OpenCloudOS-Kernel/net/ceph/crypto.c

362 lines
8.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <crypto/aes.h>
#include <crypto/skcipher.h>
#include <linux/key-type.h>
#include <linux/sched/mm.h>
#include <keys/ceph-type.h>
#include <keys/user-type.h>
#include <linux/ceph/decode.h>
#include "crypto.h"
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
/*
* Set ->key and ->tfm. The rest of the key should be filled in before
* this function is called.
*/
static int set_secret(struct ceph_crypto_key *key, void *buf)
{
unsigned int noio_flag;
int ret;
key->key = NULL;
key->tfm = NULL;
switch (key->type) {
case CEPH_CRYPTO_NONE:
return 0; /* nothing to do */
case CEPH_CRYPTO_AES:
break;
default:
return -ENOTSUPP;
}
if (!key->len)
return -EINVAL;
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
key->key = kmemdup(buf, key->len, GFP_NOIO);
if (!key->key) {
ret = -ENOMEM;
goto fail;
}
/* crypto_alloc_sync_skcipher() allocates with GFP_KERNEL */
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
noio_flag = memalloc_noio_save();
key->tfm = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
memalloc_noio_restore(noio_flag);
if (IS_ERR(key->tfm)) {
ret = PTR_ERR(key->tfm);
key->tfm = NULL;
goto fail;
}
ret = crypto_sync_skcipher_setkey(key->tfm, key->key, key->len);
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
if (ret)
goto fail;
return 0;
fail:
ceph_crypto_key_destroy(key);
return ret;
}
int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
const struct ceph_crypto_key *src)
{
memcpy(dst, src, sizeof(struct ceph_crypto_key));
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
return set_secret(dst, src->key);
}
int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
{
if (*p + sizeof(u16) + sizeof(key->created) +
sizeof(u16) + key->len > end)
return -ERANGE;
ceph_encode_16(p, key->type);
ceph_encode_copy(p, &key->created, sizeof(key->created));
ceph_encode_16(p, key->len);
ceph_encode_copy(p, key->key, key->len);
return 0;
}
int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
{
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
int ret;
ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
key->type = ceph_decode_16(p);
ceph_decode_copy(p, &key->created, sizeof(key->created));
key->len = ceph_decode_16(p);
ceph_decode_need(p, end, key->len, bad);
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
ret = set_secret(key, *p);
memzero_explicit(*p, key->len);
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
*p += key->len;
return ret;
bad:
dout("failed to decode crypto key\n");
return -EINVAL;
}
int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
{
int inlen = strlen(inkey);
int blen = inlen * 3 / 4;
void *buf, *p;
int ret;
dout("crypto_key_unarmor %s\n", inkey);
buf = kmalloc(blen, GFP_NOFS);
if (!buf)
return -ENOMEM;
blen = ceph_unarmor(buf, inkey, inkey+inlen);
if (blen < 0) {
kfree(buf);
return blen;
}
p = buf;
ret = ceph_crypto_key_decode(key, &p, p + blen);
kfree(buf);
if (ret)
return ret;
dout("crypto_key_unarmor key %p type %d len %d\n", key,
key->type, key->len);
return 0;
}
void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
{
if (key) {
kfree_sensitive(key->key);
key->key = NULL;
if (key->tfm) {
crypto_free_sync_skcipher(key->tfm);
key->tfm = NULL;
}
}
}
static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
