OpenCloudOS-Kernel/drivers/char/ipmi/ipmi_ssif.c

2017 lines
51 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* ipmi_ssif.c
*
* The interface to the IPMI driver for SMBus access to a SMBus
* compliant device. Called SSIF by the IPMI spec.
*
* Author: Intel Corporation
* Todd Davis <todd.c.davis@intel.com>
*
* Rewritten by Corey Minyard <minyard@acm.org> to support the
* non-blocking I2C interface, add support for multi-part
* transactions, add PEC support, and general clenaup.
*
* Copyright 2003 Intel Corporation
* Copyright 2005 MontaVista Software
*/
/*
* This file holds the "policy" for the interface to the SSIF state
* machine. It does the configuration, handles timers and interrupts,
* and drives the real SSIF state machine.
*/
/*
* TODO: Figure out how to use SMB alerts. This will require a new
* interface into the I2C driver, I believe.
*/
#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/i2c.h>
#include <linux/ipmi_smi.h>
#include <linux/init.h>
#include <linux/dmi.h>
#include <linux/kthread.h>
#include <linux/acpi.h>
#include <linux/ctype.h>
#include <linux/time64.h>
#include "ipmi_si_sm.h"
#include "ipmi_dmi.h"
#define PFX "ipmi_ssif: "
#define DEVICE_NAME "ipmi_ssif"
#define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57
#define SSIF_IPMI_REQUEST 2
#define SSIF_IPMI_MULTI_PART_REQUEST_START 6
#define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7
#define SSIF_IPMI_RESPONSE 3
#define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9
/* ssif_debug is a bit-field
* SSIF_DEBUG_MSG - commands and their responses
* SSIF_DEBUG_STATES - message states
* SSIF_DEBUG_TIMING - Measure times between events in the driver
*/
#define SSIF_DEBUG_TIMING 4
#define SSIF_DEBUG_STATE 2
#define SSIF_DEBUG_MSG 1
#define SSIF_NODEBUG 0
#define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG)
/*
* Timer values
*/
#define SSIF_MSG_USEC 20000 /* 20ms between message tries. */
#define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */
/* How many times to we retry sending/receiving the message. */
#define SSIF_SEND_RETRIES 5
#define SSIF_RECV_RETRIES 250
#define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000)
#define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC)
#define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC)
enum ssif_intf_state {
SSIF_NORMAL,
SSIF_GETTING_FLAGS,
SSIF_GETTING_EVENTS,
SSIF_CLEARING_FLAGS,
SSIF_GETTING_MESSAGES,
/* FIXME - add watchdog stuff. */
};
#define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \
&& (ssif)->curr_msg == NULL)
/*
* Indexes into stats[] in ssif_info below.
*/
enum ssif_stat_indexes {
/* Number of total messages sent. */
SSIF_STAT_sent_messages = 0,
/*
* Number of message parts sent. Messages may be broken into
* parts if they are long.
*/
SSIF_STAT_sent_messages_parts,
/*
* Number of time a message was retried.
*/
SSIF_STAT_send_retries,
/*
* Number of times the send of a message failed.
*/
SSIF_STAT_send_errors,
/*
* Number of message responses received.
*/
SSIF_STAT_received_messages,
/*
* Number of message fragments received.
*/
SSIF_STAT_received_message_parts,
/*
* Number of times the receive of a message was retried.
*/
SSIF_STAT_receive_retries,
/*
* Number of errors receiving messages.
*/
SSIF_STAT_receive_errors,
/*
* Number of times a flag fetch was requested.
*/
SSIF_STAT_flag_fetches,
/*
* Number of times the hardware didn't follow the state machine.
*/
SSIF_STAT_hosed,
/*
* Number of received events.
*/
SSIF_STAT_events,
/* Number of asyncronous messages received. */
SSIF_STAT_incoming_messages,
/* Number of watchdog pretimeouts. */
SSIF_STAT_watchdog_pretimeouts,
/* Number of alers received. */
SSIF_STAT_alerts,
/* Always add statistics before this value, it must be last. */
SSIF_NUM_STATS
};
struct ssif_addr_info {
struct i2c_board_info binfo;
char *adapter_name;
int debug;
int slave_addr;
enum ipmi_addr_src addr_src;
union ipmi_smi_info_union addr_info;
struct device *dev;
struct i2c_client *client;
struct mutex clients_mutex;
struct list_head clients;
struct list_head link;
};
struct ssif_info;
typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result,
unsigned char *data, unsigned int len);
struct ssif_info {
struct ipmi_smi *intf;
spinlock_t lock;
struct ipmi_smi_msg *waiting_msg;
struct ipmi_smi_msg *curr_msg;
enum ssif_intf_state ssif_state;
unsigned long ssif_debug;
struct ipmi_smi_handlers handlers;
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
union ipmi_smi_info_union addr_info;
/*
* Flags from the last GET_MSG_FLAGS command, used when an ATTN
* is set to hold the flags until we are done handling everything
* from the flags.
*/
#define RECEIVE_MSG_AVAIL 0x01
#define EVENT_MSG_BUFFER_FULL 0x02
#define WDT_PRE_TIMEOUT_INT 0x08
unsigned char msg_flags;
u8 global_enables;
bool has_event_buffer;
bool supports_alert;
/*
* Used to tell what we should do with alerts. If we are
* waiting on a response, read the data immediately.
*/
bool got_alert;
bool waiting_alert;
/*
* If set to true, this will request events the next time the
* state machine is idle.
*/
bool req_events;
/*
* If set to true, this will request flags the next time the
* state machine is idle.
*/
bool req_flags;
/*
* Used to perform timer operations when run-to-completion
* mode is on. This is a countdown timer.
