OpenCloudOS-Kernel/drivers/hwmon/amc6821.c

1022 lines
27 KiB
C
Raw Normal View History

/*
* amc6821.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2009 T. Mertelj <tomaz.mertelj@guest.arnes.si>
*
* Based on max6650.c:
* Copyright (C) 2007 Hans J. Koch <hjk@hansjkoch.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/*
* Addresses to scan.
*/
static const unsigned short normal_i2c[] = {0x18, 0x19, 0x1a, 0x2c, 0x2d, 0x2e,
0x4c, 0x4d, 0x4e, I2C_CLIENT_END};
/*
* Insmod parameters
*/
static int pwminv; /*Inverted PWM output. */
module_param(pwminv, int, S_IRUGO);
static int init = 1; /*Power-on initialization.*/
module_param(init, int, S_IRUGO);
enum chips { amc6821 };
#define AMC6821_REG_DEV_ID 0x3D
#define AMC6821_REG_COMP_ID 0x3E
#define AMC6821_REG_CONF1 0x00
#define AMC6821_REG_CONF2 0x01
#define AMC6821_REG_CONF3 0x3F
#define AMC6821_REG_CONF4 0x04
#define AMC6821_REG_STAT1 0x02
#define AMC6821_REG_STAT2 0x03
#define AMC6821_REG_TDATA_LOW 0x08
#define AMC6821_REG_TDATA_HI 0x09
#define AMC6821_REG_LTEMP_HI 0x0A
#define AMC6821_REG_RTEMP_HI 0x0B
#define AMC6821_REG_LTEMP_LIMIT_MIN 0x15
#define AMC6821_REG_LTEMP_LIMIT_MAX 0x14
#define AMC6821_REG_RTEMP_LIMIT_MIN 0x19
#define AMC6821_REG_RTEMP_LIMIT_MAX 0x18
#define AMC6821_REG_LTEMP_CRIT 0x1B
#define AMC6821_REG_RTEMP_CRIT 0x1D
#define AMC6821_REG_PSV_TEMP 0x1C
#define AMC6821_REG_DCY 0x22
#define AMC6821_REG_LTEMP_FAN_CTRL 0x24
#define AMC6821_REG_RTEMP_FAN_CTRL 0x25
#define AMC6821_REG_DCY_LOW_TEMP 0x21
#define AMC6821_REG_TACH_LLIMITL 0x10
#define AMC6821_REG_TACH_LLIMITH 0x11
#define AMC6821_REG_TACH_HLIMITL 0x12
#define AMC6821_REG_TACH_HLIMITH 0x13
#define AMC6821_CONF1_START 0x01
#define AMC6821_CONF1_FAN_INT_EN 0x02
#define AMC6821_CONF1_FANIE 0x04
#define AMC6821_CONF1_PWMINV 0x08
#define AMC6821_CONF1_FAN_FAULT_EN 0x10
#define AMC6821_CONF1_FDRC0 0x20
#define AMC6821_CONF1_FDRC1 0x40
#define AMC6821_CONF1_THERMOVIE 0x80
#define AMC6821_CONF2_PWM_EN 0x01
#define AMC6821_CONF2_TACH_MODE 0x02
#define AMC6821_CONF2_TACH_EN 0x04
#define AMC6821_CONF2_RTFIE 0x08
#define AMC6821_CONF2_LTOIE 0x10
#define AMC6821_CONF2_RTOIE 0x20
#define AMC6821_CONF2_PSVIE 0x40
#define AMC6821_CONF2_RST 0x80
#define AMC6821_CONF3_THERM_FAN_EN 0x80
#define AMC6821_CONF3_REV_MASK 0x0F
#define AMC6821_CONF4_OVREN 0x10
#define AMC6821_CONF4_TACH_FAST 0x20
#define AMC6821_CONF4_PSPR 0x40
#define AMC6821_CONF4_MODE 0x80
#define AMC6821_STAT1_RPM_ALARM 0x01
#define AMC6821_STAT1_FANS 0x02
#define AMC6821_STAT1_RTH 0x04
#define AMC6821_STAT1_RTL 0x08
#define AMC6821_STAT1_R_THERM 0x10
#define AMC6821_STAT1_RTF 0x20
#define AMC6821_STAT1_LTH 0x40
#define AMC6821_STAT1_LTL 0x80
#define AMC6821_STAT2_RTC 0x08
#define AMC6821_STAT2_LTC 0x10
#define AMC6821_STAT2_LPSV 0x20
#define AMC6821_STAT2_L_THERM 0x40
#define AMC6821_STAT2_THERM_IN 0x80
enum {IDX_TEMP1_INPUT = 0, IDX_TEMP1_MIN, IDX_TEMP1_MAX,
IDX_TEMP1_CRIT, IDX_TEMP2_INPUT, IDX_TEMP2_MIN,
IDX_TEMP2_MAX, IDX_TEMP2_CRIT,
TEMP_IDX_LEN, };
static const u8 temp_reg[] = {AMC6821_REG_LTEMP_HI,
AMC6821_REG_LTEMP_LIMIT_MIN,
AMC6821_REG_LTEMP_LIMIT_MAX,
AMC6821_REG_LTEMP_CRIT,
AMC6821_REG_RTEMP_HI,
AMC6821_REG_RTEMP_LIMIT_MIN,
AMC6821_REG_RTEMP_LIMIT_MAX,
AMC6821_REG_RTEMP_CRIT, };
enum {IDX_FAN1_INPUT = 0, IDX_FAN1_MIN, IDX_FAN1_MAX,
FAN1_IDX_LEN, };