libceph: do not crash on large auth tickets Large (greater than 32k, the value of PAGE_ALLOC_COSTLY_ORDER) auth tickets will have their buffers vmalloc'ed, which leads to the following crash in crypto: [ 28.685082] BUG: unable to handle kernel paging request at ffffeb04000032c0 [ 28.686032] IP: [<ffffffff81392b42>] scatterwalk_pagedone+0x22/0x80 [ 28.686032] PGD 0 [ 28.688088] Oops: 0000 [#1] PREEMPT SMP [ 28.688088] Modules linked in: [ 28.688088] CPU: 0 PID: 878 Comm: kworker/0:2 Not tainted 3.17.0-vm+ #305 [ 28.688088] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 28.688088] Workqueue: ceph-msgr con_work [ 28.688088] task: ffff88011a7f9030 ti: ffff8800d903c000 task.ti: ffff8800d903c000 [ 28.688088] RIP: 0010:[<ffffffff81392b42>] [<ffffffff81392b42>] scatterwalk_pagedone+0x22/0x80 [ 28.688088] RSP: 0018:ffff8800d903f688 EFLAGS: 00010286 [ 28.688088] RAX: ffffeb04000032c0 RBX: ffff8800d903f718 RCX: ffffeb04000032c0 [ 28.688088] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8800d903f750 [ 28.688088] RBP: ffff8800d903f688 R08: 00000000000007de R09: ffff8800d903f880 [ 28.688088] R10: 18df467c72d6257b R11: 0000000000000000 R12: 0000000000000010 [ 28.688088] R13: ffff8800d903f750 R14: ffff8800d903f8a0 R15: 0000000000000000 [ 28.688088] FS: 00007f50a41c7700(0000) GS:ffff88011fc00000(0000) knlGS:0000000000000000 [ 28.688088] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 28.688088] CR2: ffffeb04000032c0 CR3: 00000000da3f3000 CR4: 00000000000006b0 [ 28.688088] Stack: [ 28.688088] ffff8800d903f698 ffffffff81392ca8 ffff8800d903f6e8 ffffffff81395d32 [ 28.688088] ffff8800dac96000 ffff880000000000 ffff8800d903f980 ffff880119b7e020 [ 28.688088] ffff880119b7e010 0000000000000000 0000000000000010 0000000000000010 [ 28.688088] Call Trace: [ 28.688088] [<ffffffff81392ca8>] scatterwalk_done+0x38/0x40 [ 28.688088] [<ffffffff81392ca8>] scatterwalk_done+0x38/0x40 [ 28.688088] [<ffffffff81395d32>] blkcipher_walk_done+0x182/0x220 [ 28.688088] [<ffffffff813990bf>] crypto_cbc_encrypt+0x15f/0x180 [ 28.688088] [<ffffffff81399780>] ? crypto_aes_set_key+0x30/0x30 [ 28.688088] [<ffffffff8156c40c>] ceph_aes_encrypt2+0x29c/0x2e0 [ 28.688088] [<ffffffff8156d2a3>] ceph_encrypt2+0x93/0xb0 [ 28.688088] [<ffffffff8156d7da>] ceph_x_encrypt+0x4a/0x60 [ 28.688088] [<ffffffff8155b39d>] ? ceph_buffer_new+0x5d/0xf0 [ 28.688088] [<ffffffff8156e837>] ceph_x_build_authorizer.isra.6+0x297/0x360 [ 28.688088] [<ffffffff8112089b>] ? kmem_cache_alloc_trace+0x11b/0x1c0 [ 28.688088] [<ffffffff8156b496>] ? ceph_auth_create_authorizer+0x36/0x80 [ 28.688088] [<ffffffff8156ed83>] ceph_x_create_authorizer+0x63/0xd0 [ 28.688088] [<ffffffff8156b4b4>] ceph_auth_create_authorizer+0x54/0x80 [ 28.688088] [<ffffffff8155f7c0>] get_authorizer+0x80/0xd0 [ 28.688088] [<ffffffff81555a8b>] prepare_write_connect+0x18b/0x2b0 [ 28.688088] [<ffffffff81559289>] try_read+0x1e59/0x1f10 This is because we set up crypto scatterlists as if all buffers were kmalloc'ed. Fix it. Cc: stable@vger.kernel.org Signed-off-by: Ilya Dryomov <idryomov@redhat.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-10-23 04:25:22 +08:00
/*
* Should be used for buffers allocated with kvmalloc().