*/
int rtc_us_timer;
/* Used for sending/receiving data. +1 for the length. */
unsigned char data[IPMI_MAX_MSG_LENGTH + 1];
unsigned int data_len;
/* Temp receive buffer, gets copied into data. */
unsigned char recv[I2C_SMBUS_BLOCK_MAX];
struct i2c_client *client;
ssif_i2c_done done_handler;
/* Thread interface handling */
struct task_struct *thread;
struct completion wake_thread;
bool stopping;
int i2c_read_write;
int i2c_command;
unsigned char *i2c_data;
unsigned int i2c_size;
struct timer_list retry_timer;
int retries_left;
/* Info from SSIF cmd */
unsigned char max_xmit_msg_size;
unsigned char max_recv_msg_size;
unsigned int multi_support;
int supports_pec;
#define SSIF_NO_MULTI 0
#define SSIF_MULTI_2_PART 1
#define SSIF_MULTI_n_PART 2
unsigned char *multi_data;
unsigned int multi_len;
unsigned int multi_pos;
atomic_t stats[SSIF_NUM_STATS];
};
#define ssif_inc_stat(ssif, stat) \
atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat])
#define ssif_get_stat(ssif, stat) \
((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat]))
static bool initialized;
static void return_hosed_msg(struct ssif_info *ssif_info,
struct ipmi_smi_msg *msg);
static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags);
static int start_send(struct ssif_info *ssif_info,
unsigned char *data,
unsigned int len);
static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info,
unsigned long *flags)
{
spin_lock_irqsave(&ssif_info->lock, *flags);
return flags;
}
static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info,
unsigned long *flags)
{
spin_unlock_irqrestore(&ssif_info->lock, *flags);
}
static void deliver_recv_msg(struct ssif_info *ssif_info,
struct ipmi_smi_msg *msg)
{
if (msg->rsp_size < 0) {
return_hosed_msg(ssif_info, msg);
pr_err(PFX
"Malformed message in deliver_recv_msg: rsp_size = %d\n",
msg->rsp_size);
} else {
ipmi_smi_msg_received(ssif_info->intf, msg);
}
}
static void return_hosed_msg(struct ssif_info *ssif_info,
struct ipmi_smi_msg *msg)
{
ssif_inc_stat(ssif_info, hosed);
/* Make it a response */
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = 0xFF; /* Unknown error. */
msg->rsp_size = 3;
deliver_recv_msg(ssif_info, msg);
}
/*
* Must be called with the message lock held. This will release the
* message lock. Note that the caller will check SSIF_IDLE and start a
* new operation, so there is no need to check for new messages to
* start in here.
*/
static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags)
{
unsigned char msg[3];
ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
ssif_info->ssif_state = SSIF_CLEARING_FLAGS;
ipmi_ssif_unlock_cond(ssif_info, flags);
/* Make sure the watchdog pre-timeout flag is not set at startup. */
msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
msg[2] = WDT_PRE_TIMEOUT_INT;
if (start_send(ssif_info, msg, 3) != 0) {
/* Error, just go to normal state. */
ssif_info->ssif_state = SSIF_NORMAL;
}
}
static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags)
{
unsigned char mb[2];
ssif_info->req_flags = false;
ssif_info->ssif_state = SSIF_GETTING_FLAGS;
ipmi_ssif_unlock_cond(ssif_info, flags);
mb[0] = (IPMI_NETFN_APP_REQUEST << 2);
mb[1] = IPMI_GET_MSG_FLAGS_CMD;
if (start_send(ssif_info, mb, 2) != 0)
ssif_info->ssif_state = SSIF_NORMAL;
}
static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags,
struct ipmi_smi_msg *msg)
{
if (start_send(ssif_info, msg->data, msg->data_size) != 0) {
unsigned long oflags;
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
ssif_info->curr_msg = NULL;
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
ipmi_free_smi_msg(msg);
}
}
static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags)
{
struct ipmi_smi_msg *msg;
ssif_info->req_events = false;
msg = ipmi_alloc_smi_msg();
if (!msg) {
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
return;
}
ssif_info->curr_msg = msg;
ssif_info->ssif_state = SSIF_GETTING_EVENTS;
ipmi_ssif_unlock_cond(ssif_info, flags);
msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
msg->data_size = 2;
check_start_send(ssif_info, flags, msg);
}
static void start_recv_msg_fetch(struct ssif_info *ssif_info,
unsigned long *flags)
{
struct ipmi_smi_msg *msg;
msg = ipmi_alloc_smi_msg();
if (!msg) {
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
return;
}
ssif_info->curr_msg = msg;
ssif_info->ssif_state = SSIF_GETTING_MESSAGES;
ipmi_ssif_unlock_cond(ssif_info, flags);
msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg->data[1] = IPMI_GET_MSG_CMD;
msg->data_size = 2;
check_start_send(ssif_info, flags, msg);
}
/*
* Must be called with the message lock held. This will release the
* message lock. Note that the caller will check SSIF_IDLE and start a
* new operation, so there is no need to check for new messages to
* start in here.
*/
static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags)
{
if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
/* Watchdog pre-timeout */
ssif_inc_stat(ssif_info, watchdog_pretimeouts);
start_clear_flags(ssif_info, flags);
ipmi_smi_watchdog_pretimeout(ssif_info->intf);
} else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL)
/* Messages available. */
start_recv_msg_fetch(ssif_info, flags);
else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL)
/* Events available. */
start_event_fetch(ssif_info, flags);
else {
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
}
}
static int ipmi_ssif_thread(void *data)
{
struct ssif_info *ssif_info = data;
while (!kthread_should_stop()) {
int result;
/* Wait for something to do */
result = wait_for_completion_interruptible(
&ssif_info->wake_thread);
if (ssif_info->stopping)
break;
if (result == -ERESTARTSYS)
continue;
init_completion(&ssif_info->wake_thread);
if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) {
result = i2c_smbus_write_block_data(
ssif_info->client, ssif_info->i2c_command,
ssif_info->i2c_data[0],
ssif_info->i2c_data + 1);
ssif_info->done_handler(ssif_info, result, NULL, 0);
} else {
result = i2c_smbus_read_block_data(
ssif_info->client, ssif_info->i2c_command,
ssif_info->i2c_data);
if (result < 0)
ssif_info->done_handler(ssif_info, result,
NULL, 0);
else
ssif_info->done_handler(ssif_info, 0,
ssif_info->i2c_data,
result);
}
}
return 0;
}
static int ssif_i2c_send(struct ssif_info *ssif_info,
ssif_i2c_done handler,
int read_write, int command,
unsigned char *data, unsigned int size)
{
ssif_info->done_handler = handler;
ssif_info->i2c_read_write = read_write;
ssif_info->i2c_command = command;
ssif_info->i2c_data = data;
ssif_info->i2c_size = size;
complete(&ssif_info->wake_thread);
return 0;
}
static void msg_done_handler(struct ssif_info *ssif_info, int result,
unsigned char *data, unsigned int len);
static void start_get(struct ssif_info *ssif_info)
{
int rv;
ssif_info->rtc_us_timer = 0;
ssif_info->multi_pos = 0;
rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
SSIF_IPMI_RESPONSE,
ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
if (rv < 0) {
/* request failed, just return the error. */
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Error from i2c_non_blocking_op(5)\n");
msg_done_handler(ssif_info, -EIO, NULL, 0);
}
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
static void retry_timeout(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer);
unsigned long oflags, *flags;
bool waiting;
if (ssif_info->stopping)
return;
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
waiting = ssif_info->waiting_alert;
ssif_info->waiting_alert = false;
ipmi_ssif_unlock_cond(ssif_info, flags);
if (waiting)
start_get(ssif_info);
}
static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type,
unsigned int data)
{
struct ssif_info *ssif_info = i2c_get_clientdata(client);
unsigned long oflags, *flags;
bool do_get = false;
if (type != I2C_PROTOCOL_SMBUS_ALERT)
return;
ssif_inc_stat(ssif_info, alerts);
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
if (ssif_info->waiting_alert) {
ssif_info->waiting_alert = false;
del_timer(&ssif_info->retry_timer);
do_get = true;
} else if (ssif_info->curr_msg) {
ssif_info->got_alert = true;
}
ipmi_ssif_unlock_cond(ssif_info, flags);
if (do_get)
start_get(ssif_info);
}
static int start_resend(struct ssif_info *ssif_info);
static void msg_done_handler(struct ssif_info *ssif_info, int result,
unsigned char *data, unsigned int len)
{
struct ipmi_smi_msg *msg;
unsigned long oflags, *flags;
int rv;
/*
* We are single-threaded here, so no need for a lock until we
* start messing with driver states or the queues.