static const u8 fan_reg_low[] = {AMC6821_REG_TDATA_LOW,
AMC6821_REG_TACH_LLIMITL,
AMC6821_REG_TACH_HLIMITL, };
static const u8 fan_reg_hi[] = {AMC6821_REG_TDATA_HI,
AMC6821_REG_TACH_LLIMITH,
AMC6821_REG_TACH_HLIMITH, };
/*
* Client data (each client gets its own)
*/
struct amc6821_data {
struct i2c_client *client;
struct mutex update_lock;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
/* register values */
int temp[TEMP_IDX_LEN];
u16 fan[FAN1_IDX_LEN];
u8 fan1_div;
u8 pwm1;
u8 temp1_auto_point_temp[3];
u8 temp2_auto_point_temp[3];
u8 pwm1_auto_point_pwm[3];
u8 pwm1_enable;
u8 pwm1_auto_channels_temp;
u8 stat1;
u8 stat2;
};
static struct amc6821_data *amc6821_update_device(struct device *dev)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int timeout = HZ;
u8 reg;
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + timeout) ||
!data->valid) {
for (i = 0; i < TEMP_IDX_LEN; i++)
data->temp[i] = i2c_smbus_read_byte_data(client,
temp_reg[i]);
data->stat1 = i2c_smbus_read_byte_data(client,
AMC6821_REG_STAT1);
data->stat2 = i2c_smbus_read_byte_data(client,
AMC6821_REG_STAT2);
data->pwm1 = i2c_smbus_read_byte_data(client,
AMC6821_REG_DCY);
for (i = 0; i < FAN1_IDX_LEN; i++) {
data->fan[i] = i2c_smbus_read_byte_data(
client,
fan_reg_low[i]);
data->fan[i] += i2c_smbus_read_byte_data(
client,
fan_reg_hi[i]) << 8;
}
data->fan1_div = i2c_smbus_read_byte_data(client,
AMC6821_REG_CONF4);
data->fan1_div = data->fan1_div & AMC6821_CONF4_PSPR ? 4 : 2;
data->pwm1_auto_point_pwm[0] = 0;
data->pwm1_auto_point_pwm[2] = 255;
data->pwm1_auto_point_pwm[1] = i2c_smbus_read_byte_data(client,
AMC6821_REG_DCY_LOW_TEMP);
data->temp1_auto_point_temp[0] =
i2c_smbus_read_byte_data(client,
AMC6821_REG_PSV_TEMP);
data->temp2_auto_point_temp[0] =
data->temp1_auto_point_temp[0];
reg = i2c_smbus_read_byte_data(client,
AMC6821_REG_LTEMP_FAN_CTRL);
data->temp1_auto_point_temp[1] = (reg & 0xF8) >> 1;
reg &= 0x07;
reg = 0x20 >> reg;
if (reg > 0)
data->temp1_auto_point_temp[2] =
data->temp1_auto_point_temp[1] +
(data->pwm1_auto_point_pwm[2] -
data->pwm1_auto_point_pwm[1]) / reg;
else
data->temp1_auto_point_temp[2] = 255;
reg = i2c_smbus_read_byte_data(client,
AMC6821_REG_RTEMP_FAN_CTRL);
data->temp2_auto_point_temp[1] = (reg & 0xF8) >> 1;
reg &= 0x07;
reg = 0x20 >> reg;
if (reg > 0)
data->temp2_auto_point_temp[2] =
data->temp2_auto_point_temp[1] +
(data->pwm1_auto_point_pwm[2] -
data->pwm1_auto_point_pwm[1]) / reg;
else
data->temp2_auto_point_temp[2] = 255;
reg = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF1);
reg = (reg >> 5) & 0x3;
switch (reg) {
case 0: /*open loop: software sets pwm1*/
data->pwm1_auto_channels_temp = 0;
data->pwm1_enable = 1;
break;
case 2: /*closed loop: remote T (temp2)*/
data->pwm1_auto_channels_temp = 2;
data->pwm1_enable = 2;
break;
case 3: /*closed loop: local and remote T (temp2)*/
data->pwm1_auto_channels_temp = 3;
data->pwm1_enable = 3;
break;
case 1: /*
* semi-open loop: software sets rpm, chip controls
* pwm1, currently not implemented
*/
data->pwm1_auto_channels_temp = 0;
data->pwm1_enable = 0;
break;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static ssize_t get_temp(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
int ix = to_sensor_dev_attr(devattr)->index;
return sprintf(buf, "%d\n", data->temp[ix] * 1000);
}
static ssize_t set_temp(
struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int ix = to_sensor_dev_attr(attr)->index;
long val;
int ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = clamp_val(val / 1000, -128, 127);
mutex_lock(&data->update_lock);
data->temp[ix] = val;
if (i2c_smbus_write_byte_data(client, temp_reg[ix], data->temp[ix])) {
dev_err(&client->dev, "Register write error, aborting.\n");
count = -EIO;
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t get_temp_alarm(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
int ix = to_sensor_dev_attr(devattr)->index;
u8 flag;
switch (ix) {
case IDX_TEMP1_MIN:
flag = data->stat1 & AMC6821_STAT1_LTL;
break;
case IDX_TEMP1_MAX:
flag = data->stat1 & AMC6821_STAT1_LTH;
break;
case IDX_TEMP1_CRIT:
flag = data->stat2 & AMC6821_STAT2_LTC;
break;
case IDX_TEMP2_MIN:
flag = data->stat1 & AMC6821_STAT1_RTL;
break;
case IDX_TEMP2_MAX:
flag = data->stat1 & AMC6821_STAT1_RTH;
break;
case IDX_TEMP2_CRIT:
flag = data->stat2 & AMC6821_STAT2_RTC;
break;
default:
dev_dbg(dev, "Unknown attr->index (%d).\n", ix);
return -EINVAL;
}
if (flag)
return sprintf(buf, "1");
else
return sprintf(buf, "0");
}
static ssize_t get_temp2_fault(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
if (data->stat1 & AMC6821_STAT1_RTF)
return sprintf(buf, "1");
else
return sprintf(buf, "0");
}
static ssize_t get_pwm1(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1);
}
static ssize_t set_pwm1(
struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
data->pwm1 = clamp_val(val , 0, 255);
i2c_smbus_write_byte_data(client, AMC6821_REG_DCY, data->pwm1);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t get_pwm1_enable(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1_enable);
}
static ssize_t set_pwm1_enable(
struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int config = kstrtol(buf, 10, &val);
if (config)
return config;
mutex_lock(&data->update_lock);
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF1);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
count = config;
goto unlock;
}
switch (val) {
case 1:
config &= ~AMC6821_CONF1_FDRC0;
config &= ~AMC6821_CONF1_FDRC1;
break;
case 2:
config &= ~AMC6821_CONF1_FDRC0;
config |= AMC6821_CONF1_FDRC1;
break;
case 3:
config |= AMC6821_CONF1_FDRC0;
config |= AMC6821_CONF1_FDRC1;
break;
default:
count = -EINVAL;
goto unlock;
}
if (i2c_smbus_write_byte_data(client, AMC6821_REG_CONF1, config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
count = -EIO;
}
unlock:
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t get_pwm1_auto_channels_temp(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1_auto_channels_temp);
}
static ssize_t get_temp_auto_point_temp(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
int ix = to_sensor_dev_attr_2(devattr)->index;
int nr = to_sensor_dev_attr_2(devattr)->nr;
struct amc6821_data *data = amc6821_update_device(dev);
switch (nr) {
case 1:
return sprintf(buf, "%d\n",
data->temp1_auto_point_temp[ix] * 1000);
case 2:
return sprintf(buf, "%d\n",
data->temp2_auto_point_temp[ix] * 1000);
default:
dev_dbg(dev, "Unknown attr->nr (%d).\n", nr);
return -EINVAL;
}
}
static ssize_t get_pwm1_auto_point_pwm(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
int ix = to_sensor_dev_attr(devattr)->index;
struct amc6821_data *data = amc6821_update_device(dev);
