OpenCloudOS-Kernel/fs/iomap/buffered-io.c

1528 lines
41 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Red Hat, Inc.
* Copyright (C) 2016-2019 Christoph Hellwig.
*/
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/buffer_head.h>
#include <linux/dax.h>
#include <linux/writeback.h>
#include <linux/list_sort.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/sched/signal.h>
#include <linux/migrate.h>
#include "trace.h"
#include "../internal.h"
/*
* Structure allocated for each page or THP when block size < page size
* to track sub-page uptodate status and I/O completions.
*/
struct iomap_page {
atomic_t read_bytes_pending;
atomic_t write_bytes_pending;
spinlock_t uptodate_lock;
unsigned long uptodate[];
};
static inline struct iomap_page *to_iomap_page(struct page *page)
{
/*
* per-block data is stored in the head page. Callers should
* not be dealing with tail pages, and if they are, they can
* call thp_head() first.
*/
VM_BUG_ON_PGFLAGS(PageTail(page), page);
if (page_has_private(page))
return (struct iomap_page *)page_private(page);
return NULL;
}
static struct bio_set iomap_ioend_bioset;
static struct iomap_page *
iomap_page_create(struct inode *inode, struct page *page)
{
struct iomap_page *iop = to_iomap_page(page);
unsigned int nr_blocks = i_blocks_per_page(inode, page);
if (iop || nr_blocks <= 1)
return iop;
iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
GFP_NOFS | __GFP_NOFAIL);
spin_lock_init(&iop->uptodate_lock);
if (PageUptodate(page))
bitmap_fill(iop->uptodate, nr_blocks);
attach_page_private(page, iop);
return iop;
}
static void
iomap_page_release(struct page *page)
{
struct iomap_page *iop = detach_page_private(page);
unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
if (!iop)
return;
WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
PageUptodate(page));
kfree(iop);
}
/*
* Calculate the range inside the page that we actually need to read.
*/
static void
iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
{
loff_t orig_pos = *pos;
loff_t isize = i_size_read(inode);
unsigned block_bits = inode->i_blkbits;
unsigned block_size = (1 << block_bits);
unsigned poff = offset_in_page(*pos);
unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
unsigned first = poff >> block_bits;
unsigned last = (poff + plen - 1) >> block_bits;
/*
* If the block size is smaller than the page size, we need to check the
* per-block uptodate status and adjust the offset and length if needed
* to avoid reading in already uptodate ranges.
*/
if (iop) {
unsigned int i;
/* move forward for each leading block marked uptodate */
for (i = first; i <= last; i++) {
if (!test_bit(i, iop->uptodate))
break;
*pos += block_size;
poff += block_size;
plen -= block_size;
first++;
}
/* truncate len if we find any trailing uptodate block(s) */
for ( ; i <= last; i++) {
if (test_bit(i, iop->uptodate)) {
plen -= (last - i + 1) * block_size;
last = i - 1;
break;
}
}
}
/*
* If the extent spans the block that contains the i_size, we need to
* handle both halves separately so that we properly zero data in the
* page cache for blocks that are entirely outside of i_size.
*/
if (orig_pos <= isize && orig_pos + length > isize) {
unsigned end = offset_in_page(isize - 1) >> block_bits;
if (first <= end && last > end)
plen -= (last - end) * block_size;
}
*offp = poff;
*lenp = plen;
}
static void
iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
{
struct iomap_page *iop = to_iomap_page(page);
struct inode *inode = page->mapping->host;
unsigned first = off >> inode->i_blkbits;
unsigned last = (off + len - 1) >> inode->i_blkbits;
unsigned long flags;
spin_lock_irqsave(&iop->uptodate_lock, flags);
bitmap_set(iop->uptodate, first, last - first + 1);
if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
SetPageUptodate(page);
spin_unlock_irqrestore(&iop->uptodate_lock, flags);
}
static void
iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
{
if (PageError(page))
return;
if (page_has_private(page))
iomap_iop_set_range_uptodate(page, off, len);
else
SetPageUptodate(page);
}
static void
iomap_read_page_end_io(struct bio_vec *bvec, int error)
{
struct page *page = bvec->bv_page;
struct iomap_page *iop = to_iomap_page(page);
if (unlikely(error)) {
ClearPageUptodate(page);
SetPageError(page);
} else {
iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
}
if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
unlock_page(page);
}
static void
iomap_read_end_io(struct bio *bio)
{
int error = blk_status_to_errno(bio->bi_status);
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all)
iomap_read_page_end_io(bvec, error);
bio_put(bio);
}
struct iomap_readpage_ctx {
struct page *cur_page;
bool cur_page_in_bio;
struct bio *bio;
struct readahead_control *rac;
};
/**
* iomap_read_inline_data - copy inline data into the page cache
* @iter: iteration structure
* @page: page to copy to
*
* Copy the inline data in @iter into @page and zero out the rest of the page.
* Only a single IOMAP_INLINE extent is allowed at the end of each file.
* Returns zero for success to complete the read, or the usual negative errno.
*/
static int iomap_read_inline_data(const struct iomap_iter *iter,
struct page *page)
{
const struct iomap *iomap = iomap_iter_srcmap(iter);
size_t size = i_size_read(iter->inode) - iomap->offset;
size_t poff = offset_in_page(iomap->offset);
void *addr;
if (PageUptodate(page))
return 0;
if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
return -EIO;
if (WARN_ON_ONCE(size > PAGE_SIZE -
offset_in_page(iomap->inline_data)))
return -EIO;
if (WARN_ON_ONCE(size > iomap->length))
return -EIO;
if (poff > 0)
iomap_page_create(iter->inode, page);
addr = kmap_local_page(page) + poff;
memcpy(addr, iomap->inline_data, size);
memset(addr + size, 0, PAGE_SIZE - poff - size);
kunmap_local(addr);
iomap_set_range_uptodate(page, poff, PAGE_SIZE - poff);
return 0;
}
static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
loff_t pos)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
return srcmap->type != IOMAP_MAPPED ||
(srcmap->flags & IOMAP_F_NEW) ||
pos >= i_size_read(iter->inode);
}
static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
struct iomap_readpage_ctx *ctx, loff_t offset)
{
const struct iomap *iomap = &iter->iomap;
loff_t pos = iter->pos + offset;
loff_t length = iomap_length(iter) - offset;
struct page *page = ctx->cur_page;
struct iomap_page *iop;
loff_t orig_pos = pos;
unsigned poff, plen;
sector_t sector;
if (iomap->type == IOMAP_INLINE)
return iomap_read_inline_data(iter, page);
/* zero post-eof blocks as the page may be mapped */
iop = iomap_page_create(iter->inode, page);
iomap_adjust_read_range(iter->inode, iop, &pos, length, &poff, &plen);
if (plen == 0)
goto done;
if (iomap_block_needs_zeroing(iter, pos)) {
zero_user(page, poff, plen);
iomap_set_range_uptodate(page, poff, plen);
goto done;
}
ctx->cur_page_in_bio = true;
if (iop)
atomic_add(plen, &iop->read_bytes_pending);
sector = iomap_sector(iomap, pos);
if (!ctx->bio ||
bio_end_sector(ctx->bio) != sector ||
bio_add_page(ctx->bio, page, plen, poff) != plen) {
gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
gfp_t orig_gfp = gfp;
unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
if (ctx->bio)
submit_bio(ctx->bio);
if (ctx->rac) /* same as readahead_gfp_mask */
gfp |= __GFP_NORETRY | __GFP_NOWARN;
ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
/*
* If the bio_alloc fails, try it again for a single page to
* avoid having to deal with partial page reads. This emulates
* what do_mpage_readpage does.