*/
if (result < 0) {
ssif_info->retries_left--;
if (ssif_info->retries_left > 0) {
ssif_inc_stat(ssif_info, receive_retries);
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
ssif_info->waiting_alert = true;
ssif_info->rtc_us_timer = SSIF_MSG_USEC;
mod_timer(&ssif_info->retry_timer,
jiffies + SSIF_MSG_JIFFIES);
ipmi_ssif_unlock_cond(ssif_info, flags);
return;
}
ssif_inc_stat(ssif_info, receive_errors);
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Error in msg_done_handler: %d\n", result);
len = 0;
goto continue_op;
}
if ((len > 1) && (ssif_info->multi_pos == 0)
&& (data[0] == 0x00) && (data[1] == 0x01)) {
/* Start of multi-part read. Start the next transaction. */
int i;
ssif_inc_stat(ssif_info, received_message_parts);
/* Remove the multi-part read marker. */
len -= 2;
for (i = 0; i < len; i++)
ssif_info->data[i] = data[i+2];
ssif_info->multi_len = len;
ssif_info->multi_pos = 1;
rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
if (rv < 0) {
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Error from i2c_non_blocking_op(1)\n");
result = -EIO;
} else
return;
} else if (ssif_info->multi_pos) {
/* Middle of multi-part read. Start the next transaction. */
int i;
unsigned char blocknum;
if (len == 0) {
result = -EIO;
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info(PFX "Middle message with no data\n");
goto continue_op;
}
blocknum = data[0];
if (ssif_info->multi_len + len - 1 > IPMI_MAX_MSG_LENGTH) {
/* Received message too big, abort the operation. */
result = -E2BIG;
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Received message too big\n");
goto continue_op;
}
/* Remove the blocknum from the data. */
len--;
for (i = 0; i < len; i++)
ssif_info->data[i + ssif_info->multi_len] = data[i + 1];
ssif_info->multi_len += len;
if (blocknum == 0xff) {
/* End of read */
len = ssif_info->multi_len;
data = ssif_info->data;
} else if (blocknum + 1 != ssif_info->multi_pos) {
/*
* Out of sequence block, just abort. Block
* numbers start at zero for the second block,
* but multi_pos starts at one, so the +1.
*/
result = -EIO;
} else {
ssif_inc_stat(ssif_info, received_message_parts);
ssif_info->multi_pos++;
rv = ssif_i2c_send(ssif_info, msg_done_handler,
I2C_SMBUS_READ,
SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
ssif_info->recv,
I2C_SMBUS_BLOCK_DATA);
if (rv < 0) {
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info(PFX
"Error from ssif_i2c_send\n");
result = -EIO;
} else
return;
}
}
if (result < 0) {
ssif_inc_stat(ssif_info, receive_errors);
} else {
ssif_inc_stat(ssif_info, received_messages);
ssif_inc_stat(ssif_info, received_message_parts);
}
continue_op:
if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
pr_info(PFX "DONE 1: state = %d, result=%d.\n",
ssif_info->ssif_state, result);
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
msg = ssif_info->curr_msg;
if (msg) {
msg->rsp_size = len;
if (msg->rsp_size > IPMI_MAX_MSG_LENGTH)
msg->rsp_size = IPMI_MAX_MSG_LENGTH;
memcpy(msg->rsp, data, msg->rsp_size);
ssif_info->curr_msg = NULL;
}
switch (ssif_info->ssif_state) {
case SSIF_NORMAL:
ipmi_ssif_unlock_cond(ssif_info, flags);
if (!msg)
break;
if (result < 0)
return_hosed_msg(ssif_info, msg);
else
deliver_recv_msg(ssif_info, msg);
break;
case SSIF_GETTING_FLAGS:
/* We got the flags from the SSIF, now handle them. */
if ((result < 0) || (len < 4) || (data[2] != 0)) {
/*
* Error fetching flags, or invalid length,
* just give up for now.
*/
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
pr_warn(PFX "Error getting flags: %d %d, %x\n",
result, len, (len >= 3) ? data[2] : 0);
} else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
|| data[1] != IPMI_GET_MSG_FLAGS_CMD) {
/*
* Don't abort here, maybe it was a queued
* response to a previous command.
