BUG_ON check to each of the architecture trampoline handlers My initial patch description ==> From my experiences with adding return probes to x86_64 and ia64, and the feedback on LKML to those patches, I think we can simplify the design for return probes. The following patch tweaks the original design such that: * Instead of storing the stack address in the return probe instance, the task pointer is stored. This gives us all we need in order to: - find the correct return probe instance when we enter the trampoline (even if we are recursing) - find all left-over return probe instances when the task is going away This has the side effect of simplifying the implementation since more work can be done in kernel/kprobes.c since architecture specific knowledge of the stack layout is no longer required. Specifically, we no longer have: - arch_get_kprobe_task() - arch_kprobe_flush_task() - get_rp_inst_tsk() - get_rp_inst() - trampoline_post_handler() <see next bullet> * Instead of splitting the return probe handling and cleanup logic across the pre and post trampoline handlers, all the work is pushed into the pre function (trampoline_probe_handler), and then we skip single stepping the original function. In this case the original instruction to be single stepped was just a NOP, and we can do without the extra interruption. The new flow of events to having a return probe handler execute when a target function exits is: * At system initialization time, a kprobe is inserted at the beginning of kretprobe_trampoline. kernel/kprobes.c use to handle this on it's own, but ia64 needed to do this a little differently (i.e. a function pointer is really a pointer to a structure containing the instruction pointer and a global pointer), so I added the notion of arch_init(), so that kernel/kprobes.c:init_kprobes() now allows architecture specific initialization by calling arch_init() before exiting. Each architecture now registers a kprobe on it's own trampoline function. * register_kretprobe() will insert a kprobe at the beginning of the targeted function with the kprobe pre_handler set to arch_prepare_kretprobe (still no change) * When the target function is entered, the kprobe is fired, calling arch_prepare_kretprobe (still no change) * In arch_prepare_kretprobe() we try to get a free instance and if one is available then we fill out the instance with a pointer to the return probe, the original return address, and a pointer to the task structure (instead of the stack address.) Just like before we change the return address to the trampoline function and mark the instance as used. If multiple return probes are registered for a given target function, then arch_prepare_kretprobe() will get called multiple times for the same task (since our kprobe implementation is able to handle multiple kprobes at the same address.) Past the first call to arch_prepare_kretprobe, we end up with the original address stored in the return probe instance pointing to our trampoline function. (This is a significant difference from the original arch_prepare_kretprobe design.) * Target function executes like normal and then returns to kretprobe_trampoline. * kprobe inserted on the first instruction of kretprobe_trampoline is fired and calls trampoline_probe_handler() (no change here) * trampoline_probe_handler() consumes each of the instances associated with the current task by calling the registered handler function and marking the instance as unused until an instance is found that has a return address different then the trampoline function. (change similar to my previous ia64 RFC) * If the task is killed with some left-over return probe instances (meaning that a target function was entered, but never returned), then we just free any instances associated with the task. (Not much different other then we can handle this without calling architecture specific functions.) There is a known problem that this patch does not yet solve where registering a return probe flush_old_exec or flush_thread will put us in a bad state. Most likely the best way to handle this is to not allow registering return probes on these two functions. (Significant change) This patch series applies to the 2.6.12-rc6-mm1 kernel, and provides: * kernel/kprobes.c changes * i386 patch of existing return probes implementation * x86_64 patch of existing return probe implementation * ia64 implementation * ppc64 implementation (provided by Ananth) This patch implements the architecture independant changes for a reworking of the kprobes based function return probes design. Changes include: * Removing functions for querying a return probe instance off a stack address * Removing the stack_addr field from the kretprobe_instance definition, and adding a task pointer * Adding architecture specific initialization via arch_init() * Removing extern definitions for the architecture trampoline functions (this isn't needed anymore since the architecture handles the initialization of the kprobe in the return probe trampoline function.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-28 06:17:08 +08:00