*/
if (!ctx->bio)
ctx->bio = bio_alloc(orig_gfp, 1);
ctx->bio->bi_opf = REQ_OP_READ;
if (ctx->rac)
ctx->bio->bi_opf |= REQ_RAHEAD;
ctx->bio->bi_iter.bi_sector = sector;
bio_set_dev(ctx->bio, iomap->bdev);
ctx->bio->bi_end_io = iomap_read_end_io;
__bio_add_page(ctx->bio, page, plen, poff);
}
done:
/*
* Move the caller beyond our range so that it keeps making progress.
* For that, we have to include any leading non-uptodate ranges, but
* we can skip trailing ones as they will be handled in the next
* iteration.
*/
return pos - orig_pos + plen;
}
int
iomap_readpage(struct page *page, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = page->mapping->host,
.pos = page_offset(page),
.len = PAGE_SIZE,
};
struct iomap_readpage_ctx ctx = {
.cur_page = page,
};
int ret;
trace_iomap_readpage(page->mapping->host, 1);
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
if (ret < 0)
SetPageError(page);
if (ctx.bio) {
submit_bio(ctx.bio);
WARN_ON_ONCE(!ctx.cur_page_in_bio);
} else {
WARN_ON_ONCE(ctx.cur_page_in_bio);
unlock_page(page);
}
/*
* Just like mpage_readahead and block_read_full_page, we always
* return 0 and just mark the page as PageError on errors. This
* should be cleaned up throughout the stack eventually.
*/
return 0;
}
EXPORT_SYMBOL_GPL(iomap_readpage);
static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
struct iomap_readpage_ctx *ctx)
{
loff_t length = iomap_length(iter);
loff_t done, ret;
for (done = 0; done < length; done += ret) {
if (ctx->cur_page && offset_in_page(iter->pos + done) == 0) {
if (!ctx->cur_page_in_bio)
unlock_page(ctx->cur_page);
put_page(ctx->cur_page);
ctx->cur_page = NULL;
}
if (!ctx->cur_page) {
ctx->cur_page = readahead_page(ctx->rac);
ctx->cur_page_in_bio = false;
}
ret = iomap_readpage_iter(iter, ctx, done);
if (ret <= 0)
return ret;
}
return done;
}
/**
* iomap_readahead - Attempt to read pages from a file.
* @rac: Describes the pages to be read.
* @ops: The operations vector for the filesystem.
*
* This function is for filesystems to call to implement their readahead
* address_space operation.
*
* Context: The @ops callbacks may submit I/O (eg to read the addresses of
* blocks from disc), and may wait for it. The caller may be trying to
* access a different page, and so sleeping excessively should be avoided.
* It may allocate memory, but should avoid costly allocations. This
* function is called with memalloc_nofs set, so allocations will not cause
* the filesystem to be reentered.
*/
void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = rac->mapping->host,
.pos = readahead_pos(rac),
.len = readahead_length(rac),
};
struct iomap_readpage_ctx ctx = {
.rac = rac,
};
trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
while (iomap_iter(&iter, ops) > 0)
iter.processed = iomap_readahead_iter(&iter, &ctx);
if (ctx.bio)
submit_bio(ctx.bio);
if (ctx.cur_page) {
if (!ctx.cur_page_in_bio)
unlock_page(ctx.cur_page);
put_page(ctx.cur_page);
}
}
EXPORT_SYMBOL_GPL(iomap_readahead);
/*
* iomap_is_partially_uptodate checks whether blocks within a page are
* uptodate or not.
*
* Returns true if all blocks which correspond to a file portion
* we want to read within the page are uptodate.
*/
int
iomap_is_partially_uptodate(struct page *page, unsigned long from,
unsigned long count)
{
struct iomap_page *iop = to_iomap_page(page);
struct inode *inode = page->mapping->host;
unsigned len, first, last;
unsigned i;
/* Limit range to one page */
len = min_t(unsigned, PAGE_SIZE - from, count);
/* First and last blocks in range within page */
first = from >> inode->i_blkbits;
last = (from + len - 1) >> inode->i_blkbits;
if (iop) {
for (i = first; i <= last; i++)
if (!test_bit(i, iop->uptodate))
return 0;
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
int
iomap_releasepage(struct page *page, gfp_t gfp_mask)
{
trace_iomap_releasepage(page->mapping->host, page_offset(page),
PAGE_SIZE);
/*
* mm accommodates an old ext3 case where clean pages might not have had
* the dirty bit cleared. Thus, it can send actual dirty pages to
* ->releasepage() via shrink_active_list(); skip those here.
*/
if (PageDirty(page) || PageWriteback(page))
return 0;
iomap_page_release(page);
return 1;
}
EXPORT_SYMBOL_GPL(iomap_releasepage);
void
iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
{
trace_iomap_invalidatepage(page->mapping->host, offset, len);
/*
* If we're invalidating the entire page, clear the dirty state from it
* and release it to avoid unnecessary buildup of the LRU.
*/
if (offset == 0 && len == PAGE_SIZE) {
WARN_ON_ONCE(PageWriteback(page));
cancel_dirty_page(page);
iomap_page_release(page);
}
}
EXPORT_SYMBOL_GPL(iomap_invalidatepage);
#ifdef CONFIG_MIGRATION
int
iomap_migrate_page(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode)
{
int ret;
Also new for 5.3: - Regroup the fs/iomap.c code by major functional area so that we can start development for 5.4 from a more stable base. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl0vMvMACgkQ+H93GTRK tOtgsw//Xrqy6pYnohvltKkmE2Ioo17Ylctg15MZpicxSREyozSntdUbPJ8Hv3qF uM80Z9PJh/XzlTbDbQ+bvEj6kAQxClGmcoKn8vBScW0LBqRz5rMwhJE2C8hyRx08 hf310FPnZnyJK7jWGjZFhg1EsIqzQD8TZVNt4+sT/Kz/dWglkeT5sXJtoGTT8WI2 Rgx8U8AYdpjaKfUf7X7ab68krYBNOrUS6vRp+4sfts6s7y4zILOom2QdDblwWT54 pruq6iS4+2gyf4Pl7HXYT2A17R/coTb0AOrWNC3Sg0W4I6gdfoTXeten7jUVgXvl eXKOPHYYXqJadvdjPx7+DFW7sy6RSP8xe/KUp9uiEOW4dmKqxTrEoxYgFNBXgjwC FBUwgc2vhAw8o3P+/NcfbqYWwF/2fDvDBTQZ3kdwpmrFQqzhDyRxr5hPrhObuo5r wAJgP8F4M5KKdos0lg9jR4cirrInEzUOeHaLhFC+d9cFMNcxRo8ddx5KriMHVvuA JWgeXWvRKL3nPtbnyLRVxeEGmjhjwMkntKaCPqgD4FOD1+CGUuBtzykcPMbGfSS0 sZd/qEJ6lZqYKRxee/R1d5RkJx+86TG3ZdWvuc49zSYavMLuqG/l2ohmfQ1P03nA Ux+8Bg6BbMGzlkVPXgiogHBN6ro2ZrjsHzu8E6+IuEXeL3NIC8A= =3uGR -----END PGP SIGNATURE----- Merge tag 'iomap-5.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull iomap split/cleanup from Darrick Wong: "As promised, here's the second part of the iomap merge for 5.3, in which we break up iomap.c into smaller files grouped by functional area so that it'll be easier in the long run to maintain cohesiveness of code units and to review incoming patches. There are no functional changes and fs/iomap.c split cleanly. Summary: - Regroup the fs/iomap.c code by major functional area so that we can start development for 5.4 from a more stable base" * tag 'iomap-5.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: iomap: move internal declarations into fs/iomap/ iomap: move the main iteration code into a separate file iomap: move the buffered IO code into a separate file iomap: move the direct IO code into a separate file iomap: move the SEEK_HOLE code into a separate file iomap: move the file mapping reporting code into a separate file iomap: move the swapfile code into a separate file iomap: start moving code to fs/iomap/
2019-07-20 02:38:12 +08:00
ret = migrate_page_move_mapping(mapping, newpage, page, 0);
if (ret != MIGRATEPAGE_SUCCESS)
return ret;
if (page_has_private(page))
attach_page_private(newpage, detach_page_private(page));
if (mode != MIGRATE_SYNC_NO_COPY)
migrate_page_copy(newpage, page);
else
migrate_page_states(newpage, page);
return MIGRATEPAGE_SUCCESS;
}
EXPORT_SYMBOL_GPL(iomap_migrate_page);
#endif /* CONFIG_MIGRATION */
static void
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
{
loff_t i_size = i_size_read(inode);
/*
* Only truncate newly allocated pages beyoned EOF, even if the
* write started inside the existing inode size.