*/
ipmi_ssif_unlock_cond(ssif_info, flags);
pr_warn(PFX "Invalid response getting flags: %x %x\n",
data[0], data[1]);
} else {
ssif_inc_stat(ssif_info, flag_fetches);
ssif_info->msg_flags = data[3];
handle_flags(ssif_info, flags);
}
break;
case SSIF_CLEARING_FLAGS:
/* We cleared the flags. */
if ((result < 0) || (len < 3) || (data[2] != 0)) {
/* Error clearing flags */
pr_warn(PFX "Error clearing flags: %d %d, %x\n",
result, len, (len >= 3) ? data[2] : 0);
} else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
|| data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) {
pr_warn(PFX "Invalid response clearing flags: %x %x\n",
data[0], data[1]);
}
ssif_info->ssif_state = SSIF_NORMAL;
ipmi_ssif_unlock_cond(ssif_info, flags);
break;
case SSIF_GETTING_EVENTS:
if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the event flag. */
ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
handle_flags(ssif_info, flags);
} else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
|| msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) {
pr_warn(PFX "Invalid response getting events: %x %x\n",
msg->rsp[0], msg->rsp[1]);
msg->done(msg);
/* Take off the event flag. */
ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
handle_flags(ssif_info, flags);
} else {
handle_flags(ssif_info, flags);
ssif_inc_stat(ssif_info, events);
deliver_recv_msg(ssif_info, msg);
}
break;
case SSIF_GETTING_MESSAGES:
if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
/* Error getting event, probably done. */
msg->done(msg);
/* Take off the msg flag. */
ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
handle_flags(ssif_info, flags);
} else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
|| msg->rsp[1] != IPMI_GET_MSG_CMD) {
pr_warn(PFX "Invalid response clearing flags: %x %x\n",
msg->rsp[0], msg->rsp[1]);
msg->done(msg);
/* Take off the msg flag. */
ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
handle_flags(ssif_info, flags);
} else {
ssif_inc_stat(ssif_info, incoming_messages);
handle_flags(ssif_info, flags);
deliver_recv_msg(ssif_info, msg);
}
break;
}
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) {
if (ssif_info->req_events)
start_event_fetch(ssif_info, flags);
else if (ssif_info->req_flags)
start_flag_fetch(ssif_info, flags);
else
start_next_msg(ssif_info, flags);
} else
ipmi_ssif_unlock_cond(ssif_info, flags);
if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
pr_info(PFX "DONE 2: state = %d.\n", ssif_info->ssif_state);
}
static void msg_written_handler(struct ssif_info *ssif_info, int result,
unsigned char *data, unsigned int len)
{
int rv;
/* We are single-threaded here, so no need for a lock. */
if (result < 0) {
ssif_info->retries_left--;
if (ssif_info->retries_left > 0) {
if (!start_resend(ssif_info)) {
ssif_inc_stat(ssif_info, send_retries);
return;
}
/* request failed, just return the error. */
ssif_inc_stat(ssif_info, send_errors);
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info(PFX
"Out of retries in msg_written_handler\n");
msg_done_handler(ssif_info, -EIO, NULL, 0);
return;
}
ssif_inc_stat(ssif_info, send_errors);
/*
* Got an error on transmit, let the done routine
* handle it.
*/
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Error in msg_written_handler: %d\n", result);
msg_done_handler(ssif_info, result, NULL, 0);
return;
}
if (ssif_info->multi_data) {
/*
* In the middle of a multi-data write. See the comment
* in the SSIF_MULTI_n_PART case in the probe function
* for details on the intricacies of this.
*/
int left;
unsigned char *data_to_send;
ssif_inc_stat(ssif_info, sent_messages_parts);
left = ssif_info->multi_len - ssif_info->multi_pos;
if (left > 32)
left = 32;
/* Length byte. */
ssif_info->multi_data[ssif_info->multi_pos] = left;
data_to_send = ssif_info->multi_data + ssif_info->multi_pos;
ssif_info->multi_pos += left;
if (left < 32)
/*
* Write is finished. Note that we must end
* with a write of less than 32 bytes to
* complete the transaction, even if it is
* zero bytes.
*/
ssif_info->multi_data = NULL;
rv = ssif_i2c_send(ssif_info, msg_written_handler,
I2C_SMBUS_WRITE,
SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE,
data_to_send,
I2C_SMBUS_BLOCK_DATA);
if (rv < 0) {
/* request failed, just return the error. */
ssif_inc_stat(ssif_info, send_errors);
if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
pr_info("Error from i2c_non_blocking_op(3)\n");
msg_done_handler(ssif_info, -EIO, NULL, 0);
}
} else {
/* Ready to request the result. */
unsigned long oflags, *flags;
ssif_inc_stat(ssif_info, sent_messages);
ssif_inc_stat(ssif_info, sent_messages_parts);
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
if (ssif_info->got_alert) {
/* The result is already ready, just start it. */
ssif_info->got_alert = false;
ipmi_ssif_unlock_cond(ssif_info, flags);
start_get(ssif_info);
} else {
/* Wait a jiffie then request the next message */
ssif_info->waiting_alert = true;
ssif_info->retries_left = SSIF_RECV_RETRIES;
ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC;
mod_timer(&ssif_info->retry_timer,
jiffies + SSIF_MSG_PART_JIFFIES);
ipmi_ssif_unlock_cond(ssif_info, flags);
}
}
}
static int start_resend(struct ssif_info *ssif_info)
{
int rv;
int command;
ssif_info->got_alert = false;
if (ssif_info->data_len > 32) {
command = SSIF_IPMI_MULTI_PART_REQUEST_START;
ssif_info->multi_data = ssif_info->data;
ssif_info->multi_len = ssif_info->data_len;
/*
* Subtle thing, this is 32, not 33, because we will
* overwrite the thing at position 32 (which was just
* transmitted) with the new length.
*/
ssif_info->multi_pos = 32;
ssif_info->data[0] = 32;
} else {
ssif_info->multi_data = NULL;
command = SSIF_IPMI_REQUEST;
ssif_info->data[0] = ssif_info->data_len;
}
rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE,
command, ssif_info->data, I2C_SMBUS_BLOCK_DATA);
if (rv && (ssif_info->ssif_debug & SSIF_DEBUG_MSG))
pr_info("Error from i2c_non_blocking_op(4)\n");
return rv;
}
static int start_send(struct ssif_info *ssif_info,
unsigned char *data,
unsigned int len)
{
if (len > IPMI_MAX_MSG_LENGTH)
return -E2BIG;
if (len > ssif_info->max_xmit_msg_size)
return -E2BIG;
ssif_info->retries_left = SSIF_SEND_RETRIES;
memcpy(ssif_info->data + 1, data, len);
ssif_info->data_len = len;
return start_resend(ssif_info);
}
/* Must be called with the message lock held. */
static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags)
{
struct ipmi_smi_msg *msg;
unsigned long oflags;
restart:
if (!SSIF_IDLE(ssif_info)) {
ipmi_ssif_unlock_cond(ssif_info, flags);
return;
}
if (!ssif_info->waiting_msg) {
ssif_info->curr_msg = NULL;
ipmi_ssif_unlock_cond(ssif_info, flags);
} else {
int rv;
ssif_info->curr_msg = ssif_info->waiting_msg;
ssif_info->waiting_msg = NULL;
ipmi_ssif_unlock_cond(ssif_info, flags);
rv = start_send(ssif_info,
ssif_info->curr_msg->data,
ssif_info->curr_msg->data_size);
if (rv) {
msg = ssif_info->curr_msg;
ssif_info->curr_msg = NULL;
return_hosed_msg(ssif_info, msg);
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
goto restart;
}
}
}
static void sender(void *send_info,
struct ipmi_smi_msg *msg)
{
struct ssif_info *ssif_info = (struct ssif_info *) send_info;
unsigned long oflags, *flags;
BUG_ON(ssif_info->waiting_msg);
ssif_info->waiting_msg = msg;
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
start_next_msg(ssif_info, flags);
if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) {
struct timespec64 t;
ktime_get_real_ts64(&t);
pr_info("**Enqueue %02x %02x: %lld.%6.6ld\n",
msg->data[0], msg->data[1],
(long long) t.tv_sec, (long) t.tv_nsec / NSEC_PER_USEC);
}
}
static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
{
struct ssif_info *ssif_info = send_info;
data->addr_src = ssif_info->addr_source;
data->dev = &ssif_info->client->dev;
data->addr_info = ssif_info->addr_info;
get_device(data->dev);
return 0;
}
/*
* Instead of having our own timer to periodically check the message
* flags, we let the message handler drive us.