kprobe_opcode_t *ret_addr;
void *fp;
char data[];
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
};
struct kretprobe_blackpoint {
const char *name;
void *addr;
};
kprobes: Introduce NOKPROBE_SYMBOL() macro to maintain kprobes blacklist Introduce NOKPROBE_SYMBOL() macro which builds a kprobes blacklist at kernel build time. The usage of this macro is similar to EXPORT_SYMBOL(), placed after the function definition: NOKPROBE_SYMBOL(function); Since this macro will inhibit inlining of static/inline functions, this patch also introduces a nokprobe_inline macro for static/inline functions. In this case, we must use NOKPROBE_SYMBOL() for the inline function caller. When CONFIG_KPROBES=y, the macro stores the given function address in the "_kprobe_blacklist" section. Since the data structures are not fully initialized by the macro (because there is no "size" information), those are re-initialized at boot time by using kallsyms. Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Alok Kataria <akataria@vmware.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christopher Li <sparse@chrisli.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: David S. Miller <davem@davemloft.net> Cc: Jan-Simon Möller <dl9pf@gmx.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-sparse@vger.kernel.org Cc: virtualization@lists.linux-foundation.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 16:17:05 +08:00
struct kprobe_blacklist_entry {
struct list_head list;
unsigned long start_addr;
kprobes: Introduce NOKPROBE_SYMBOL() macro to maintain kprobes blacklist Introduce NOKPROBE_SYMBOL() macro which builds a kprobes blacklist at kernel build time. The usage of this macro is similar to EXPORT_SYMBOL(), placed after the function definition: NOKPROBE_SYMBOL(function); Since this macro will inhibit inlining of static/inline functions, this patch also introduces a nokprobe_inline macro for static/inline functions. In this case, we must use NOKPROBE_SYMBOL() for the inline function caller. When CONFIG_KPROBES=y, the macro stores the given function address in the "_kprobe_blacklist" section. Since the data structures are not fully initialized by the macro (because there is no "size" information), those are re-initialized at boot time by using kallsyms. Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Alok Kataria <akataria@vmware.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christopher Li <sparse@chrisli.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: David S. Miller <davem@davemloft.net> Cc: Jan-Simon Möller <dl9pf@gmx.de> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-sparse@vger.kernel.org Cc: virtualization@lists.linux-foundation.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 16:17:05 +08:00
unsigned long end_addr;
};
#ifdef CONFIG_KPROBES
DECLARE_PER_CPU(struct kprobe *, current_kprobe);
DECLARE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
/*
* For #ifdef avoidance:
*/
static inline int kprobes_built_in(void)
{
return 1;
}
extern void kprobe_busy_begin(void);
extern void kprobe_busy_end(void);
#ifdef CONFIG_KRETPROBES
extern void arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs);
extern int arch_trampoline_kprobe(struct kprobe *p);
/* If the trampoline handler called from a kprobe, use this version */
unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
void *trampoline_address,
void *frame_pointer);
static nokprobe_inline
unsigned long kretprobe_trampoline_handler(struct pt_regs *regs,
void *trampoline_address,
void *frame_pointer)
{
unsigned long ret;
/*
* Set a dummy kprobe for avoiding kretprobe recursion.
* Since kretprobe never runs in kprobe handler, no kprobe must
* be running at this point.
*/
kprobe_busy_begin();
ret = __kretprobe_trampoline_handler(regs, trampoline_address, frame_pointer);
kprobe_busy_end();
return ret;
}
static nokprobe_inline struct kretprobe *get_kretprobe(struct kretprobe_instance *ri)
{
RCU_LOCKDEP_WARN(!rcu_read_lock_any_held(),
"Kretprobe is accessed from instance under preemptive context");
return READ_ONCE(ri->rph->rp);
}
#else /* CONFIG_KRETPROBES */
static inline void arch_prepare_kretprobe(struct kretprobe *rp,
struct pt_regs *regs)
{
}
static inline int arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}
#endif /* CONFIG_KRETPROBES */
extern struct kretprobe_blackpoint kretprobe_blacklist[];
#ifdef CONFIG_KPROBES_SANITY_TEST
extern int init_test_probes(void);
#else
static inline int init_test_probes(void)
{
return 0;
}
#endif /* CONFIG_KPROBES_SANITY_TEST */
extern int arch_prepare_kprobe(struct kprobe *p);