*/
if (pos + len > i_size)
truncate_pagecache_range(inode, max(pos, i_size), pos + len);
}
static int
iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
unsigned plen, const struct iomap *iomap)
{
struct bio_vec bvec;
struct bio bio;
bio_init(&bio, &bvec, 1);
bio.bi_opf = REQ_OP_READ;
bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
bio_set_dev(&bio, iomap->bdev);
__bio_add_page(&bio, page, plen, poff);
return submit_bio_wait(&bio);
}
static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
unsigned len, struct page *page)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
struct iomap_page *iop = iomap_page_create(iter->inode, page);
loff_t block_size = i_blocksize(iter->inode);
loff_t block_start = round_down(pos, block_size);
loff_t block_end = round_up(pos + len, block_size);
unsigned from = offset_in_page(pos), to = from + len, poff, plen;
if (PageUptodate(page))
return 0;
ClearPageError(page);
do {
iomap_adjust_read_range(iter->inode, iop, &block_start,
block_end - block_start, &poff, &plen);
if (plen == 0)
break;
if (!(iter->flags & IOMAP_UNSHARE) &&
(from <= poff || from >= poff + plen) &&
(to <= poff || to >= poff + plen))
continue;
if (iomap_block_needs_zeroing(iter, block_start)) {
if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
return -EIO;
zero_user_segments(page, poff, from, to, poff + plen);
} else {
int status = iomap_read_page_sync(block_start, page,
poff, plen, srcmap);
if (status)
return status;
}
iomap_set_range_uptodate(page, poff, plen);
} while ((block_start += plen) < block_end);
return 0;
}
static int iomap_write_begin_inline(const struct iomap_iter *iter,
struct page *page)
{
/* needs more work for the tailpacking case; disable for now */
if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
return -EIO;
return iomap_read_inline_data(iter, page);
}
static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
unsigned len, struct page **pagep)
{
const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
struct page *page;
int status = 0;
BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
if (srcmap != &iter->iomap)
BUG_ON(pos + len > srcmap->offset + srcmap->length);
if (fatal_signal_pending(current))
return -EINTR;
if (page_ops && page_ops->page_prepare) {
status = page_ops->page_prepare(iter->inode, pos, len);
if (status)
return status;
}
page = grab_cache_page_write_begin(iter->inode->i_mapping,
pos >> PAGE_SHIFT, AOP_FLAG_NOFS);
if (!page) {
status = -ENOMEM;
goto out_no_page;
}
if (srcmap->type == IOMAP_INLINE)
status = iomap_write_begin_inline(iter, page);
else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
status = __block_write_begin_int(page, pos, len, NULL, srcmap);
else
status = __iomap_write_begin(iter, pos, len, page);
if (unlikely(status))
goto out_unlock;
*pagep = page;
return 0;
out_unlock:
unlock_page(page);
put_page(page);
iomap_write_failed(iter->inode, pos, len);
out_no_page:
if (page_ops && page_ops->page_done)
page_ops->page_done(iter->inode, pos, 0, NULL);
return status;
}
static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
size_t copied, struct page *page)
{
flush_dcache_page(page);
/*
* The blocks that were entirely written will now be uptodate, so we
* don't have to worry about a readpage reading them and overwriting a
* partial write. However, if we've encountered a short write and only
* partially written into a block, it will not be marked uptodate, so a
* readpage might come in and destroy our partial write.
*
* Do the simplest thing and just treat any short write to a
* non-uptodate page as a zero-length write, and force the caller to
* redo the whole thing.
*/
if (unlikely(copied < len && !PageUptodate(page)))
return 0;
iomap_set_range_uptodate(page, offset_in_page(pos), len);
__set_page_dirty_nobuffers(page);
return copied;
}
static size_t iomap_write_end_inline(const struct iomap_iter *iter,
struct page *page, loff_t pos, size_t copied)
{
const struct iomap *iomap = &iter->iomap;
void *addr;
WARN_ON_ONCE(!PageUptodate(page));
BUG_ON(!iomap_inline_data_valid(iomap));
flush_dcache_page(page);
addr = kmap_local_page(page) + pos;
memcpy(iomap_inline_data(iomap, pos), addr, copied);
kunmap_local(addr);
mark_inode_dirty(iter->inode);
return copied;
}
/* Returns the number of bytes copied. May be 0. Cannot be an errno. */
static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
size_t copied, struct page *page)
{
const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t old_size = iter->inode->i_size;
size_t ret;
if (srcmap->type == IOMAP_INLINE) {
ret = iomap_write_end_inline(iter, page, pos, copied);
} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
copied, page, NULL);
} else {
ret = __iomap_write_end(iter->inode, pos, len, copied, page);
}
/*
* Update the in-memory inode size after copying the data into the page
* cache. It's up to the file system to write the updated size to disk,
* preferably after I/O completion so that no stale data is exposed.
*/
if (pos + ret > old_size) {
i_size_write(iter->inode, pos + ret);
iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
}
unlock_page(page);
if (old_size < pos)
pagecache_isize_extended(iter->inode, old_size, pos);
if (page_ops && page_ops->page_done)
page_ops->page_done(iter->inode, pos, ret, page);
put_page(page);
if (ret < len)
iomap_write_failed(iter->inode, pos, len);
return ret;
}
static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
{
loff_t length = iomap_length(iter);
loff_t pos = iter->pos;
ssize_t written = 0;
long status = 0;
do {
struct page *page;
unsigned long offset; /* Offset into pagecache page */
unsigned long bytes; /* Bytes to write to page */
size_t copied; /* Bytes copied from user */
offset = offset_in_page(pos);
bytes = min_t(unsigned long, PAGE_SIZE - offset,
iov_iter_count(i));
again:
if (bytes > length)
bytes = length;
/*
* Bring in the user page that we'll copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*/
if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
status = -EFAULT;
break;
}
status = iomap_write_begin(iter, pos, bytes, &page);
if (unlikely(status))
break;
if (mapping_writably_mapped(iter->inode->i_mapping))
flush_dcache_page(page);
copied = copy_page_from_iter_atomic(page, offset, bytes, i);
status = iomap_write_end(iter, pos, bytes, copied, page);
if (unlikely(copied != status))
iov_iter_revert(i, copied - status);
cond_resched();
if (unlikely(status == 0)) {
/*
* A short copy made iomap_write_end() reject the
* thing entirely. Might be memory poisoning
* halfway through, might be a race with munmap,
* might be severe memory pressure.