*/
static void request_events(void *send_info)
{
struct ssif_info *ssif_info = (struct ssif_info *) send_info;
unsigned long oflags, *flags;
if (!ssif_info->has_event_buffer)
return;
flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
/*
* Request flags first, not events, because the lower layer
* doesn't have a way to send an attention. But make sure
* event checking still happens.
*/
ssif_info->req_events = true;
if (SSIF_IDLE(ssif_info))
start_flag_fetch(ssif_info, flags);
else {
ssif_info->req_flags = true;
ipmi_ssif_unlock_cond(ssif_info, flags);
}
}
static int ssif_start_processing(void *send_info,
struct ipmi_smi *intf)
{
struct ssif_info *ssif_info = send_info;
ssif_info->intf = intf;
return 0;
}
#define MAX_SSIF_BMCS 4
static unsigned short addr[MAX_SSIF_BMCS];
static int num_addrs;
module_param_array(addr, ushort, &num_addrs, 0);
MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs.");
static char *adapter_name[MAX_SSIF_BMCS];
static int num_adapter_names;
module_param_array(adapter_name, charp, &num_adapter_names, 0);
MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned.");
static int slave_addrs[MAX_SSIF_BMCS];
static int num_slave_addrs;
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs,
"The default IPMB slave address for the controller.");
static bool alerts_broken;
module_param(alerts_broken, bool, 0);
MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller.");
/*
* Bit 0 enables message debugging, bit 1 enables state debugging, and
* bit 2 enables timing debugging. This is an array indexed by
* interface number"
*/
static int dbg[MAX_SSIF_BMCS];
static int num_dbg;
module_param_array(dbg, int, &num_dbg, 0);
MODULE_PARM_DESC(dbg, "Turn on debugging.");
static bool ssif_dbg_probe;
module_param_named(dbg_probe, ssif_dbg_probe, bool, 0);
MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters.");
static bool ssif_tryacpi = true;
module_param_named(tryacpi, ssif_tryacpi, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI");
static bool ssif_trydmi = true;
module_param_named(trydmi, ssif_trydmi, bool, 0);
MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)");
static DEFINE_MUTEX(ssif_infos_mutex);
static LIST_HEAD(ssif_infos);
#define IPMI_SSIF_ATTR(name) \
static ssize_t ipmi_##name##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct ssif_info *ssif_info = dev_get_drvdata(dev); \
\
return snprintf(buf, 10, "%u\n", ssif_get_stat(ssif_info, name));\
} \
static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
static ssize_t ipmi_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, 10, "ssif\n");
}
static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
IPMI_SSIF_ATTR(sent_messages);
IPMI_SSIF_ATTR(sent_messages_parts);
IPMI_SSIF_ATTR(send_retries);
IPMI_SSIF_ATTR(send_errors);
IPMI_SSIF_ATTR(received_messages);
IPMI_SSIF_ATTR(received_message_parts);
IPMI_SSIF_ATTR(receive_retries);
IPMI_SSIF_ATTR(receive_errors);
IPMI_SSIF_ATTR(flag_fetches);
IPMI_SSIF_ATTR(hosed);
IPMI_SSIF_ATTR(events);
IPMI_SSIF_ATTR(watchdog_pretimeouts);
IPMI_SSIF_ATTR(alerts);
static struct attribute *ipmi_ssif_dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_sent_messages.attr,
&dev_attr_sent_messages_parts.attr,
&dev_attr_send_retries.attr,
&dev_attr_send_errors.attr,
&dev_attr_received_messages.attr,
&dev_attr_received_message_parts.attr,
&dev_attr_receive_retries.attr,
&dev_attr_receive_errors.attr,
&dev_attr_flag_fetches.attr,
&dev_attr_hosed.attr,
&dev_attr_events.attr,
&dev_attr_watchdog_pretimeouts.attr,
&dev_attr_alerts.attr,
NULL
};
static const struct attribute_group ipmi_ssif_dev_attr_group = {
.attrs = ipmi_ssif_dev_attrs,
};
static void shutdown_ssif(void *send_info)
{
struct ssif_info *ssif_info = send_info;
device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
dev_set_drvdata(&ssif_info->client->dev, NULL);
/* make sure the driver is not looking for flags any more. */
while (ssif_info->ssif_state != SSIF_NORMAL)
schedule_timeout(1);
ssif_info->stopping = true;
del_timer_sync(&ssif_info->retry_timer);
if (ssif_info->thread) {
complete(&ssif_info->wake_thread);
kthread_stop(ssif_info->thread);
}
/*
* No message can be outstanding now, we have removed the
* upper layer and it permitted us to do so.
*/
kfree(ssif_info);
}
static int ssif_remove(struct i2c_client *client)
{
struct ssif_info *ssif_info = i2c_get_clientdata(client);
struct ipmi_smi *intf;
struct ssif_addr_info *addr_info;
int rv;
if (!ssif_info)
return 0;
/*
* After this point, we won't deliver anything asychronously
* to the message handler. We can unregister ourself.
