2012-12-10 23:35:24 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __ARM64_KVM_MMU_H__
|
|
|
|
#define __ARM64_KVM_MMU_H__
|
|
|
|
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/memory.h>
|
2015-11-16 19:28:18 +08:00
|
|
|
#include <asm/cpufeature.h>
|
2012-12-10 23:35:24 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* As we only have the TTBR0_EL2 register, we cannot express
|
|
|
|
* "negative" addresses. This makes it impossible to directly share
|
|
|
|
* mappings with the kernel.
|
|
|
|
*
|
|
|
|
* Instead, give the HYP mode its own VA region at a fixed offset from
|
|
|
|
* the kernel by just masking the top bits (which are all ones for a
|
|
|
|
* kernel address).
|
|
|
|
*/
|
|
|
|
#define HYP_PAGE_OFFSET_SHIFT VA_BITS
|
|
|
|
#define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
|
|
|
|
#define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Our virtual mapping for the idmap-ed MMU-enable code. Must be
|
|
|
|
* shared across all the page-tables. Conveniently, we use the last
|
|
|
|
* possible page, where no kernel mapping will ever exist.
|
|
|
|
*/
|
|
|
|
#define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
|
|
|
|
|
2014-10-10 18:14:28 +08:00
|
|
|
/*
|
|
|
|
* KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
|
|
|
|
* levels in addition to the PGD and potentially the PUD which are
|
|
|
|
* pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
|
|
|
|
* tables use one level of tables less than the kernel.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_ARM64_64K_PAGES
|
|
|
|
#define KVM_MMU_CACHE_MIN_PAGES 1
|
|
|
|
#else
|
|
|
|
#define KVM_MMU_CACHE_MIN_PAGES 2
|
|
|
|
#endif
|
|
|
|
|
2012-12-10 23:35:24 +08:00
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a kernel VA into a HYP VA.
|
|
|
|
* reg: VA to be converted.
|
|
|
|
*/
|
|
|
|
.macro kern_hyp_va reg
|
|
|
|
and \reg, \reg, #HYP_PAGE_OFFSET_MASK
|
|
|
|
.endm
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2014-10-10 18:14:28 +08:00
|
|
|
#include <asm/pgalloc.h>
|
2012-12-10 23:35:24 +08:00
|
|
|
#include <asm/cachetype.h>
|
|
|
|
#include <asm/cacheflush.h>
|
2015-03-20 00:42:28 +08:00
|
|
|
#include <asm/mmu_context.h>
|
|
|
|
#include <asm/pgtable.h>
|
2012-12-10 23:35:24 +08:00
|
|
|
|
|
|
|
#define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
|
|
|
|
|
|
|
|
/*
|
2014-07-10 00:17:04 +08:00
|
|
|
* We currently only support a 40bit IPA.
|
2012-12-10 23:35:24 +08:00
|
|
|
*/
|
2014-07-10 00:17:04 +08:00
|
|
|
#define KVM_PHYS_SHIFT (40)
|
2012-12-10 23:35:24 +08:00
|
|
|
#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
|
|
|
|
#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
|
|
|
|
|
|
|
|
int create_hyp_mappings(void *from, void *to);
|
|
|
|
int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
|
|
|
|
void free_boot_hyp_pgd(void);
|
|
|
|
void free_hyp_pgds(void);
|
|
|
|
|
2014-11-27 17:35:03 +08:00
|
|
|
void stage2_unmap_vm(struct kvm *kvm);
|
2012-12-10 23:35:24 +08:00
|
|
|
int kvm_alloc_stage2_pgd(struct kvm *kvm);
|
|
|
|
void kvm_free_stage2_pgd(struct kvm *kvm);
|
|
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