*/
if (copied)
bytes = copied;
goto again;
}
pos += status;
written += status;
length -= status;
balance_dirty_pages_ratelimited(iter->inode->i_mapping);
} while (iov_iter_count(i) && length);
return written ? written : status;
}
ssize_t
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = iocb->ki_filp->f_mapping->host,
.pos = iocb->ki_pos,
.len = iov_iter_count(i),
.flags = IOMAP_WRITE,
};
int ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_write_iter(&iter, i);
if (iter.pos == iocb->ki_pos)
return ret;
return iter.pos - iocb->ki_pos;
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
static loff_t iomap_unshare_iter(struct iomap_iter *iter)
{
struct iomap *iomap = &iter->iomap;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t pos = iter->pos;
loff_t length = iomap_length(iter);
long status = 0;
loff_t written = 0;
/* don't bother with blocks that are not shared to start with */
if (!(iomap->flags & IOMAP_F_SHARED))
return length;
/* don't bother with holes or unwritten extents */
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
return length;
do {
unsigned long offset = offset_in_page(pos);
unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
struct page *page;
status = iomap_write_begin(iter, pos, bytes, &page);
if (unlikely(status))
return status;
status = iomap_write_end(iter, pos, bytes, bytes, page);
if (WARN_ON_ONCE(status == 0))
return -EIO;
cond_resched();
pos += status;
written += status;
length -= status;
balance_dirty_pages_ratelimited(iter->inode->i_mapping);
} while (length);
return written;
}
int
iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = inode,
.pos = pos,
.len = len,
.flags = IOMAP_WRITE | IOMAP_UNSHARE,
};
int ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_unshare_iter(&iter);
return ret;
}
EXPORT_SYMBOL_GPL(iomap_file_unshare);
static s64 __iomap_zero_iter(struct iomap_iter *iter, loff_t pos, u64 length)
{
struct page *page;
int status;
unsigned offset = offset_in_page(pos);
unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
status = iomap_write_begin(iter, pos, bytes, &page);
if (status)
return status;
zero_user(page, offset, bytes);
mark_page_accessed(page);
return iomap_write_end(iter, pos, bytes, bytes, page);
}
static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
{
struct iomap *iomap = &iter->iomap;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t pos = iter->pos;
loff_t length = iomap_length(iter);
loff_t written = 0;
/* already zeroed? we're done. */
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
return length;
do {
s64 bytes;
if (IS_DAX(iter->inode))
bytes = dax_iomap_zero(pos, length, iomap);
else
bytes = __iomap_zero_iter(iter, pos, length);
if (bytes < 0)
return bytes;
pos += bytes;
length -= bytes;
written += bytes;
if (did_zero)
*did_zero = true;
} while (length > 0);
return written;
}
int
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = inode,
.pos = pos,
.len = len,
.flags = IOMAP_ZERO,
};
int ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_zero_iter(&iter, did_zero);
return ret;
}
EXPORT_SYMBOL_GPL(iomap_zero_range);
int
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
const struct iomap_ops *ops)
{
unsigned int blocksize = i_blocksize(inode);
unsigned int off = pos & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!off)
return 0;
return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
}
EXPORT_SYMBOL_GPL(iomap_truncate_page);
static loff_t iomap_page_mkwrite_iter(struct iomap_iter *iter,
struct page *page)
{
loff_t length = iomap_length(iter);
int ret;
if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
ret = __block_write_begin_int(page, iter->pos, length, NULL,
&iter->iomap);
if (ret)
return ret;
block_commit_write(page, 0, length);
} else {
WARN_ON_ONCE(!PageUptodate(page));
set_page_dirty(page);
}
return length;
}
vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = file_inode(vmf->vma->vm_file),
.flags = IOMAP_WRITE | IOMAP_FAULT,
};
struct page *page = vmf->page;
ssize_t ret;
lock_page(page);
ret = page_mkwrite_check_truncate(page, iter.inode);
if (ret < 0)
goto out_unlock;
iter.pos = page_offset(page);
iter.len = ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_page_mkwrite_iter(&iter, page);
if (ret < 0)
goto out_unlock;
wait_for_stable_page(page);
return VM_FAULT_LOCKED;
out_unlock:
unlock_page(page);
return block_page_mkwrite_return(ret);
}
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
static void
iomap_finish_page_writeback(struct inode *inode, struct page *page,
int error, unsigned int len)
{
struct iomap_page *iop = to_iomap_page(page);
if (error) {
SetPageError(page);
mapping_set_error(inode->i_mapping, error);
}
WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
end_page_writeback(page);
}
/*
* We're now finished for good with this ioend structure. Update the page
* state, release holds on bios, and finally free up memory. Do not use the
* ioend after this.
*/
static void
iomap_finish_ioend(struct iomap_ioend *ioend, int error)
{
struct inode *inode = ioend->io_inode;
struct bio *bio = &ioend->io_inline_bio;
struct bio *last = ioend->io_bio, *next;
u64 start = bio->bi_iter.bi_sector;
iomap: stop using ioend after it's been freed in iomap_finish_ioend() This patch fixes the following KASAN report. The @ioend has been freed by dio_put(), but the iomap_finish_ioend() still trys to access its data. [20563.631624] BUG: KASAN: use-after-free in iomap_finish_ioend+0x58c/0x5c0 [20563.638319] Read of size 8 at addr fffffc0c54a36928 by task kworker/123:2/22184 [20563.647107] CPU: 123 PID: 22184 Comm: kworker/123:2 Not tainted 5.4.0+ #1 [20563.653887] Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.11 06/18/2019 [20563.664499] Workqueue: xfs-conv/sda5 xfs_end_io [xfs] [20563.669547] Call trace: [20563.671993] dump_backtrace+0x0/0x370 [20563.675648] show_stack+0x1c/0x28 [20563.678958] dump_stack+0x138/0x1b0 [20563.682455] print_address_description.isra.9+0x60/0x378 [20563.687759] __kasan_report+0x1a4/0x2a8 [20563.691587] kasan_report+0xc/0x18 [20563.694985] __asan_report_load8_noabort+0x18/0x20 [20563.699769] iomap_finish_ioend+0x58c/0x5c0 [20563.703944] iomap_finish_ioends+0x110/0x270 [20563.708396] xfs_end_ioend+0x168/0x598 [xfs] [20563.712823] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.716834] process_one_work+0x7f0/0x1ac8 [20563.720922] worker_thread+0x334/0xae0 [20563.724664] kthread+0x2c4/0x348 [20563.727889] ret_from_fork+0x10/0x18 [20563.732941] Allocated by task 83403: [20563.736512] save_stack+0x24/0xb0 [20563.739820] __kasan_kmalloc.isra.9+0xc4/0xe0 [20563.744169] kasan_slab_alloc+0x14/0x20 [20563.747998] slab_post_alloc_hook+0x50/0xa8 [20563.752173] kmem_cache_alloc+0x154/0x330 [20563.756185] mempool_alloc_slab+0x20/0x28 [20563.760186] mempool_alloc+0xf4/0x2a8 [20563.763845] bio_alloc_bioset+0x2d0/0x448 [20563.767849] iomap_writepage_map+0x4b8/0x1740 [20563.772198] iomap_do_writepage+0x200/0x8d0 [20563.776380] write_cache_pages+0x8a4/0xed8 [20563.780469] iomap_writepages+0x4c/0xb0 [20563.784463] xfs_vm_writepages+0xf8/0x148 [xfs] [20563.788989] do_writepages+0xc8/0x218 [20563.792658] __writeback_single_inode+0x168/0x18f8 [20563.797441] writeback_sb_inodes+0x370/0xd30 [20563.801703] wb_writeback+0x2d4/0x1270 [20563.805446] wb_workfn+0x344/0x1178 [20563.808928] process_one_work+0x7f0/0x1ac8 [20563.813016] worker_thread+0x334/0xae0 [20563.816757] kthread+0x2c4/0x348 [20563.819979] ret_from_fork+0x10/0x18 [20563.825028] Freed by task 22184: [20563.828251] save_stack+0x24/0xb0 [20563.831559] __kasan_slab_free+0x10c/0x180 [20563.835648] kasan_slab_free+0x10/0x18 [20563.839389] slab_free_freelist_hook+0xb4/0x1c0 [20563.843912] kmem_cache_free+0x8c/0x3e8 [20563.847745] mempool_free_slab+0x20/0x28 [20563.851660] mempool_free+0xd4/0x2f8 [20563.855231] bio_free+0x33c/0x518 [20563.858537] bio_put+0xb8/0x100 [20563.861672] iomap_finish_ioend+0x168/0x5c0 [20563.865847] iomap_finish_ioends+0x110/0x270 [20563.870328] xfs_end_ioend+0x168/0x598 [xfs] [20563.874751] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.878755] process_one_work+0x7f0/0x1ac8 [20563.882844] worker_thread+0x334/0xae0 [20563.886584] kthread+0x2c4/0x348 [20563.889804] ret_from_fork+0x10/0x18 [20563.894855] The buggy address belongs to the object at fffffc0c54a36900 which belongs to the cache bio-1 of size 248 [20563.906844] The buggy address is located 40 bytes inside of 248-byte region [fffffc0c54a36900, fffffc0c54a369f8) [20563.918485] The buggy address belongs to the page: [20563.923269] page:ffffffff82f528c0 refcount:1 mapcount:0 mapping:fffffc8e4ba31900 index:0xfffffc0c54a33300 [20563.932832] raw: 17ffff8000000200 ffffffffa3060100 0000000700000007 fffffc8e4ba31900 [20563.940567] raw: fffffc0c54a33300 0000000080aa0042 00000001ffffffff 0000000000000000 [20563.948300] page dumped because: kasan: bad access detected [20563.955345] Memory state around the buggy address: [20563.960129] fffffc0c54a36800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.967342] fffffc0c54a36880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20563.974554] >fffffc0c54a36900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [20563.981766] ^ [20563.986288] fffffc0c54a36980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.993501] fffffc0c54a36a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20564.000713] ================================================================== Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205703 Signed-off-by: Zorro Lang <zlang@redhat.com> Fixes: 9cd0ed63ca514 ("iomap: enhance writeback error message") Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2019-12-05 14:59:02 +08:00
loff_t offset = ioend->io_offset;
bool quiet = bio_flagged(bio, BIO_QUIET);
for (bio = &ioend->io_inline_bio; bio; bio = next) {
struct bio_vec *bv;
struct bvec_iter_all iter_all;
/*
* For the last bio, bi_private points to the ioend, so we
* need to explicitly end the iteration here.
*/
if (bio == last)
next = NULL;
else
next = bio->bi_private;
/* walk each page on bio, ending page IO on them */
bio_for_each_segment_all(bv, bio, iter_all)
iomap_finish_page_writeback(inode, bv->bv_page, error,
bv->bv_len);
bio_put(bio);
}
iomap: stop using ioend after it's been freed in iomap_finish_ioend() This patch fixes the following KASAN report. The @ioend has been freed by dio_put(), but the iomap_finish_ioend() still trys to access its data. [20563.631624] BUG: KASAN: use-after-free in iomap_finish_ioend+0x58c/0x5c0 [20563.638319] Read of size 8 at addr fffffc0c54a36928 by task kworker/123:2/22184 [20563.647107] CPU: 123 PID: 22184 Comm: kworker/123:2 Not tainted 5.4.0+ #1 [20563.653887] Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.11 06/18/2019 [20563.664499] Workqueue: xfs-conv/sda5 xfs_end_io [xfs] [20563.669547] Call trace: [20563.671993] dump_backtrace+0x0/0x370 [20563.675648] show_stack+0x1c/0x28 [20563.678958] dump_stack+0x138/0x1b0 [20563.682455] print_address_description.isra.9+0x60/0x378 [20563.687759] __kasan_report+0x1a4/0x2a8 [20563.691587] kasan_report+0xc/0x18 [20563.694985] __asan_report_load8_noabort+0x18/0x20 [20563.699769] iomap_finish_ioend+0x58c/0x5c0 [20563.703944] iomap_finish_ioends+0x110/0x270 [20563.708396] xfs_end_ioend+0x168/0x598 [xfs] [20563.712823] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.716834] process_one_work+0x7f0/0x1ac8 [20563.720922] worker_thread+0x334/0xae0 [20563.724664] kthread+0x2c4/0x348 [20563.727889] ret_from_fork+0x10/0x18 [20563.732941] Allocated by task 83403: [20563.736512] save_stack+0x24/0xb0 [20563.739820] __kasan_kmalloc.isra.9+0xc4/0xe0 [20563.744169] kasan_slab_alloc+0x14/0x20 [20563.747998] slab_post_alloc_hook+0x50/0xa8 [20563.752173] kmem_cache_alloc+0x154/0x330 [20563.756185] mempool_alloc_slab+0x20/0x28 [20563.760186] mempool_alloc+0xf4/0x2a8 [20563.763845] bio_alloc_bioset+0x2d0/0x448 [20563.767849] iomap_writepage_map+0x4b8/0x1740 [20563.772198] iomap_do_writepage+0x200/0x8d0 [20563.776380] write_cache_pages+0x8a4/0xed8 [20563.780469] iomap_writepages+0x4c/0xb0 [20563.784463] xfs_vm_writepages+0xf8/0x148 [xfs] [20563.788989] do_writepages+0xc8/0x218 [20563.792658] __writeback_single_inode+0x168/0x18f8 [20563.797441] writeback_sb_inodes+0x370/0xd30 [20563.801703] wb_writeback+0x2d4/0x1270 [20563.805446] wb_workfn+0x344/0x1178 [20563.808928] process_one_work+0x7f0/0x1ac8 [20563.813016] worker_thread+0x334/0xae0 [20563.816757] kthread+0x2c4/0x348 [20563.819979] ret_from_fork+0x10/0x18 [20563.825028] Freed by task 22184: [20563.828251] save_stack+0x24/0xb0 [20563.831559] __kasan_slab_free+0x10c/0x180 [20563.835648] kasan_slab_free+0x10/0x18 [20563.839389] slab_free_freelist_hook+0xb4/0x1c0 [20563.843912] kmem_cache_free+0x8c/0x3e8 [20563.847745] mempool_free_slab+0x20/0x28 [20563.851660] mempool_free+0xd4/0x2f8 [20563.855231] bio_free+0x33c/0x518 [20563.858537] bio_put+0xb8/0x100 [20563.861672] iomap_finish_ioend+0x168/0x5c0 [20563.865847] iomap_finish_ioends+0x110/0x270 [20563.870328] xfs_end_ioend+0x168/0x598 [xfs] [20563.874751] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.878755] process_one_work+0x7f0/0x1ac8 [20563.882844] worker_thread+0x334/0xae0 [20563.886584] kthread+0x2c4/0x348 [20563.889804] ret_from_fork+0x10/0x18 [20563.894855] The buggy address belongs to the object at fffffc0c54a36900 which belongs to the cache bio-1 of size 248 [20563.906844] The buggy address is located 40 bytes inside of 248-byte region [fffffc0c54a36900, fffffc0c54a369f8) [20563.918485] The buggy address belongs to the page: [20563.923269] page:ffffffff82f528c0 refcount:1 mapcount:0 mapping:fffffc8e4ba31900 index:0xfffffc0c54a33300 [20563.932832] raw: 17ffff8000000200 ffffffffa3060100 0000000700000007 fffffc8e4ba31900 [20563.940567] raw: fffffc0c54a33300 0000000080aa0042 00000001ffffffff 0000000000000000 [20563.948300] page dumped because: kasan: bad access detected [20563.955345] Memory state around the buggy address: [20563.960129] fffffc0c54a36800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.967342] fffffc0c54a36880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20563.974554] >fffffc0c54a36900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [20563.981766] ^ [20563.986288] fffffc0c54a36980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.993501] fffffc0c54a36a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20564.000713] ================================================================== Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205703 Signed-off-by: Zorro Lang <zlang@redhat.com> Fixes: 9cd0ed63ca514 ("iomap: enhance writeback error message") Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2019-12-05 14:59:02 +08:00
/* The ioend has been freed by bio_put() */
if (unlikely(error && !quiet)) {
printk_ratelimited(KERN_ERR
"%s: writeback error on inode %lu, offset %lld, sector %llu",
iomap: stop using ioend after it's been freed in iomap_finish_ioend() This patch fixes the following KASAN report. The @ioend has been freed by dio_put(), but the iomap_finish_ioend() still trys to access its data. [20563.631624] BUG: KASAN: use-after-free in iomap_finish_ioend+0x58c/0x5c0 [20563.638319] Read of size 8 at addr fffffc0c54a36928 by task kworker/123:2/22184 [20563.647107] CPU: 123 PID: 22184 Comm: kworker/123:2 Not tainted 5.4.0+ #1 [20563.653887] Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.11 06/18/2019 [20563.664499] Workqueue: xfs-conv/sda5 xfs_end_io [xfs] [20563.669547] Call trace: [20563.671993] dump_backtrace+0x0/0x370 [20563.675648] show_stack+0x1c/0x28 [20563.678958] dump_stack+0x138/0x1b0 [20563.682455] print_address_description.isra.9+0x60/0x378 [20563.687759] __kasan_report+0x1a4/0x2a8 [20563.691587] kasan_report+0xc/0x18 [20563.694985] __asan_report_load8_noabort+0x18/0x20 [20563.699769] iomap_finish_ioend+0x58c/0x5c0 [20563.703944] iomap_finish_ioends+0x110/0x270 [20563.708396] xfs_end_ioend+0x168/0x598 [xfs] [20563.712823] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.716834] process_one_work+0x7f0/0x1ac8 [20563.720922] worker_thread+0x334/0xae0 [20563.724664] kthread+0x2c4/0x348 [20563.727889] ret_from_fork+0x10/0x18 [20563.732941] Allocated by task 83403: [20563.736512] save_stack+0x24/0xb0 [20563.739820] __kasan_kmalloc.isra.9+0xc4/0xe0 [20563.744169] kasan_slab_alloc+0x14/0x20 [20563.747998] slab_post_alloc_hook+0x50/0xa8 [20563.752173] kmem_cache_alloc+0x154/0x330 [20563.756185] mempool_alloc_slab+0x20/0x28 [20563.760186] mempool_alloc+0xf4/0x2a8 [20563.763845] bio_alloc_bioset+0x2d0/0x448 [20563.767849] iomap_writepage_map+0x4b8/0x1740 [20563.772198] iomap_do_writepage+0x200/0x8d0 [20563.776380] write_cache_pages+0x8a4/0xed8 [20563.780469] iomap_writepages+0x4c/0xb0 [20563.784463] xfs_vm_writepages+0xf8/0x148 [xfs] [20563.788989] do_writepages+0xc8/0x218 [20563.792658] __writeback_single_inode+0x168/0x18f8 [20563.797441] writeback_sb_inodes+0x370/0xd30 [20563.801703] wb_writeback+0x2d4/0x1270 [20563.805446] wb_workfn+0x344/0x1178 [20563.808928] process_one_work+0x7f0/0x1ac8 [20563.813016] worker_thread+0x334/0xae0 [20563.816757] kthread+0x2c4/0x348 [20563.819979] ret_from_fork+0x10/0x18 [20563.825028] Freed by task 22184: [20563.828251] save_stack+0x24/0xb0 [20563.831559] __kasan_slab_free+0x10c/0x180 [20563.835648] kasan_slab_free+0x10/0x18 [20563.839389] slab_free_freelist_hook+0xb4/0x1c0 [20563.843912] kmem_cache_free+0x8c/0x3e8 [20563.847745] mempool_free_slab+0x20/0x28 [20563.851660] mempool_free+0xd4/0x2f8 [20563.855231] bio_free+0x33c/0x518 [20563.858537] bio_put+0xb8/0x100 [20563.861672] iomap_finish_ioend+0x168/0x5c0 [20563.865847] iomap_finish_ioends+0x110/0x270 [20563.870328] xfs_end_ioend+0x168/0x598 [xfs] [20563.874751] xfs_end_io+0x1e0/0x2d0 [xfs] [20563.878755] process_one_work+0x7f0/0x1ac8 [20563.882844] worker_thread+0x334/0xae0 [20563.886584] kthread+0x2c4/0x348 [20563.889804] ret_from_fork+0x10/0x18 [20563.894855] The buggy address belongs to the object at fffffc0c54a36900 which belongs to the cache bio-1 of size 248 [20563.906844] The buggy address is located 40 bytes inside of 248-byte region [fffffc0c54a36900, fffffc0c54a369f8) [20563.918485] The buggy address belongs to the page: [20563.923269] page:ffffffff82f528c0 refcount:1 mapcount:0 mapping:fffffc8e4ba31900 index:0xfffffc0c54a33300 [20563.932832] raw: 17ffff8000000200 ffffffffa3060100 0000000700000007 fffffc8e4ba31900 [20563.940567] raw: fffffc0c54a33300 0000000080aa0042 00000001ffffffff 0000000000000000 [20563.948300] page dumped because: kasan: bad access detected [20563.955345] Memory state around the buggy address: [20563.960129] fffffc0c54a36800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.967342] fffffc0c54a36880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20563.974554] >fffffc0c54a36900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [20563.981766] ^ [20563.986288] fffffc0c54a36980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fc [20563.993501] fffffc0c54a36a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [20564.000713] ================================================================== Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205703 Signed-off-by: Zorro Lang <zlang@redhat.com> Fixes: 9cd0ed63ca514 ("iomap: enhance writeback error message") Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2019-12-05 14:59:02 +08:00
inode->i_sb->s_id, inode->i_ino, offset, start);
}
}
void
iomap_finish_ioends(struct iomap_ioend *ioend, int error)
{
struct list_head tmp;
list_replace_init(&ioend->io_list, &tmp);
iomap_finish_ioend(ioend, error);
while (!list_empty(&tmp)) {
ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
list_del_init(&ioend->io_list);
iomap_finish_ioend(ioend, error);
}
}
EXPORT_SYMBOL_GPL(iomap_finish_ioends);
/*
* We can merge two adjacent ioends if they have the same set of work to do.