*/
intf = ssif_info->intf;
ssif_info->intf = NULL;
ipmi_unregister_smi(intf);
list_for_each_entry(addr_info, &ssif_infos, link) {
if (addr_info->client == client) {
addr_info->client = NULL;
break;
}
}
return rv;
}
static int do_cmd(struct i2c_client *client, int len, unsigned char *msg,
int *resp_len, unsigned char *resp)
{
int retry_cnt;
int ret;
retry_cnt = SSIF_SEND_RETRIES;
retry1:
ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg);
if (ret) {
retry_cnt--;
if (retry_cnt > 0)
goto retry1;
return -ENODEV;
}
ret = -ENODEV;
retry_cnt = SSIF_RECV_RETRIES;
while (retry_cnt > 0) {
ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE,
resp);
if (ret > 0)
break;
msleep(SSIF_MSG_MSEC);
retry_cnt--;
if (retry_cnt <= 0)
break;
}
if (ret > 0) {
/* Validate that the response is correct. */
if (ret < 3 ||
(resp[0] != (msg[0] | (1 << 2))) ||
(resp[1] != msg[1]))
ret = -EINVAL;
else {
*resp_len = ret;
ret = 0;
}
}
return ret;
}
static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info)
{
unsigned char *resp;
unsigned char msg[3];
int rv;
int len;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
/* Do a Get Device ID command, since it is required. */
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
rv = do_cmd(client, 2, msg, &len, resp);
if (rv)
rv = -ENODEV;
else
strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE);
kfree(resp);
return rv;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
static int smi_type_proc_show(struct seq_file *m, void *v)
{
seq_puts(m, "ssif\n");
return 0;
}
static int smi_type_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_type_proc_show, inode->i_private);
}
static const struct file_operations smi_type_proc_ops = {
.open = smi_type_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int smi_stats_proc_show(struct seq_file *m, void *v)
{
struct ssif_info *ssif_info = m->private;
seq_printf(m, "sent_messages: %u\n",
ssif_get_stat(ssif_info, sent_messages));
seq_printf(m, "sent_messages_parts: %u\n",
ssif_get_stat(ssif_info, sent_messages_parts));
seq_printf(m, "send_retries: %u\n",
ssif_get_stat(ssif_info, send_retries));
seq_printf(m, "send_errors: %u\n",
ssif_get_stat(ssif_info, send_errors));
seq_printf(m, "received_messages: %u\n",
ssif_get_stat(ssif_info, received_messages));
seq_printf(m, "received_message_parts: %u\n",
ssif_get_stat(ssif_info, received_message_parts));
seq_printf(m, "receive_retries: %u\n",
ssif_get_stat(ssif_info, receive_retries));
seq_printf(m, "receive_errors: %u\n",
ssif_get_stat(ssif_info, receive_errors));
seq_printf(m, "flag_fetches: %u\n",
ssif_get_stat(ssif_info, flag_fetches));
seq_printf(m, "hosed: %u\n",
ssif_get_stat(ssif_info, hosed));
seq_printf(m, "events: %u\n",
ssif_get_stat(ssif_info, events));
seq_printf(m, "watchdog_pretimeouts: %u\n",
ssif_get_stat(ssif_info, watchdog_pretimeouts));
seq_printf(m, "alerts: %u\n",
ssif_get_stat(ssif_info, alerts));
return 0;
}
static int smi_stats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
}
static const struct file_operations smi_stats_proc_ops = {
.open = smi_stats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static int strcmp_nospace(char *s1, char *s2)
{
while (*s1 && *s2) {
while (isspace(*s1))
s1++;
while (isspace(*s2))
s2++;
if (*s1 > *s2)
return 1;
if (*s1 < *s2)
return -1;
s1++;
s2++;
}
return 0;
}
static struct ssif_addr_info *ssif_info_find(unsigned short addr,
char *adapter_name,
bool match_null_name)
{
struct ssif_addr_info *info, *found = NULL;
restart:
list_for_each_entry(info, &ssif_infos, link) {
if (info->binfo.addr == addr) {
if (info->adapter_name || adapter_name) {
if (!info->adapter_name != !adapter_name) {
/* One is NULL and one is not */
continue;
}
if (adapter_name &&
strcmp_nospace(info->adapter_name,
adapter_name))
/* Names do not match */
continue;
}
found = info;
break;
}
}
if (!found && match_null_name) {
/* Try to get an exact match first, then try with a NULL name */
adapter_name = NULL;
match_null_name = false;
goto restart;
}
return found;
}
static bool check_acpi(struct ssif_info *ssif_info, struct device *dev)
{
#ifdef CONFIG_ACPI
acpi_handle acpi_handle;
acpi_handle = ACPI_HANDLE(dev);
if (acpi_handle) {
ssif_info->addr_source = SI_ACPI;
ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle;
return true;
}
#endif
return false;
}
static int find_slave_address(struct i2c_client *client, int slave_addr)
{
#ifdef CONFIG_IPMI_DMI_DECODE
if (!slave_addr)
slave_addr = ipmi_dmi_get_slave_addr(
SI_TYPE_INVALID,
i2c_adapter_id(client->adapter),
client->addr);
#endif
return slave_addr;
}
/*
* Global enables we care about.