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:25 +08:00
extern void arch_arm_kprobe(struct kprobe *p);
extern void arch_disarm_kprobe(struct kprobe *p);
extern int arch_init_kprobes(void);
extern void kprobes_inc_nmissed_count(struct kprobe *p);
extern bool arch_within_kprobe_blacklist(unsigned long addr);
extern int arch_populate_kprobe_blacklist(void);
extern bool arch_kprobe_on_func_entry(unsigned long offset);
tracing/kprobe: Fix to support kretprobe events on unloaded modules Fix kprobe_on_func_entry() returns error code instead of false so that register_kretprobe() can return an appropriate error code. append_trace_kprobe() expects the kprobe registration returns -ENOENT when the target symbol is not found, and it checks whether the target module is unloaded or not. If the target module doesn't exist, it defers to probe the target symbol until the module is loaded. However, since register_kretprobe() returns -EINVAL instead of -ENOENT in that case, it always fail on putting the kretprobe event on unloaded modules. e.g. Kprobe event: /sys/kernel/debug/tracing # echo p xfs:xfs_end_io >> kprobe_events [ 16.515574] trace_kprobe: This probe might be able to register after target module is loaded. Continue. Kretprobe event: (p -> r) /sys/kernel/debug/tracing # echo r xfs:xfs_end_io >> kprobe_events sh: write error: Invalid argument /sys/kernel/debug/tracing # cat error_log [ 41.122514] trace_kprobe: error: Failed to register probe event Command: r xfs:xfs_end_io ^ To fix this bug, change kprobe_on_func_entry() to detect symbol lookup failure and return -ENOENT in that case. Otherwise it returns -EINVAL or 0 (succeeded, given address is on the entry). Link: https://lkml.kernel.org/r/161176187132.1067016.8118042342894378981.stgit@devnote2 Cc: stable@vger.kernel.org Fixes: 59158ec4aef7 ("tracing/kprobes: Check the probe on unloaded module correctly") Reported-by: Jianlin Lv <Jianlin.Lv@arm.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-01-27 23:37:51 +08:00
extern int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset);
extern bool within_kprobe_blacklist(unsigned long addr);
extern int kprobe_add_ksym_blacklist(unsigned long entry);
extern int kprobe_add_area_blacklist(unsigned long start, unsigned long end);
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
struct kprobe_insn_cache {
struct mutex mutex;
void *(*alloc)(void); /* allocate insn page */
void (*free)(void *); /* free insn page */
const char *sym; /* symbol for insn pages */
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
struct list_head pages; /* list of kprobe_insn_page */
size_t insn_size; /* size of instruction slot */
int nr_garbage;
};
kprobes, extable: Identify kprobes trampolines as kernel text area Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-08 22:58:09 +08:00
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
extern kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c);
extern void __free_insn_slot(struct kprobe_insn_cache *c,
kprobe_opcode_t *slot, int dirty);
kprobes, extable: Identify kprobes trampolines as kernel text area Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-08 22:58:09 +08:00
/* sleep-less address checking routine */
extern bool __is_insn_slot_addr(struct kprobe_insn_cache *c,
unsigned long addr);
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
#define DEFINE_INSN_CACHE_OPS(__name) \
extern struct kprobe_insn_cache kprobe_##__name##_slots; \
\
static inline kprobe_opcode_t *get_##__name##_slot(void) \
{ \
return __get_insn_slot(&kprobe_##__name##_slots); \
} \
\
static inline void free_##__name##_slot(kprobe_opcode_t *slot, int dirty)\
{ \
__free_insn_slot(&kprobe_##__name##_slots, slot, dirty); \
} \
kprobes, extable: Identify kprobes trampolines as kernel text area Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-08 22:58:09 +08:00
\
static inline bool is_kprobe_##__name##_slot(unsigned long addr) \
{ \
return __is_insn_slot_addr(&kprobe_##__name##_slots, addr); \
}
#define KPROBE_INSN_PAGE_SYM "kprobe_insn_page"
#define KPROBE_OPTINSN_PAGE_SYM "kprobe_optinsn_page"
int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
unsigned long *value, char *type, char *sym);
kprobes, extable: Identify kprobes trampolines as kernel text area Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-08 22:58:09 +08:00
#else /* __ARCH_WANT_KPROBES_INSN_SLOT */
#define DEFINE_INSN_CACHE_OPS(__name) \
static inline bool is_kprobe_##__name##_slot(unsigned long addr) \
{ \
return 0; \
}
#endif
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
DEFINE_INSN_CACHE_OPS(insn);
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
#ifdef CONFIG_OPTPROBES
/*
* Internal structure for direct jump optimized probe
*/
struct optimized_kprobe {
struct kprobe kp;
struct list_head list; /* list for optimizing queue */