return sprintf(buf, "%d\n", data->pwm1_auto_point_pwm[ix]);
}
static inline ssize_t set_slope_register(struct i2c_client *client,
u8 reg,
u8 dpwm,
u8 *ptemp)
{
int dt;
u8 tmp;
dt = ptemp[2]-ptemp[1];
for (tmp = 4; tmp > 0; tmp--) {
if (dt * (0x20 >> tmp) >= dpwm)
break;
}
tmp |= (ptemp[1] & 0x7C) << 1;
if (i2c_smbus_write_byte_data(client,
reg, tmp)) {
dev_err(&client->dev, "Register write error, aborting.\n");
return -EIO;
}
return 0;
}
static ssize_t set_temp_auto_point_temp(
struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amc6821_data *data = amc6821_update_device(dev);
struct i2c_client *client = data->client;
int ix = to_sensor_dev_attr_2(attr)->index;
int nr = to_sensor_dev_attr_2(attr)->nr;
u8 *ptemp;
u8 reg;
int dpwm;
long val;
int ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
switch (nr) {
case 1:
ptemp = data->temp1_auto_point_temp;
reg = AMC6821_REG_LTEMP_FAN_CTRL;
break;
case 2:
ptemp = data->temp2_auto_point_temp;
reg = AMC6821_REG_RTEMP_FAN_CTRL;
break;
default:
dev_dbg(dev, "Unknown attr->nr (%d).\n", nr);
return -EINVAL;
}
mutex_lock(&data->update_lock);
data->valid = 0;
switch (ix) {
case 0:
ptemp[0] = clamp_val(val / 1000, 0,
data->temp1_auto_point_temp[1]);
ptemp[0] = clamp_val(ptemp[0], 0,
data->temp2_auto_point_temp[1]);
ptemp[0] = clamp_val(ptemp[0], 0, 63);
if (i2c_smbus_write_byte_data(
client,
AMC6821_REG_PSV_TEMP,
ptemp[0])) {
dev_err(&client->dev,
"Register write error, aborting.\n");
count = -EIO;
}
goto EXIT;
case 1:
ptemp[1] = clamp_val(val / 1000, (ptemp[0] & 0x7C) + 4, 124);
ptemp[1] &= 0x7C;
ptemp[2] = clamp_val(ptemp[2], ptemp[1] + 1, 255);
break;
case 2:
ptemp[2] = clamp_val(val / 1000, ptemp[1]+1, 255);
break;
default:
dev_dbg(dev, "Unknown attr->index (%d).\n", ix);
count = -EINVAL;
goto EXIT;
}
dpwm = data->pwm1_auto_point_pwm[2] - data->pwm1_auto_point_pwm[1];
if (set_slope_register(client, reg, dpwm, ptemp))
count = -EIO;
EXIT:
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_pwm1_auto_point_pwm(
struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int dpwm;
long val;
int ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&data->update_lock);
data->pwm1_auto_point_pwm[1] = clamp_val(val, 0, 254);
if (i2c_smbus_write_byte_data(client, AMC6821_REG_DCY_LOW_TEMP,
data->pwm1_auto_point_pwm[1])) {
dev_err(&client->dev, "Register write error, aborting.\n");
count = -EIO;
goto EXIT;
}
dpwm = data->pwm1_auto_point_pwm[2] - data->pwm1_auto_point_pwm[1];
if (set_slope_register(client, AMC6821_REG_LTEMP_FAN_CTRL, dpwm,
data->temp1_auto_point_temp)) {
count = -EIO;
goto EXIT;
}
if (set_slope_register(client, AMC6821_REG_RTEMP_FAN_CTRL, dpwm,
data->temp2_auto_point_temp)) {
count = -EIO;
goto EXIT;
}
EXIT:
data->valid = 0;
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t get_fan(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
int ix = to_sensor_dev_attr(devattr)->index;
if (0 == data->fan[ix])
return sprintf(buf, "0");
return sprintf(buf, "%d\n", (int)(6000000 / data->fan[ix]));
}
static ssize_t get_fan1_fault(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
if (data->stat1 & AMC6821_STAT1_FANS)
return sprintf(buf, "1");
else
return sprintf(buf, "0");
}
static ssize_t set_fan(
struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int ix = to_sensor_dev_attr(attr)->index;
int ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
val = 1 > val ? 0xFFFF : 6000000/val;
mutex_lock(&data->update_lock);
data->fan[ix] = (u16) clamp_val(val, 1, 0xFFFF);
if (i2c_smbus_write_byte_data(client, fan_reg_low[ix],
data->fan[ix] & 0xFF)) {
dev_err(&client->dev, "Register write error, aborting.\n");
count = -EIO;
goto EXIT;
}
if (i2c_smbus_write_byte_data(client,
fan_reg_hi[ix], data->fan[ix] >> 8)) {
dev_err(&client->dev, "Register write error, aborting.\n");
count = -EIO;
}
EXIT:
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t get_fan1_div(
struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct amc6821_data *data = amc6821_update_device(dev);
return sprintf(buf, "%d\n", data->fan1_div);
}
static ssize_t set_fan1_div(
struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amc6821_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int config = kstrtol(buf, 10, &val);
if (config)
return config;
mutex_lock(&data->update_lock);
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF4);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
count = config;
goto EXIT;
}
switch (val) {
case 2:
config &= ~AMC6821_CONF4_PSPR;
data->fan1_div = 2;
break;
case 4:
config |= AMC6821_CONF4_PSPR;
data->fan1_div = 4;
break;
default:
count = -EINVAL;
goto EXIT;
}
if (i2c_smbus_write_byte_data(client, AMC6821_REG_CONF4, config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
count = -EIO;
}
EXIT:
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO,
get_temp, NULL, IDX_TEMP1_INPUT);
static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP1_MIN);
static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP1_MAX);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP1_CRIT);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP1_MIN);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP1_MAX);
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP1_CRIT);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO,
get_temp, NULL, IDX_TEMP2_INPUT);
static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP2_MIN);
static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP2_MAX);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO | S_IWUSR, get_temp,
set_temp, IDX_TEMP2_CRIT);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO,
get_temp2_fault, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP2_MIN);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP2_MAX);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO,
get_temp_alarm, NULL, IDX_TEMP2_CRIT);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, get_fan, NULL, IDX_FAN1_INPUT);
static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO | S_IWUSR,
get_fan, set_fan, IDX_FAN1_MIN);
static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO | S_IWUSR,
get_fan, set_fan, IDX_FAN1_MAX);
static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, get_fan1_fault, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR,
get_fan1_div, set_fan1_div, 0);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, get_pwm1, set_pwm1, 0);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
get_pwm1_enable, set_pwm1_enable, 0);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IRUGO,
get_pwm1_auto_point_pwm, NULL, 0);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