2014-09-18 05:56:18 +08:00
|
|
|
phys_addr_t pa, unsigned long size, bool writable);
|
2012-12-10 23:35:24 +08:00
|
|
|
|
|
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
|
|
|
|
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
|
|
|
|
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void);
|
|
|
|
phys_addr_t kvm_mmu_get_boot_httbr(void);
|
|
|
|
phys_addr_t kvm_get_idmap_vector(void);
|
|
|
|
int kvm_mmu_init(void);
|
|
|
|
void kvm_clear_hyp_idmap(void);
|
|
|
|
|
|
|
|
#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
|
2012-11-02 00:14:45 +08:00
|
|
|
#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
|
2012-12-10 23:35:24 +08:00
|
|
|
|
|
|
|
static inline void kvm_clean_pgd(pgd_t *pgd) {}
|
2014-10-10 18:14:28 +08:00
|
|
|
static inline void kvm_clean_pmd(pmd_t *pmd) {}
|
2012-12-10 23:35:24 +08:00
|
|
|
static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
|
|
|
|
static inline void kvm_clean_pte(pte_t *pte) {}
|
|
|
|
static inline void kvm_clean_pte_entry(pte_t *pte) {}
|
|
|
|
|
|
|
|
static inline void kvm_set_s2pte_writable(pte_t *pte)
|
|
|
|
{
|
|
|
|
pte_val(*pte) |= PTE_S2_RDWR;
|
|
|
|
}
|
|
|
|
|
2012-11-02 00:14:45 +08:00
|
|
|
static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
pmd_val(*pmd) |= PMD_S2_RDWR;
|
|
|
|
}
|
|
|
|
|
2015-01-16 07:58:59 +08:00
|
|
|
static inline void kvm_set_s2pte_readonly(pte_t *pte)
|
|
|
|
{
|
|
|
|
pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool kvm_s2pte_readonly(pte_t *pte)
|
|
|
|
{
|
|
|
|
return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
|
|
|
|
{
|
|
|
|
return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-02-18 22:29:03 +08:00
|
|
|
#define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
|
|
|
|
#define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
|
|
|
|
#define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)
|
|
|
|
|
2014-10-10 18:14:28 +08:00
|
|
|
/*
|
|
|
|
* In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
|
|
|
|
* the entire IPA input range with a single pgd entry, and we would only need
|
|
|
|
* one pgd entry. Note that in this case, the pgd is actually not used by
|
|
|
|
* the MMU for Stage-2 translations, but is merely a fake pgd used as a data
|
|
|
|
* structure for the kernel pgtable macros to work.
|
|
|
|
*/
|
|
|
|
#if PGDIR_SHIFT > KVM_PHYS_SHIFT
|
|
|
|
#define PTRS_PER_S2_PGD_SHIFT 0
|
|
|
|
#else
|
|
|
|
#define PTRS_PER_S2_PGD_SHIFT (KVM_PHYS_SHIFT - PGDIR_SHIFT)
|
|
|
|
#endif
|
|
|
|
#define PTRS_PER_S2_PGD (1 << PTRS_PER_S2_PGD_SHIFT)
|
|
|
|
|
2015-03-11 03:07:00 +08:00
|
|
|
#define kvm_pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
|
|
|
|
|
2014-10-10 18:14:28 +08:00
|
|
|
/*
|
|
|
|
* If we are concatenating first level stage-2 page tables, we would have less
|
|
|
|
* than or equal to 16 pointers in the fake PGD, because that's what the
|
2015-04-15 06:45:39 +08:00
|
|
|
* architecture allows. In this case, (4 - CONFIG_PGTABLE_LEVELS)
|
2014-10-10 18:14:28 +08:00
|
|
|
* represents the first level for the host, and we add 1 to go to the next
|
|
|
|
* level (which uses contatenation) for the stage-2 tables.