struct arch_optimized_insn optinsn;
};
/* Architecture dependent functions for direct jump optimization */
extern int arch_prepared_optinsn(struct arch_optimized_insn *optinsn);
extern int arch_check_optimized_kprobe(struct optimized_kprobe *op);
extern int arch_prepare_optimized_kprobe(struct optimized_kprobe *op,
struct kprobe *orig);
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
extern void arch_remove_optimized_kprobe(struct optimized_kprobe *op);
extern void arch_optimize_kprobes(struct list_head *oplist);
extern void arch_unoptimize_kprobes(struct list_head *oplist,
struct list_head *done_list);
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
extern void arch_unoptimize_kprobe(struct optimized_kprobe *op);
extern int arch_within_optimized_kprobe(struct optimized_kprobe *op,
unsigned long addr);
extern void opt_pre_handler(struct kprobe *p, struct pt_regs *regs);
kprobes: unify insn caches The current kpropes insn caches allocate memory areas for insn slots with module_alloc(). The assumption is that the kernel image and module area are both within the same +/- 2GB memory area. This however is not true for s390 where the kernel image resides within the first 2GB (DMA memory area), but the module area is far away in the vmalloc area, usually somewhere close below the 4TB area. For new pc relative instructions s390 needs insn slots that are within +/- 2GB of each area. That way we can patch displacements of pc-relative instructions within the insn slots just like x86 and powerpc. The module area works already with the normal insn slot allocator, however there is currently no way to get insn slots that are within the first 2GB on s390 (aka DMA area). Therefore this patch set modifies the kprobes insn slot cache code in order to allow to specify a custom allocator for the insn slot cache pages. In addition architecure can now have private insn slot caches withhout the need to modify common code. Patch 1 unifies and simplifies the current insn and optinsn caches implementation. This is a preparation which allows to add more insn caches in a simple way. Patch 2 adds the possibility to specify a custom allocator. Patch 3 makes s390 use the new insn slot mechanisms and adds support for pc-relative instructions with long displacements. This patch (of 3): The two insn caches (insn, and optinsn) each have an own mutex and alloc/free functions (get_[opt]insn_slot() / free_[opt]insn_slot()). Since there is the need for yet another insn cache which satifies dma allocations on s390, unify and simplify the current implementation: - Move the per insn cache mutex into struct kprobe_insn_cache. - Move the alloc/free functions to kprobe.h so they are simply wrappers for the generic __get_insn_slot/__free_insn_slot functions. The implementation is done with a DEFINE_INSN_CACHE_OPS() macro which provides the alloc/free functions for each cache if needed. - move the struct kprobe_insn_cache to kprobe.h which allows to generate architecture specific insn slot caches outside of the core kprobes code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:24:11 +08:00
DEFINE_INSN_CACHE_OPS(optinsn);
#ifdef CONFIG_SYSCTL
extern int sysctl_kprobes_optimization;
extern int proc_kprobes_optimization_handler(struct ctl_table *table,
int write, void *buffer,
size_t *length, loff_t *ppos);
#endif
extern void wait_for_kprobe_optimizer(void);
#else
static inline void wait_for_kprobe_optimizer(void) { }
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
#endif /* CONFIG_OPTPROBES */
#ifdef CONFIG_KPROBES_ON_FTRACE
extern void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct ftrace_regs *fregs);
extern int arch_prepare_kprobe_ftrace(struct kprobe *p);
#endif
int arch_check_ftrace_location(struct kprobe *p);
kprobes: Introduce kprobes jump optimization Introduce kprobes jump optimization arch-independent parts. Kprobes uses breakpoint instruction for interrupting execution flow, on some architectures, it can be replaced by a jump instruction and interruption emulation code. This gains kprobs' performance drastically. To enable this feature, set CONFIG_OPTPROBES=y (default y if the arch supports OPTPROBE). Changes in v9: - Fix a bug to optimize probe when enabling. - Check nearby probes can be optimize/unoptimize when disarming/arming kprobes, instead of registering/unregistering. This will help kprobe-tracer because most of probes on it are usually disabled. Changes in v6: - Cleanup coding style for readability. - Add comments around get/put_online_cpus(). Changes in v5: - Use get_online_cpus()/put_online_cpus() for avoiding text_mutex deadlock. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: systemtap <systemtap@sources.redhat.com> Cc: DLE <dle-develop@lists.sourceforge.net> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Anders Kaseorg <andersk@ksplice.com> Cc: Tim Abbott <tabbott@ksplice.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Jason Baron <jbaron@redhat.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> LKML-Reference: <20100225133407.6725.81992.stgit@localhost6.localdomain6> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 21:34:07 +08:00
