License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2005-04-17 06:20:36 +08:00
|
|
|
#
|
|
|
|
# Makefile for key management
|
|
|
|
#
|
|
|
|
|
2012-05-11 17:56:56 +08:00
|
|
|
#
|
|
|
|
# Core
|
|
|
|
#
|
2005-04-17 06:20:36 +08:00
|
|
|
obj-y := \
|
2009-09-02 16:14:00 +08:00
|
|
|
gc.o \
|
2005-04-17 06:20:36 +08:00
|
|
|
key.o \
|
|
|
|
keyring.o \
|
|
|
|
keyctl.o \
|
2005-10-07 22:07:38 +08:00
|
|
|
permission.o \
|
2005-04-17 06:20:36 +08:00
|
|
|
process_keys.o \
|
[PATCH] Keys: Make request-key create an authorisation key
The attached patch makes the following changes:
(1) There's a new special key type called ".request_key_auth".
This is an authorisation key for when one process requests a key and
another process is started to construct it. This type of key cannot be
created by the user; nor can it be requested by kernel services.
Authorisation keys hold two references:
(a) Each refers to a key being constructed. When the key being
constructed is instantiated the authorisation key is revoked,
rendering it of no further use.
(b) The "authorising process". This is either:
(i) the process that called request_key(), or:
(ii) if the process that called request_key() itself had an
authorisation key in its session keyring, then the authorising
process referred to by that authorisation key will also be
referred to by the new authorisation key.
This means that the process that initiated a chain of key requests
will authorise the lot of them, and will, by default, wind up with
the keys obtained from them in its keyrings.
(2) request_key() creates an authorisation key which is then passed to
/sbin/request-key in as part of a new session keyring.
(3) When request_key() is searching for a key to hand back to the caller, if
it comes across an authorisation key in the session keyring of the
calling process, it will also search the keyrings of the process
specified therein and it will use the specified process's credentials
(fsuid, fsgid, groups) to do that rather than the calling process's
credentials.
This allows a process started by /sbin/request-key to find keys belonging
to the authorising process.
(4) A key can be read, even if the process executing KEYCTL_READ doesn't have
direct read or search permission if that key is contained within the
keyrings of a process specified by an authorisation key found within the
calling process's session keyring, and is searchable using the
credentials of the authorising process.
This allows a process started by /sbin/request-key to read keys belonging
to the authorising process.
(5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or
KEYCTL_NEGATE will specify a keyring of the authorising process, rather
than the process doing the instantiation.
(6) One of the process keyrings can be nominated as the default to which
request_key() should attach new keys if not otherwise specified. This is
done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_*
constants. The current setting can also be read using this call.
(7) request_key() is partially interruptible. If it is waiting for another
process to finish constructing a key, it can be interrupted. This permits
a request-key cycle to be broken without recourse to rebooting.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:00:56 +08:00
|
|
|
request_key.o \
|
|
|
|
request_key_auth.o \
|
|
|
|
user_defined.o
|
2016-08-20 02:39:09 +08:00
|
|
|
compat-obj-$(CONFIG_KEY_DH_OPERATIONS) += compat_dh.o
|
2019-10-10 07:04:43 +08:00
|
|
|
obj-$(CONFIG_COMPAT) += compat.o $(compat-obj-y)
|
2005-04-17 06:20:36 +08:00
|
|
|
obj-$(CONFIG_PROC_FS) += proc.o
|
2008-04-29 16:01:32 +08:00
|
|
|
obj-$(CONFIG_SYSCTL) += sysctl.o
|
2013-09-24 17:35:19 +08:00
|
|
|
obj-$(CONFIG_PERSISTENT_KEYRINGS) += persistent.o
|
2016-04-13 02:54:58 +08:00
|
|
|
obj-$(CONFIG_KEY_DH_OPERATIONS) += dh.o
|
KEYS: Provide keyctls to drive the new key type ops for asymmetric keys [ver #2]
Provide five keyctl functions that permit userspace to make use of the new
key type ops for accessing and driving asymmetric keys.
(*) Query an asymmetric key.
long keyctl(KEYCTL_PKEY_QUERY,
key_serial_t key, unsigned long reserved,
struct keyctl_pkey_query *info);
Get information about an asymmetric key. The information is returned
in the keyctl_pkey_query struct:
__u32 supported_ops;
A bit mask of flags indicating which ops are supported. This is
constructed from a bitwise-OR of:
KEYCTL_SUPPORTS_{ENCRYPT,DECRYPT,SIGN,VERIFY}
__u32 key_size;
The size in bits of the key.
__u16 max_data_size;
__u16 max_sig_size;
__u16 max_enc_size;
__u16 max_dec_size;
The maximum sizes in bytes of a blob of data to be signed, a signature
blob, a blob to be encrypted and a blob to be decrypted.
reserved must be set to 0. This is intended for future use to hand
over one or more passphrases needed unlock a key.
If successful, 0 is returned. If the key is not an asymmetric key,
EOPNOTSUPP is returned.
(*) Encrypt, decrypt, sign or verify a blob using an asymmetric key.
long keyctl(KEYCTL_PKEY_ENCRYPT,
const struct keyctl_pkey_params *params,
const char *info,
const void *in,
void *out);
long keyctl(KEYCTL_PKEY_DECRYPT,
const struct keyctl_pkey_params *params,
const char *info,
const void *in,
void *out);
long keyctl(KEYCTL_PKEY_SIGN,
const struct keyctl_pkey_params *params,
const char *info,
const void *in,
void *out);
long keyctl(KEYCTL_PKEY_VERIFY,
const struct keyctl_pkey_params *params,
const char *info,
const void *in,
const void *in2);
Use an asymmetric key to perform a public-key cryptographic operation
a blob of data.
The parameter block pointed to by params contains a number of integer
values:
__s32 key_id;
__u32 in_len;
__u32 out_len;
__u32 in2_len;
For a given operation, the in and out buffers are used as follows:
Operation ID in,in_len out,out_len in2,in2_len
======================= =============== =============== ===========
KEYCTL_PKEY_ENCRYPT Raw data Encrypted data -
KEYCTL_PKEY_DECRYPT Encrypted data Raw data -
KEYCTL_PKEY_SIGN Raw data Signature -
KEYCTL_PKEY_VERIFY Raw data - Signature
info is a string of key=value pairs that supply supplementary
information.
The __spare space in the parameter block must be set to 0. This is
intended, amongst other things, to allow the passing of passphrases
required to unlock a key.
If successful, encrypt, decrypt and sign all return the amount of data
written into the output buffer. Verification returns 0 on success.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Denis Kenzior <denkenz@gmail.com>
Tested-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2018-10-10 00:46:59 +08:00
|
|
|
obj-$(CONFIG_ASYMMETRIC_KEY_TYPE) += keyctl_pkey.o
|
2012-05-11 17:56:56 +08:00
|
|
|
|
|
|
|
#
|
|
|
|
# Key types
|
|
|
|
#
|
2013-09-24 17:35:18 +08:00
|
|
|
obj-$(CONFIG_BIG_KEYS) += big_key.o
|
2019-10-16 13:14:54 +08:00
|
|
|
obj-$(CONFIG_TRUSTED_KEYS) += trusted-keys/
|
2012-05-11 17:56:56 +08:00
|
|
|
obj-$(CONFIG_ENCRYPTED_KEYS) += encrypted-keys/
|