|
|
|
|
*/
|
|
|
|
#if PTRS_PER_S2_PGD <= 16
|
2015-04-15 06:45:39 +08:00
|
|
|
#define KVM_PREALLOC_LEVEL (4 - CONFIG_PGTABLE_LEVELS + 1)
|
2014-10-10 18:14:28 +08:00
|
|
|
#else
|
|
|
|
#define KVM_PREALLOC_LEVEL (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static inline void *kvm_get_hwpgd(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
pgd_t *pgd = kvm->arch.pgd;
|
|
|
|
pud_t *pud;
|
|
|
|
|
|
|
|
if (KVM_PREALLOC_LEVEL == 0)
|
|
|
|
return pgd;
|
|
|
|
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
|
|
if (KVM_PREALLOC_LEVEL == 1)
|
|
|
|
return pud;
|
|
|
|
|
|
|
|
BUG_ON(KVM_PREALLOC_LEVEL != 2);
|
|
|
|
return pmd_offset(pud, 0);
|
|
|
|
}
|
|
|
|
|
2015-03-11 03:06:59 +08:00
|
|
|
static inline unsigned int kvm_get_hwpgd_size(void)
|
2014-10-10 18:14:28 +08:00
|
|
|
{
|
2015-03-11 03:06:59 +08:00
|
|
|
if (KVM_PREALLOC_LEVEL > 0)
|
|
|
|
return PTRS_PER_S2_PGD * PAGE_SIZE;
|
|
|
|
return PTRS_PER_S2_PGD * sizeof(pgd_t);
|
2014-10-10 18:14:28 +08:00
|
|
|
}
|
|
|
|
|
2014-05-10 05:31:31 +08:00
|
|
|
static inline bool kvm_page_empty(void *ptr)
|
|
|
|
{
|
|
|
|
struct page *ptr_page = virt_to_page(ptr);
|
|
|
|
return page_count(ptr_page) == 1;
|
|
|
|
}
|
|
|
|
|
2014-10-10 18:14:28 +08:00
|
|
|
#define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
|
|
|
|
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
|
|
#define kvm_pmd_table_empty(kvm, pmdp) (0)
|
|
|
|
#else
|
|
|
|
#define kvm_pmd_table_empty(kvm, pmdp) \
|
|
|
|
(kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __PAGETABLE_PUD_FOLDED
|
|
|
|
#define kvm_pud_table_empty(kvm, pudp) (0)
|
2014-05-10 05:31:31 +08:00
|
|
|
#else
|
2014-10-10 18:14:28 +08:00
|
|
|
#define kvm_pud_table_empty(kvm, pudp) \
|
|
|
|
(kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
|
2014-05-10 05:31:31 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2012-12-10 23:35:24 +08:00
|
|
|
struct kvm;
|
|
|
|
|
2014-01-15 03:13:10 +08:00
|
|
|
#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
|
|
|
|
|
|
|
|
static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
|
2012-12-10 23:35:24 +08:00
|
|
|
{
|
2014-01-15 03:13:10 +08:00
|
|
|
return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
|
|
|
|
}
|
|
|
|
|
kvm: rename pfn_t to kvm_pfn_t
To date, we have implemented two I/O usage models for persistent memory,
PMEM (a persistent "ram disk") and DAX (mmap persistent memory into
userspace). This series adds a third, DAX-GUP, that allows DAX mappings
to be the target of direct-i/o. It allows userspace to coordinate
DMA/RDMA from/to persistent memory.
The implementation leverages the ZONE_DEVICE mm-zone that went into
4.3-rc1 (also discussed at kernel summit) to flag pages that are owned
and dynamically mapped by a device driver. The pmem driver, after
mapping a persistent memory range into the system memmap via
devm_memremap_pages(), arranges for DAX to distinguish pfn-only versus
page-backed pmem-pfns via flags in the new pfn_t type.
The DAX code, upon seeing a PFN_DEV+PFN_MAP flagged pfn, flags the
resulting pte(s) inserted into the process page tables with a new
_PAGE_DEVMAP flag. Later, when get_user_pages() is walking ptes it keys
off _PAGE_DEVMAP to pin the device hosting the page range active.
Finally, get_page() and put_page() are modified to take references
against the device driver established page mapping.
Finally, this need for "struct page" for persistent memory requires
memory capacity to store the memmap array. Given the memmap array for a
large pool of persistent may exhaust available DRAM introduce a
mechanism to allocate the memmap from persistent memory. The new
"struct vmem_altmap *" parameter to devm_memremap_pages() enables
arch_add_memory() to use reserved pmem capacity rather than the page
allocator.