*/
#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
IPMI_BMC_EVT_MSG_INTR)
static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
unsigned char msg[3];
unsigned char *resp;
struct ssif_info *ssif_info;
int rv = 0;
int len;
int i;
u8 slave_addr = 0;
struct ssif_addr_info *addr_info = NULL;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL);
if (!ssif_info) {
kfree(resp);
return -ENOMEM;
}
if (!check_acpi(ssif_info, &client->dev)) {
addr_info = ssif_info_find(client->addr, client->adapter->name,
true);
if (!addr_info) {
/* Must have come in through sysfs. */
ssif_info->addr_source = SI_HOTMOD;
} else {
ssif_info->addr_source = addr_info->addr_src;
ssif_info->ssif_debug = addr_info->debug;
ssif_info->addr_info = addr_info->addr_info;
addr_info->client = client;
slave_addr = addr_info->slave_addr;
}
}
slave_addr = find_slave_address(client, slave_addr);
pr_info(PFX "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n",
ipmi_addr_src_to_str(ssif_info->addr_source),
client->addr, client->adapter->name, slave_addr);
ssif_info->client = client;
i2c_set_clientdata(client, ssif_info);
/* Now check for system interface capabilities */
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD;
msg[2] = 0; /* SSIF */
rv = do_cmd(client, 3, msg, &len, resp);
if (!rv && (len >= 3) && (resp[2] == 0)) {
if (len < 7) {
if (ssif_dbg_probe)
pr_info(PFX "SSIF info too short: %d\n", len);
goto no_support;
}
/* Got a good SSIF response, handle it. */
ssif_info->max_xmit_msg_size = resp[5];
ssif_info->max_recv_msg_size = resp[6];
ssif_info->multi_support = (resp[4] >> 6) & 0x3;
ssif_info->supports_pec = (resp[4] >> 3) & 0x1;
/* Sanitize the data */
switch (ssif_info->multi_support) {
case SSIF_NO_MULTI:
if (ssif_info->max_xmit_msg_size > 32)
ssif_info->max_xmit_msg_size = 32;
if (ssif_info->max_recv_msg_size > 32)
ssif_info->max_recv_msg_size = 32;
break;
case SSIF_MULTI_2_PART:
if (ssif_info->max_xmit_msg_size > 63)
ssif_info->max_xmit_msg_size = 63;
if (ssif_info->max_recv_msg_size > 62)
ssif_info->max_recv_msg_size = 62;
break;
case SSIF_MULTI_n_PART:
/*
* The specification is rather confusing at
* this point, but I think I understand what
* is meant. At least I have a workable
* solution. With multi-part messages, you
* cannot send a message that is a multiple of
* 32-bytes in length, because the start and
* middle messages are 32-bytes and the end
* message must be at least one byte. You
* can't fudge on an extra byte, that would
* screw up things like fru data writes. So
* we limit the length to 63 bytes. That way
* a 32-byte message gets sent as a single
* part. A larger message will be a 32-byte
* start and the next message is always going
* to be 1-31 bytes in length. Not ideal, but
* it should work.
*/
if (ssif_info->max_xmit_msg_size > 63)
ssif_info->max_xmit_msg_size = 63;
break;
default:
/* Data is not sane, just give up. */
goto no_support;
}
} else {
no_support:
/* Assume no multi-part or PEC support */
pr_info(PFX "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n",
rv, len, resp[2]);
ssif_info->max_xmit_msg_size = 32;
ssif_info->max_recv_msg_size = 32;
ssif_info->multi_support = SSIF_NO_MULTI;
ssif_info->supports_pec = 0;
}
/* Make sure the NMI timeout is cleared. */
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
msg[2] = WDT_PRE_TIMEOUT_INT;
rv = do_cmd(client, 3, msg, &len, resp);
if (rv || (len < 3) || (resp[2] != 0))
pr_warn(PFX "Unable to clear message flags: %d %d %2.2x\n",
rv, len, resp[2]);
/* Attempt to enable the event buffer. */
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
rv = do_cmd(client, 2, msg, &len, resp);
if (rv || (len < 4) || (resp[2] != 0)) {
pr_warn(PFX "Error getting global enables: %d %d %2.2x\n",
rv, len, resp[2]);
rv = 0; /* Not fatal */
goto found;
}
ssif_info->global_enables = resp[3];
if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
ssif_info->has_event_buffer = true;
/* buffer is already enabled, nothing to do. */
goto found;
}
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF;
rv = do_cmd(client, 3, msg, &len, resp);
if (rv || (len < 2)) {
pr_warn(PFX "Error setting global enables: %d %d %2.2x\n",
rv, len, resp[2]);
rv = 0; /* Not fatal */
goto found;
}
if (resp[2] == 0) {
/* A successful return means the event buffer is supported. */
ssif_info->has_event_buffer = true;
ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF;
}
/* Some systems don't behave well if you enable alerts. */
if (alerts_broken)
goto found;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR;
rv = do_cmd(client, 3, msg, &len, resp);
if (rv || (len < 2)) {
pr_warn(PFX "Error setting global enables: %d %d %2.2x\n",
rv, len, resp[2]);
rv = 0; /* Not fatal */
goto found;
}
if (resp[2] == 0) {
/* A successful return means the alert is supported. */
ssif_info->supports_alert = true;
ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR;
}
found:
if (ssif_dbg_probe) {
pr_info("ssif_probe: i2c_probe found device at i2c address %x\n",
client->addr);
}
spin_lock_init(&ssif_info->lock);
ssif_info->ssif_state = SSIF_NORMAL;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&ssif_info->retry_timer, retry_timeout, 0);
for (i = 0; i < SSIF_NUM_STATS; i++)
atomic_set(&ssif_info->stats[i], 0);
if (ssif_info->supports_pec)
ssif_info->client->flags |= I2C_CLIENT_PEC;
ssif_info->handlers.owner = THIS_MODULE;
ssif_info->handlers.start_processing = ssif_start_processing;
ssif_info->handlers.shutdown = shutdown_ssif;
ssif_info->handlers.get_smi_info = get_smi_info;
ssif_info->handlers.sender = sender;
ssif_info->handlers.request_events = request_events;
{
unsigned int thread_num;
thread_num = ((i2c_adapter_id(ssif_info->client->adapter)
<< 8) |
ssif_info->client->addr);
init_completion(&ssif_info->wake_thread);
ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info,
"kssif%4.4x", thread_num);
if (IS_ERR(ssif_info->thread)) {
rv = PTR_ERR(ssif_info->thread);
dev_notice(&ssif_info->client->dev,
"Could not start kernel thread: error %d\n",
rv);
goto out;
}
}
dev_set_drvdata(&ssif_info->client->dev, ssif_info);
rv = device_add_group(&ssif_info->client->dev,
&ipmi_ssif_dev_attr_group);
if (rv) {
dev_err(&ssif_info->client->dev,
"Unable to add device attributes: error %d\n",
rv);
goto out;
}
rv = ipmi_register_smi(&ssif_info->handlers,
ssif_info,
&ssif_info->client->dev,
slave_addr);
if (rv) {
pr_err(PFX "Unable to register device: error %d\n", rv);
goto out_remove_attr;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
rv = ipmi_smi_add_proc_entry(ssif_info->intf, "type",
&smi_type_proc_ops,
ssif_info);
if (rv) {
pr_err(PFX "Unable to create proc entry: %d\n", rv);
goto out_err_unreg;
}
rv = ipmi_smi_add_proc_entry(ssif_info->intf, "ssif_stats",
&smi_stats_proc_ops,
ssif_info);
if (rv) {
pr_err(PFX "Unable to create proc entry: %d\n", rv);
goto out_err_unreg;
}
#endif
out:
if (rv) {
/*
* Note that if addr_info->client is assigned, we
* leave it. The i2c client hangs around even if we
* return a failure here, and the failure here is not
* propagated back to the i2c code. This seems to be
* design intent, strange as it may be. But if we
* don't leave it, ssif_platform_remove will not remove
* the client like it should.