libceph: do not crash on large auth tickets Large (greater than 32k, the value of PAGE_ALLOC_COSTLY_ORDER) auth tickets will have their buffers vmalloc'ed, which leads to the following crash in crypto: [ 28.685082] BUG: unable to handle kernel paging request at ffffeb04000032c0 [ 28.686032] IP: [<ffffffff81392b42>] scatterwalk_pagedone+0x22/0x80 [ 28.686032] PGD 0 [ 28.688088] Oops: 0000 [#1] PREEMPT SMP [ 28.688088] Modules linked in: [ 28.688088] CPU: 0 PID: 878 Comm: kworker/0:2 Not tainted 3.17.0-vm+ #305 [ 28.688088] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 28.688088] Workqueue: ceph-msgr con_work [ 28.688088] task: ffff88011a7f9030 ti: ffff8800d903c000 task.ti: ffff8800d903c000 [ 28.688088] RIP: 0010:[<ffffffff81392b42>] [<ffffffff81392b42>] scatterwalk_pagedone+0x22/0x80 [ 28.688088] RSP: 0018:ffff8800d903f688 EFLAGS: 00010286 [ 28.688088] RAX: ffffeb04000032c0 RBX: ffff8800d903f718 RCX: ffffeb04000032c0 [ 28.688088] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8800d903f750 [ 28.688088] RBP: ffff8800d903f688 R08: 00000000000007de R09: ffff8800d903f880 [ 28.688088] R10: 18df467c72d6257b R11: 0000000000000000 R12: 0000000000000010 [ 28.688088] R13: ffff8800d903f750 R14: ffff8800d903f8a0 R15: 0000000000000000 [ 28.688088] FS: 00007f50a41c7700(0000) GS:ffff88011fc00000(0000) knlGS:0000000000000000 [ 28.688088] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 28.688088] CR2: ffffeb04000032c0 CR3: 00000000da3f3000 CR4: 00000000000006b0 [ 28.688088] Stack: [ 28.688088] ffff8800d903f698 ffffffff81392ca8 ffff8800d903f6e8 ffffffff81395d32 [ 28.688088] ffff8800dac96000 ffff880000000000 ffff8800d903f980 ffff880119b7e020 [ 28.688088] ffff880119b7e010 0000000000000000 0000000000000010 0000000000000010 [ 28.688088] Call Trace: [ 28.688088] [<ffffffff81392ca8>] scatterwalk_done+0x38/0x40 [ 28.688088] [<ffffffff81392ca8>] scatterwalk_done+0x38/0x40 [ 28.688088] [<ffffffff81395d32>] blkcipher_walk_done+0x182/0x220 [ 28.688088] [<ffffffff813990bf>] crypto_cbc_encrypt+0x15f/0x180 [ 28.688088] [<ffffffff81399780>] ? crypto_aes_set_key+0x30/0x30 [ 28.688088] [<ffffffff8156c40c>] ceph_aes_encrypt2+0x29c/0x2e0 [ 28.688088] [<ffffffff8156d2a3>] ceph_encrypt2+0x93/0xb0 [ 28.688088] [<ffffffff8156d7da>] ceph_x_encrypt+0x4a/0x60 [ 28.688088] [<ffffffff8155b39d>] ? ceph_buffer_new+0x5d/0xf0 [ 28.688088] [<ffffffff8156e837>] ceph_x_build_authorizer.isra.6+0x297/0x360 [ 28.688088] [<ffffffff8112089b>] ? kmem_cache_alloc_trace+0x11b/0x1c0 [ 28.688088] [<ffffffff8156b496>] ? ceph_auth_create_authorizer+0x36/0x80 [ 28.688088] [<ffffffff8156ed83>] ceph_x_create_authorizer+0x63/0xd0 [ 28.688088] [<ffffffff8156b4b4>] ceph_auth_create_authorizer+0x54/0x80 [ 28.688088] [<ffffffff8155f7c0>] get_authorizer+0x80/0xd0 [ 28.688088] [<ffffffff81555a8b>] prepare_write_connect+0x18b/0x2b0 [ 28.688088] [<ffffffff81559289>] try_read+0x1e59/0x1f10 This is because we set up crypto scatterlists as if all buffers were kmalloc'ed. Fix it. Cc: stable@vger.kernel.org Signed-off-by: Ilya Dryomov <idryomov@redhat.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-10-23 04:25:22 +08:00
* Currently these are encrypt out-buffer (ceph_buffer) and decrypt
* in-buffer (msg front).
*
* Dispose of @sgt with teardown_sgtable().
*
* @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
* in cases where a single sg is sufficient. No attempt to reduce the
* number of sgs by squeezing physically contiguous pages together is
* made though, for simplicity.