/* Get the kprobe at this addr (if any) - called with preemption disabled */
struct kprobe *get_kprobe(void *addr);
/* kprobe_running() will just return the current_kprobe on this CPU */
static inline struct kprobe *kprobe_running(void)
{
return (__this_cpu_read(current_kprobe));
}
static inline void reset_current_kprobe(void)
{
__this_cpu_write(current_kprobe, NULL);
}
static inline struct kprobe_ctlblk *get_kprobe_ctlblk(void)
{
return this_cpu_ptr(&kprobe_ctlblk);
}
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset);
int register_kprobe(struct kprobe *p);
void unregister_kprobe(struct kprobe *p);
int register_kprobes(struct kprobe **kps, int num);
void unregister_kprobes(struct kprobe **kps, int num);
unsigned long arch_deref_entry_point(void *);
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
int register_kretprobe(struct kretprobe *rp);
void unregister_kretprobe(struct kretprobe *rp);
int register_kretprobes(struct kretprobe **rps, int num);
void unregister_kretprobes(struct kretprobe **rps, int num);
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
void kprobe_flush_task(struct task_struct *tk);
void kprobe_free_init_mem(void);
int disable_kprobe(struct kprobe *kp);
int enable_kprobe(struct kprobe *kp);
void dump_kprobe(struct kprobe *kp);
void *alloc_insn_page(void);
void *alloc_optinsn_page(void);
void free_optinsn_page(void *page);
int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *sym);
int arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
char *type, char *sym);
#else /* !CONFIG_KPROBES: */
static inline int kprobes_built_in(void)
{
return 0;
}
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
return 0;
}
static inline struct kprobe *get_kprobe(void *addr)
{
return NULL;
}
static inline struct kprobe *kprobe_running(void)
{
return NULL;
}
static inline int register_kprobe(struct kprobe *p)
{
return -ENOSYS;
}
static inline int register_kprobes(struct kprobe **kps, int num)
{
return -ENOSYS;
}
static inline void unregister_kprobe(struct kprobe *p)
{
}
static inline void unregister_kprobes(struct kprobe **kps, int num)
{
}
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
static inline int register_kretprobe(struct kretprobe *rp)
{
return -ENOSYS;
}
static inline int register_kretprobes(struct kretprobe **rps, int num)
{
return -ENOSYS;
}
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
static inline void unregister_kretprobe(struct kretprobe *rp)
{
}
static inline void unregister_kretprobes(struct kretprobe **rps, int num)
{
}
[PATCH] kprobes: function-return probes This patch adds function-return probes to kprobes for the i386 architecture. This enables you to establish a handler to be run when a function returns. 1. API Two new functions are added to kprobes: int register_kretprobe(struct kretprobe *rp); void unregister_kretprobe(struct kretprobe *rp); 2. Registration and unregistration 2.1 Register To register a function-return probe, the user populates the following fields in a kretprobe object and calls register_kretprobe() with the kretprobe address as an argument: kp.addr - the function's address handler - this function is run after the ret instruction executes, but before control returns to the return address in the caller. maxactive - The maximum number of instances of the probed function that can be active concurrently. For example, if the function is non- recursive and is called with a spinlock or mutex held, maxactive = 1 should be enough. If the function is non-recursive and can never relinquish the CPU (e.g., via a semaphore or preemption), NR_CPUS should be enough. maxactive is used to determine how many kretprobe_instance objects to allocate for this particular probed function. If maxactive <= 0, it is set to a default value (if CONFIG_PREEMPT maxactive=max(10, 2 * NR_CPUS) else maxactive=NR_CPUS) For example: struct kretprobe rp; rp.kp.addr = /* entrypoint address */ rp.handler = /*return probe handler */ rp.maxactive = /* e.g., 1 or NR_CPUS or 0, see the above explanation */ register_kretprobe(&rp); The following field may also be of interest: nmissed - Initialized to zero when the function-return probe is registered, and incremented every time the probed function is entered but there is no kretprobe_instance object available for establishing the function-return probe (i.e., because maxactive was set too low). 