*/
static bool
iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
{
if (ioend->io_bio->bi_status != next->io_bio->bi_status)
return false;
if ((ioend->io_flags & IOMAP_F_SHARED) ^
(next->io_flags & IOMAP_F_SHARED))
return false;
if ((ioend->io_type == IOMAP_UNWRITTEN) ^
(next->io_type == IOMAP_UNWRITTEN))
return false;
if (ioend->io_offset + ioend->io_size != next->io_offset)
return false;
return true;
}
void
iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
{
struct iomap_ioend *next;
INIT_LIST_HEAD(&ioend->io_list);
while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
io_list))) {
if (!iomap_ioend_can_merge(ioend, next))
break;
list_move_tail(&next->io_list, &ioend->io_list);
ioend->io_size += next->io_size;
}
}
EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
static int
iomap_ioend_compare(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
if (ia->io_offset < ib->io_offset)
return -1;
if (ia->io_offset > ib->io_offset)
return 1;
return 0;
}
void
iomap_sort_ioends(struct list_head *ioend_list)
{
list_sort(NULL, ioend_list, iomap_ioend_compare);
}
EXPORT_SYMBOL_GPL(iomap_sort_ioends);
static void iomap_writepage_end_bio(struct bio *bio)
{
struct iomap_ioend *ioend = bio->bi_private;
iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
}
/*
* Submit the final bio for an ioend.
*
* If @error is non-zero, it means that we have a situation where some part of
* the submission process has failed after we've marked pages for writeback
* and unlocked them. In this situation, we need to fail the bio instead of
* submitting it. This typically only happens on a filesystem shutdown.
*/
static int
iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
int error)
{
ioend->io_bio->bi_private = ioend;
ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
if (wpc->ops->prepare_ioend)
error = wpc->ops->prepare_ioend(ioend, error);
if (error) {
/*
* If we're failing the IO now, just mark the ioend with an
* error and finish it. This will run IO completion immediately
* as there is only one reference to the ioend at this point in
* time.
*/
ioend->io_bio->bi_status = errno_to_blk_status(error);
bio_endio(ioend->io_bio);
return error;
}
submit_bio(ioend->io_bio);
return 0;
}
static struct iomap_ioend *
iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
loff_t offset, sector_t sector, struct writeback_control *wbc)
{
struct iomap_ioend *ioend;
struct bio *bio;
bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
bio_set_dev(bio, wpc->iomap.bdev);
bio->bi_iter.bi_sector = sector;
bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
bio->bi_write_hint = inode->i_write_hint;
wbc_init_bio(wbc, bio);
ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
INIT_LIST_HEAD(&ioend->io_list);
ioend->io_type = wpc->iomap.type;
ioend->io_flags = wpc->iomap.flags;
ioend->io_inode = inode;
ioend->io_size = 0;
ioend->io_offset = offset;
ioend->io_bio = bio;
return ioend;
}
/*
* Allocate a new bio, and chain the old bio to the new one.
*
* Note that we have to perform the chaining in this unintuitive order
* so that the bi_private linkage is set up in the right direction for the
* traversal in iomap_finish_ioend().
*/
static struct bio *
iomap_chain_bio(struct bio *prev)
{
struct bio *new;
new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
bio_copy_dev(new, prev);/* also copies over blkcg information */
new->bi_iter.bi_sector = bio_end_sector(prev);
new->bi_opf = prev->bi_opf;
new->bi_write_hint = prev->bi_write_hint;
bio_chain(prev, new);
bio_get(prev); /* for iomap_finish_ioend */
submit_bio(prev);
return new;
}
static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
sector_t sector)
{
if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
(wpc->ioend->io_flags & IOMAP_F_SHARED))
return false;
if (wpc->iomap.type != wpc->ioend->io_type)
return false;
if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
return false;
if (sector != bio_end_sector(wpc->ioend->io_bio))
return false;
return true;
}
/*
* Test to see if we have an existing ioend structure that we could append to
* first; otherwise finish off the current ioend and start another.
*/
static void
iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
struct writeback_control *wbc, struct list_head *iolist)
{
sector_t sector = iomap_sector(&wpc->iomap, offset);
unsigned len = i_blocksize(inode);
unsigned poff = offset & (PAGE_SIZE - 1);
if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
if (wpc->ioend)
list_add(&wpc->ioend->io_list, iolist);
wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
}
if (bio_add_page(wpc->ioend->io_bio, page, len, poff) != len) {
wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
__bio_add_page(wpc->ioend->io_bio, page, len, poff);
}
if (iop)
atomic_add(len, &iop->write_bytes_pending);
wpc->ioend->io_size += len;
wbc_account_cgroup_owner(wbc, page, len);
}
/*
* We implement an immediate ioend submission policy here to avoid needing to
* chain multiple ioends and hence nest mempool allocations which can violate
* the forward progress guarantees we need to provide. The current ioend we're
* adding blocks to is cached in the writepage context, and if the new block
* doesn't append to the cached ioend, it will create a new ioend and cache that
* instead.
*
* If a new ioend is created and cached, the old ioend is returned and queued
* locally for submission once the entire page is processed or an error has been
* detected. While ioends are submitted immediately after they are completed,
* batching optimisations are provided by higher level block plugging.
*
* At the end of a writeback pass, there will be a cached ioend remaining on the
* writepage context that the caller will need to submit.
*/
static int
iomap_writepage_map(struct iomap_writepage_ctx *wpc,
struct writeback_control *wbc, struct inode *inode,
struct page *page, u64 end_offset)
{
struct iomap_page *iop = iomap_page_create(inode, page);
struct iomap_ioend *ioend, *next;
unsigned len = i_blocksize(inode);
u64 file_offset; /* file offset of page */
int error = 0, count = 0, i;
LIST_HEAD(submit_list);
WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
/*
* Walk through the page to find areas to write back. If we run off the
* end of the current map or find the current map invalid, grab a new
* one.
*/
for (i = 0, file_offset = page_offset(page);
i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
i++, file_offset += len) {
if (iop && !test_bit(i, iop->uptodate))
continue;
error = wpc->ops->map_blocks(wpc, inode, file_offset);
if (error)
break;
if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
continue;
if (wpc->iomap.type == IOMAP_HOLE)
continue;
iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
&submit_list);
count++;
}
WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
WARN_ON_ONCE(!PageLocked(page));
WARN_ON_ONCE(PageWriteback(page));
iomap: clean up writeback state logic on writepage error The iomap writepage error handling logic is a mash of old and slightly broken XFS writepage logic. When keepwrite writeback state tracking was introduced in XFS in commit 0d085a529b42 ("xfs: ensure WB_SYNC_ALL writeback handles partial pages correctly"), XFS had an additional cluster writeback context that scanned ahead of ->writepage() to process dirty pages over the current ->writepage() extent mapping. This context expected a dirty page and required retention of the TOWRITE tag on partial page processing so the higher level writeback context would revisit the page (in contrast to ->writepage(), which passes a page with the dirty bit already cleared). The cluster writeback mechanism was eventually removed and some of the error handling logic folded into the primary writeback path in commit 150d5be09ce4 ("xfs: remove xfs_cancel_ioend"). This patch accidentally conflated the two contexts by using the keepwrite logic in ->writepage() without accounting for the fact that the page is not dirty. Further, the keepwrite logic has no practical effect on the core ->writepage() caller (write_cache_pages()) because it never revisits a page in the current function invocation. Technically, the page should be redirtied for the keepwrite logic to have any effect. Otherwise, write_cache_pages() may find the tagged page but will skip it since it is clean. Even if the page was redirtied, however, there is still no practical effect to keepwrite since write_cache_pages() does not wrap around within a single invocation of the function. Therefore, the dirty page would simply end up retagged on the next writeback sequence over the associated range. All that being said, none of this really matters because redirtying a partially processed page introduces a potential infinite redirty -> writeback failure loop that deviates from the current design principle of clearing the dirty state on writepage failure to avoid building up too much dirty, unreclaimable memory on the system. Therefore, drop the spurious keepwrite usage and dirty state clearing logic from iomap_writepage_map(), treat the partially processed page the same as a fully processed page, and let the imminent ioend failure clean up the writeback state. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-10-30 05:30:49 +08:00
WARN_ON_ONCE(PageDirty(page));
/*
* We cannot cancel the ioend directly here on error. We may have
* already set other pages under writeback and hence we have to run I/O
* completion to mark the error state of the pages under writeback
* appropriately.