*/
dev_err(&client->dev, "Unable to start IPMI SSIF: %d\n", rv);
kfree(ssif_info);
}
kfree(resp);
return rv;
#ifdef CONFIG_IPMI_PROC_INTERFACE
out_err_unreg:
ipmi_unregister_smi(ssif_info->intf);
#endif
out_remove_attr:
device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
dev_set_drvdata(&ssif_info->client->dev, NULL);
goto out;
}
static int ssif_adapter_handler(struct device *adev, void *opaque)
{
struct ssif_addr_info *addr_info = opaque;
if (adev->type != &i2c_adapter_type)
return 0;
i2c_new_device(to_i2c_adapter(adev), &addr_info->binfo);
if (!addr_info->adapter_name)
return 1; /* Only try the first I2C adapter by default. */
return 0;
}
static int new_ssif_client(int addr, char *adapter_name,
int debug, int slave_addr,
enum ipmi_addr_src addr_src,
struct device *dev)
{
struct ssif_addr_info *addr_info;
int rv = 0;
mutex_lock(&ssif_infos_mutex);
if (ssif_info_find(addr, adapter_name, false)) {
rv = -EEXIST;
goto out_unlock;
}
addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL);
if (!addr_info) {
rv = -ENOMEM;
goto out_unlock;
}
if (adapter_name) {
addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL);
if (!addr_info->adapter_name) {
kfree(addr_info);
rv = -ENOMEM;
goto out_unlock;
}
}
strncpy(addr_info->binfo.type, DEVICE_NAME,
sizeof(addr_info->binfo.type));
addr_info->binfo.addr = addr;
addr_info->binfo.platform_data = addr_info;
addr_info->debug = debug;
addr_info->slave_addr = slave_addr;
addr_info->addr_src = addr_src;
addr_info->dev = dev;
if (dev)
dev_set_drvdata(dev, addr_info);
list_add_tail(&addr_info->link, &ssif_infos);
if (initialized)
i2c_for_each_dev(addr_info, ssif_adapter_handler);
/* Otherwise address list will get it */
out_unlock:
mutex_unlock(&ssif_infos_mutex);
return rv;
}
static void free_ssif_clients(void)
{
struct ssif_addr_info *info, *tmp;
mutex_lock(&ssif_infos_mutex);
list_for_each_entry_safe(info, tmp, &ssif_infos, link) {
list_del(&info->link);
kfree(info->adapter_name);
kfree(info);
}
mutex_unlock(&ssif_infos_mutex);
}
static unsigned short *ssif_address_list(void)
{
struct ssif_addr_info *info;
unsigned int count = 0, i;
unsigned short *address_list;
list_for_each_entry(info, &ssif_infos, link)
count++;
address_list = kzalloc(sizeof(*address_list) * (count + 1), GFP_KERNEL);
if (!address_list)
return NULL;
i = 0;
list_for_each_entry(info, &ssif_infos, link) {
unsigned short addr = info->binfo.addr;
int j;
for (j = 0; j < i; j++) {
if (address_list[j] == addr)
goto skip_addr;
}
address_list[i] = addr;
skip_addr:
i++;
}
address_list[i] = I2C_CLIENT_END;
return address_list;
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id ssif_acpi_match[] = {
{ "IPI0001", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, ssif_acpi_match);
#endif
#ifdef CONFIG_DMI
static int dmi_ipmi_probe(struct platform_device *pdev)
{
u8 slave_addr = 0;
u16 i2c_addr;
int rv;
if (!ssif_trydmi)
return -ENODEV;
rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr);
if (rv) {
dev_warn(&pdev->dev, PFX "No i2c-addr property\n");
return -ENODEV;
}
rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
if (rv)
dev_warn(&pdev->dev, "device has no slave-addr property");
return new_ssif_client(i2c_addr, NULL, 0,
slave_addr, SI_SMBIOS, &pdev->dev);
}
#else
static int dmi_ipmi_probe(struct platform_device *pdev)
{
return -ENODEV;
}
#endif
static const struct i2c_device_id ssif_id[] = {
{ DEVICE_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ssif_id);
static struct i2c_driver ssif_i2c_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = DEVICE_NAME
},
.probe = ssif_probe,
.remove = ssif_remove,
.alert = ssif_alert,
.id_table = ssif_id,
.detect = ssif_detect
};
static int ssif_platform_probe(struct platform_device *dev)
{
return dmi_ipmi_probe(dev);
}
static int ssif_platform_remove(struct platform_device *dev)
{
struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev);
if (!addr_info)
return 0;
mutex_lock(&ssif_infos_mutex);
i2c_unregister_device(addr_info->client);
list_del(&addr_info->link);
kfree(addr_info);
mutex_unlock(&ssif_infos_mutex);
return 0;
}
static struct platform_driver ipmi_driver = {
.driver = {
.name = DEVICE_NAME,
},
.probe = ssif_platform_probe,
.remove = ssif_platform_remove,
};
static int init_ipmi_ssif(void)
{
int i;
int rv;
if (initialized)
return 0;
pr_info("IPMI SSIF Interface driver\n");
/* build list for i2c from addr list */
for (i = 0; i < num_addrs; i++) {
rv = new_ssif_client(addr[i], adapter_name[i],
dbg[i], slave_addrs[i],
SI_HARDCODED, NULL);
if (rv)
pr_err(PFX
"Couldn't add hardcoded device at addr 0x%x\n",
addr[i]);
}
if (ssif_tryacpi)
ssif_i2c_driver.driver.acpi_match_table =
ACPI_PTR(ssif_acpi_match);
if (ssif_trydmi) {
rv = platform_driver_register(&ipmi_driver);
if (rv)
pr_err(PFX "Unable to register driver: %d\n", rv);
}
ssif_i2c_driver.address_list = ssif_address_list();
rv = i2c_add_driver(&ssif_i2c_driver);
if (!rv)
initialized = true;
return rv;
}
module_init(init_ipmi_ssif);
static void cleanup_ipmi_ssif(void)
{
if (!initialized)
return;
initialized = false;
i2c_del_driver(&ssif_i2c_driver);
platform_driver_unregister(&ipmi_driver);
free_ssif_clients();
}
module_exit(cleanup_ipmi_ssif);
MODULE_ALIAS("platform:dmi-ipmi-ssif");
MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>");
MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus");
MODULE_LICENSE("GPL");