2.2 Unregister To unregiter a function-return probe, the user calls unregister_kretprobe() with the same kretprobe object as registered previously. If a probed function is running when the return probe is unregistered, the function will return as expected, but the handler won't be run. 3. Limitations 3.1 This patch supports only the i386 architecture, but patches for x86_64 and ppc64 are anticipated soon. 3.2 Return probes operates by replacing the return address in the stack (or in a known register, such as the lr register for ppc). This may cause __builtin_return_address(0), when invoked from the return-probed function, to return the address of the return-probes trampoline. 3.3 This implementation uses the "Multiprobes at an address" feature in 2.6.12-rc3-mm3. 3.4 Due to a limitation in multi-probes, you cannot currently establish a return probe and a jprobe on the same function. A patch to remove this limitation is being tested. This feature is required by SystemTap (http://sourceware.org/systemtap), and reflects ideas contributed by several SystemTap developers, including Will Cohen and Ananth Mavinakayanahalli. Signed-off-by: Hien Nguyen <hien@us.ibm.com> Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Frederik Deweerdt <frederik.deweerdt@laposte.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:19 +08:00
static inline void kprobe_flush_task(struct task_struct *tk)
{
}
static inline void kprobe_free_init_mem(void)
{
}
static inline int disable_kprobe(struct kprobe *kp)
{
return -ENOSYS;
}
static inline int enable_kprobe(struct kprobe *kp)
{
return -ENOSYS;
}
static inline bool within_kprobe_blacklist(unsigned long addr)
{
return true;
}
static inline int kprobe_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *sym)
{
return -ERANGE;
}
#endif /* CONFIG_KPROBES */
static inline int disable_kretprobe(struct kretprobe *rp)
{
return disable_kprobe(&rp->kp);
}
static inline int enable_kretprobe(struct kretprobe *rp)
{
return enable_kprobe(&rp->kp);
}
kprobes, extable: Identify kprobes trampolines as kernel text area Improve __kernel_text_address()/kernel_text_address() to return true if the given address is on a kprobe's instruction slot trampoline. This can help stacktraces to determine the address is on a text area or not. To implement this atomically in is_kprobe_*_slot(), also change the insn_cache page list to an RCU list. This changes timings a bit (it delays page freeing to the RCU garbage collection phase), but none of that is in the hot path. Note: this change can add small overhead to stack unwinders because it adds 2 additional checks to __kernel_text_address(). However, the impact should be very small, because kprobe_insn_pages list has 1 entry per 256 probes(on x86, on arm/arm64 it will be 1024 probes), and kprobe_optinsn_pages has 1 entry per 32 probes(on x86). In most use cases, the number of kprobe events may be less than 20, which means that is_kprobe_*_slot() will check just one entry. Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/148388747896.6869.6354262871751682264.stgit@devbox [ Improved the changelog and coding style. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-08 22:58:09 +08:00
#ifndef CONFIG_KPROBES
static inline bool is_kprobe_insn_slot(unsigned long addr)
{
return false;
}
#endif
#ifndef CONFIG_OPTPROBES
static inline bool is_kprobe_optinsn_slot(unsigned long addr)
{
return false;
}
#endif
mm, kprobes: generalize and rename notify_page_fault() as kprobe_page_fault() Architectures which support kprobes have very similar boilerplate around calling kprobe_fault_handler(). Use a helper function in kprobes.h to unify them, based on the x86 code. This changes the behaviour for other architectures when preemption is enabled. Previously, they would have disabled preemption while calling the kprobe handler. However, preemption would be disabled if this fault was due to a kprobe, so we know the fault was not due to a kprobe handler and can simply return failure. This behaviour was introduced in commit a980c0ef9f6d ("x86/kprobes: Refactor kprobes_fault() like kprobe_exceptions_notify()") [anshuman.khandual@arm.com: export kprobe_fault_handler()] Link: http://lkml.kernel.org/r/1561133358-8876-1-git-send-email-anshuman.khandual@arm.com Link: http://lkml.kernel.org/r/1560420444-25737-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: James Hogan <jhogan@kernel.org> Cc: Paul Burton <paul.burton@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 07:28:00 +08:00
/* Returns true if kprobes handled the fault */
static nokprobe_inline bool kprobe_page_fault(struct pt_regs *regs,
unsigned int trap)
{
if (!kprobes_built_in())
return false;
if (user_mode(regs))
return false;
/*
* To be potentially processing a kprobe fault and to be allowed
* to call kprobe_running(), we have to be non-preemptible.
*/
if (preemptible())
return false;
if (!kprobe_running())
return false;
return kprobe_fault_handler(regs, trap);
}
#endif /* _LINUX_KPROBES_H */