*/
static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
const void *buf, unsigned int buf_len)
{
struct scatterlist *sg;
const bool is_vmalloc = is_vmalloc_addr(buf);
unsigned int off = offset_in_page(buf);
unsigned int chunk_cnt = 1;
unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
int i;
int ret;
if (buf_len == 0) {
memset(sgt, 0, sizeof(*sgt));
return -EINVAL;
}
if (is_vmalloc) {
chunk_cnt = chunk_len >> PAGE_SHIFT;
chunk_len = PAGE_SIZE;
}
if (chunk_cnt > 1) {
ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
if (ret)
return ret;
} else {
WARN_ON(chunk_cnt != 1);
sg_init_table(prealloc_sg, 1);
sgt->sgl = prealloc_sg;
sgt->nents = sgt->orig_nents = 1;
}
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
struct page *page;
unsigned int len = min(chunk_len - off, buf_len);
if (is_vmalloc)
page = vmalloc_to_page(buf);
else
page = virt_to_page(buf);
sg_set_page(sg, page, len, off);
off = 0;
buf += len;
buf_len -= len;
}
WARN_ON(buf_len != 0);
return 0;
}
static void teardown_sgtable(struct sg_table *sgt)
{
if (sgt->orig_nents > 1)
sg_free_table(sgt);
}
static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
void *buf, int buf_len, int in_len, int *pout_len)
{
SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm);
struct sg_table sgt;
struct scatterlist prealloc_sg;
char iv[AES_BLOCK_SIZE] __aligned(8);
int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
int crypt_len = encrypt ? in_len + pad_byte : in_len;
int ret;
WARN_ON(crypt_len > buf_len);
if (encrypt)
memset(buf + in_len, pad_byte, pad_byte);
ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
if (ret)
libceph: stop allocating a new cipher on every crypto request This is useless and more importantly not allowed on the writeback path, because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which can recurse back into the filesystem: kworker/9:3 D ffff92303f318180 0 20732 2 0x00000080 Workqueue: ceph-msgr ceph_con_workfn [libceph] ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318 ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480 00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8 Call Trace: [<ffffffff951eb4e1>] ? schedule+0x31/0x80 [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10 [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130 [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30 [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs] [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270 [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0 [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120 [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs] [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190 [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0 [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320 [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350 [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0 [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60 [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560 [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0 [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580 [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph] [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130 [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60 [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc] [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130 [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180 [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0 [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150 [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120 [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph] [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph] [<ffffffff950d40a0>] ? release_sock+0x40/0x90 [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0 [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph] [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph] [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph] [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph] [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph] [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph] [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph] [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph] [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph] [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd] [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410 [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480 [<ffffffff94c95170>] ? process_one_work+0x410/0x410 [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0 [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40 [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190 Allocating the cipher along with the key fixes the issue - as long the key doesn't change, a single cipher context can be used concurrently in multiple requests. We still can't take that GFP_KERNEL allocation though. Both ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here. Reported-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-02 23:35:08 +08:00
return ret;
memcpy(iv, aes_iv, AES_BLOCK_SIZE);
skcipher_request_set_sync_tfm(req, key->tfm);
skcipher_request_set_callback(req, 0, NULL, NULL);
skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
/*
print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
key->key, key->len, 1);
print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
buf, crypt_len, 1);
*/
if (encrypt)
ret = crypto_skcipher_encrypt(req);
else
ret = crypto_skcipher_decrypt(req);
skcipher_request_zero(req);
if (ret) {
pr_err("%s %scrypt failed: %d\n", __func__,
encrypt ? "en" : "de", ret);
goto out_sgt;
}
/*
print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
buf, crypt_len, 1);
*/
if (encrypt) {
*pout_len = crypt_len;
} else {
pad_byte = *(char *)(buf + in_len - 1);
if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
in_len >= pad_byte) {
*pout_len = in_len - pad_byte;
} else {
pr_err("%s got bad padding %d on in_len %d\n",
__func__, pad_byte, in_len);
ret = -EPERM;
goto out_sgt;
}
}
out_sgt:
teardown_sgtable(&sgt);
return ret;
}
int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
void *buf, int buf_len, int in_len, int *pout_len)
{
switch (key->type) {
case CEPH_CRYPTO_NONE:
*pout_len = in_len;
return 0;
case CEPH_CRYPTO_AES:
return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
pout_len);
default:
return -ENOTSUPP;
}
}
static int ceph_key_preparse(struct key_preparsed_payload *prep)
{
struct ceph_crypto_key *ckey;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 20:06:29 +08:00
size_t datalen = prep->datalen;
int ret;
void *p;
ret = -EINVAL;
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 20:06:29 +08:00
if (datalen <= 0 || datalen > 32767 || !prep->data)
goto err;
ret = -ENOMEM;
ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
if (!ckey)
goto err;
/* TODO ceph_crypto_key_decode should really take const input */
KEYS: Add payload preparsing opportunity prior to key instantiate or update Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 20:06:29 +08:00
p = (void *)prep->data;
ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
if (ret < 0)
goto err_ckey;
prep->payload.data[0] = ckey;
prep->quotalen = datalen;
return 0;
err_ckey:
kfree(ckey);
err:
return ret;
}
static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
{
struct ceph_crypto_key *ckey = prep->payload.data[0];
ceph_crypto_key_destroy(ckey);
kfree(ckey);
}
static void ceph_key_destroy(struct key *key)
{
struct ceph_crypto_key *ckey = key->payload.data[0];
ceph_crypto_key_destroy(ckey);
kfree(ckey);
}
struct key_type key_type_ceph = {
.name = "ceph",
.preparse = ceph_key_preparse,
.free_preparse = ceph_key_free_preparse,
.instantiate = generic_key_instantiate,
.destroy = ceph_key_destroy,
};
int __init ceph_crypto_init(void)
{
return register_key_type(&key_type_ceph);
}
void ceph_crypto_shutdown(void)
{
unregister_key_type(&key_type_ceph);
}