*/
if (unlikely(error)) {
/*
* Let the filesystem know what portion of the current page
* failed to map. If the page hasn't been added to ioend, it
* won't be affected by I/O completion and we must unlock it
* now.
*/
if (wpc->ops->discard_page)
wpc->ops->discard_page(page, file_offset);
if (!count) {
ClearPageUptodate(page);
unlock_page(page);
goto done;
}
}
iomap: clean up writeback state logic on writepage error The iomap writepage error handling logic is a mash of old and slightly broken XFS writepage logic. When keepwrite writeback state tracking was introduced in XFS in commit 0d085a529b42 ("xfs: ensure WB_SYNC_ALL writeback handles partial pages correctly"), XFS had an additional cluster writeback context that scanned ahead of ->writepage() to process dirty pages over the current ->writepage() extent mapping. This context expected a dirty page and required retention of the TOWRITE tag on partial page processing so the higher level writeback context would revisit the page (in contrast to ->writepage(), which passes a page with the dirty bit already cleared). The cluster writeback mechanism was eventually removed and some of the error handling logic folded into the primary writeback path in commit 150d5be09ce4 ("xfs: remove xfs_cancel_ioend"). This patch accidentally conflated the two contexts by using the keepwrite logic in ->writepage() without accounting for the fact that the page is not dirty. Further, the keepwrite logic has no practical effect on the core ->writepage() caller (write_cache_pages()) because it never revisits a page in the current function invocation. Technically, the page should be redirtied for the keepwrite logic to have any effect. Otherwise, write_cache_pages() may find the tagged page but will skip it since it is clean. Even if the page was redirtied, however, there is still no practical effect to keepwrite since write_cache_pages() does not wrap around within a single invocation of the function. Therefore, the dirty page would simply end up retagged on the next writeback sequence over the associated range. All that being said, none of this really matters because redirtying a partially processed page introduces a potential infinite redirty -> writeback failure loop that deviates from the current design principle of clearing the dirty state on writepage failure to avoid building up too much dirty, unreclaimable memory on the system. Therefore, drop the spurious keepwrite usage and dirty state clearing logic from iomap_writepage_map(), treat the partially processed page the same as a fully processed page, and let the imminent ioend failure clean up the writeback state. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-10-30 05:30:49 +08:00
set_page_writeback(page);
unlock_page(page);
/*
* Preserve the original error if there was one; catch
* submission errors here and propagate into subsequent ioend
* submissions.
*/
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
int error2;
list_del_init(&ioend->io_list);
error2 = iomap_submit_ioend(wpc, ioend, error);
if (error2 && !error)
error = error2;
}
/*
* We can end up here with no error and nothing to write only if we race
* with a partial page truncate on a sub-page block sized filesystem.
*/
if (!count)
end_page_writeback(page);
done:
mapping_set_error(page->mapping, error);
return error;
}
/*
* Write out a dirty page.
*
* For delalloc space on the page, we need to allocate space and flush it.
* For unwritten space on the page, we need to start the conversion to
* regular allocated space.
*/
static int
iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
{
struct iomap_writepage_ctx *wpc = data;
struct inode *inode = page->mapping->host;
pgoff_t end_index;
u64 end_offset;
loff_t offset;
trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
/*
* Refuse to write the page out if we're called from reclaim context.
*
* This avoids stack overflows when called from deeply used stacks in
* random callers for direct reclaim or memcg reclaim. We explicitly
* allow reclaim from kswapd as the stack usage there is relatively low.
*
* This should never happen except in the case of a VM regression so
* warn about it.
*/
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
PF_MEMALLOC))
goto redirty;
/*
* Is this page beyond the end of the file?
*
* The page index is less than the end_index, adjust the end_offset
* to the highest offset that this page should represent.
* -----------------------------------------------------
* | file mapping | <EOF> |
* -----------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | |
* ^--------------------------------^----------|--------
* | desired writeback range | see else |
* ---------------------------------^------------------|
*/
offset = i_size_read(inode);
end_index = offset >> PAGE_SHIFT;
if (page->index < end_index)
end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
else {
/*
* Check whether the page to write out is beyond or straddles
* i_size or not.
* -------------------------------------------------------
* | file mapping | <EOF> |
* -------------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
* ^--------------------------------^-----------|---------
* | | Straddles |
* ---------------------------------^-----------|--------|
*/
unsigned offset_into_page = offset & (PAGE_SIZE - 1);
/*
* Skip the page if it's fully outside i_size, e.g. due to a
* truncate operation that's in progress. We must redirty the
* page so that reclaim stops reclaiming it. Otherwise
* iomap_vm_releasepage() is called on it and gets confused.
*
* Note that the end_index is unsigned long. If the given
* offset is greater than 16TB on a 32-bit system then if we
* checked if the page is fully outside i_size with
* "if (page->index >= end_index + 1)", "end_index + 1" would
* overflow and evaluate to 0. Hence this page would be
* redirtied and written out repeatedly, which would result in
* an infinite loop; the user program performing this operation
* would hang. Instead, we can detect this situation by
* checking if the page is totally beyond i_size or if its
* offset is just equal to the EOF.
*/
if (page->index > end_index ||
(page->index == end_index && offset_into_page == 0))
goto redirty;
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
* that is not a multiple of the page size, the remaining
* memory is zeroed when mapped, and writes to that region are
* not written out to the file."
*/
zero_user_segment(page, offset_into_page, PAGE_SIZE);
/* Adjust the end_offset to the end of file */
end_offset = offset;
}
return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
redirty:
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
int
iomap_writepage(struct page *page, struct writeback_control *wbc,
struct iomap_writepage_ctx *wpc,
const struct iomap_writeback_ops *ops)
{
int ret;
wpc->ops = ops;
ret = iomap_do_writepage(page, wbc, wpc);
if (!wpc->ioend)
return ret;
return iomap_submit_ioend(wpc, wpc->ioend, ret);
}
EXPORT_SYMBOL_GPL(iomap_writepage);
int
iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
struct iomap_writepage_ctx *wpc,
const struct iomap_writeback_ops *ops)
{
int ret;
wpc->ops = ops;
ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
if (!wpc->ioend)
return ret;
return iomap_submit_ioend(wpc, wpc->ioend, ret);
}
EXPORT_SYMBOL_GPL(iomap_writepages);
static int __init iomap_init(void)
{
return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
offsetof(struct iomap_ioend, io_inline_bio),
BIOSET_NEED_BVECS);
}
fs_initcall(iomap_init);