This patch (of 18):
The core has developed a need for a "pfn_t" type [1]. Move the existing
pfn_t in KVM to kvm_pfn_t [2].
[1]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002199.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2015-September/002218.html
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:56:11 +08:00
|
|
|
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
|
|
|
|
kvm_pfn_t pfn,
|
arm/arm64: KVM: Use kernel mapping to perform invalidation on page fault
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-01-06 05:13:24 +08:00
|
|
|
unsigned long size,
|
|
|
|
bool ipa_uncached)
|
2014-01-15 03:13:10 +08:00
|
|
|
{
|
arm/arm64: KVM: Use kernel mapping to perform invalidation on page fault
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-01-06 05:13:24 +08:00
|
|
|
void *va = page_address(pfn_to_page(pfn));
|
|
|
|
|
2014-11-17 22:58:52 +08:00
|
|
|
if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
|
arm/arm64: KVM: Use kernel mapping to perform invalidation on page fault
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-01-06 05:13:24 +08:00
|
|
|
kvm_flush_dcache_to_poc(va, size);
|
2014-01-15 03:13:10 +08:00
|
|
|
|
2012-12-10 23:35:24 +08:00
|
|
|
if (!icache_is_aliasing()) { /* PIPT */
|
arm/arm64: KVM: Use kernel mapping to perform invalidation on page fault
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-01-06 05:13:24 +08:00
|
|
|
flush_icache_range((unsigned long)va,
|
|
|
|
(unsigned long)va + size);
|
2012-12-10 23:35:24 +08:00
|
|
|
} else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
|
|
|
|
/* any kind of VIPT cache */
|
|
|
|
__flush_icache_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-20 00:48:06 +08:00
|
|
|
static inline void __kvm_flush_dcache_pte(pte_t pte)
|
|
|
|
{
|
|
|
|
struct page *page = pte_page(pte);
|
|
|
|
kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
|
|
|
|
{
|
|
|
|
struct page *page = pmd_page(pmd);
|
|
|
|
kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __kvm_flush_dcache_pud(pud_t pud)
|
|
|
|
{
|
|
|
|
struct page *page = pud_page(pud);
|
|
|
|
kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
|
|
|
|
}
|
|
|
|
|
2013-11-20 03:59:12 +08:00
|
|
|
#define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
|
2012-12-10 23:35:24 +08:00
|
|
|
|
2014-12-20 00:05:31 +08:00
|
|
|
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
|
2014-01-15 20:50:23 +08:00
|
|
|
|
2015-03-20 00:42:28 +08:00
|
|
|
static inline bool __kvm_cpu_uses_extended_idmap(void)
|
|
|
|
{
|
|
|
|
return __cpu_uses_extended_idmap();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
|
|
|
|
pgd_t *hyp_pgd,
|
|
|
|
pgd_t *merged_hyp_pgd,
|
|
|
|
unsigned long hyp_idmap_start)
|
|
|
|
{
|
|
|
|
int idmap_idx;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use the first entry to access the HYP mappings. It is
|
|
|
|
* guaranteed to be free, otherwise we wouldn't use an
|
|
|
|
* extended idmap.
|
|
|
|
*/
|
|
|
|
VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
|
|
|
|
merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create another extended level entry that points to the boot HYP map,
|
|
|
|
* which contains an ID mapping of the HYP init code. We essentially
|
|
|
|
* merge the boot and runtime HYP maps by doing so, but they don't
|
|
|
|
* overlap anyway, so this is fine.
|
|
|
|
*/
|
|
|
|
idmap_idx = hyp_idmap_start >> VA_BITS;
|
|
|
|
VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
|
|
|
|
merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
|
|
|
|
}
|
|
|
|
|
2015-11-16 19:28:18 +08:00
|
|
|
static inline unsigned int kvm_get_vmid_bits(void)
|
|
|
|
{
|
|
|
|
int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1);
|
|
|
|
|
|
|
|
return (cpuid_feature_extract_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
|
|
|
|
}
|
|
|
|
|
2012-12-10 23:35:24 +08:00
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* __ARM64_KVM_MMU_H__ */
|