get_pwm1_auto_point_pwm, set_pwm1_auto_point_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_pwm, S_IRUGO,
get_pwm1_auto_point_pwm, NULL, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IRUGO,
get_pwm1_auto_channels_temp, NULL, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_point1_temp, S_IRUGO,
get_temp_auto_point_temp, NULL, 1, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_point2_temp, S_IWUSR | S_IRUGO,
get_temp_auto_point_temp, set_temp_auto_point_temp, 1, 1);
static SENSOR_DEVICE_ATTR_2(temp1_auto_point3_temp, S_IWUSR | S_IRUGO,
get_temp_auto_point_temp, set_temp_auto_point_temp, 1, 2);
static SENSOR_DEVICE_ATTR_2(temp2_auto_point1_temp, S_IWUSR | S_IRUGO,
get_temp_auto_point_temp, set_temp_auto_point_temp, 2, 0);
static SENSOR_DEVICE_ATTR_2(temp2_auto_point2_temp, S_IWUSR | S_IRUGO,
get_temp_auto_point_temp, set_temp_auto_point_temp, 2, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_point3_temp, S_IWUSR | S_IRUGO,
get_temp_auto_point_temp, set_temp_auto_point_temp, 2, 2);
static struct attribute *amc6821_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_max.dev_attr.attr,
&sensor_dev_attr_fan1_fault.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point3_temp.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(amc6821);
/* Return 0 if detection is successful, -ENODEV otherwise */
static int amc6821_detect(
struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int address = client->addr;
int dev_id, comp_id;
dev_dbg(&adapter->dev, "amc6821_detect called.\n");
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_dbg(&adapter->dev,
"amc6821: I2C bus doesn't support byte mode, "
"skipping.\n");
return -ENODEV;
}
dev_id = i2c_smbus_read_byte_data(client, AMC6821_REG_DEV_ID);
comp_id = i2c_smbus_read_byte_data(client, AMC6821_REG_COMP_ID);
if (dev_id != 0x21 || comp_id != 0x49) {
dev_dbg(&adapter->dev,
"amc6821: detection failed at 0x%02x.\n",
address);
return -ENODEV;
}
/*
* Bit 7 of the address register is ignored, so we can check the
* ID registers again
*/
dev_id = i2c_smbus_read_byte_data(client, 0x80 | AMC6821_REG_DEV_ID);
comp_id = i2c_smbus_read_byte_data(client, 0x80 | AMC6821_REG_COMP_ID);
if (dev_id != 0x21 || comp_id != 0x49) {
dev_dbg(&adapter->dev,
"amc6821: detection failed at 0x%02x.\n",
address);
return -ENODEV;
}
dev_info(&adapter->dev, "amc6821: chip found at 0x%02x.\n", address);
strlcpy(info->type, "amc6821", I2C_NAME_SIZE);
return 0;
}
static int amc6821_init_client(struct i2c_client *client)
{
int config;
int err = -EIO;
if (init) {
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF4);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
return err;
}
config |= AMC6821_CONF4_MODE;
if (i2c_smbus_write_byte_data(client, AMC6821_REG_CONF4,
config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
return err;
}
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF3);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
return err;
}
dev_info(&client->dev, "Revision %d\n", config & 0x0f);
config &= ~AMC6821_CONF3_THERM_FAN_EN;
if (i2c_smbus_write_byte_data(client, AMC6821_REG_CONF3,
config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
return err;
}
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF2);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
return err;
}
config &= ~AMC6821_CONF2_RTFIE;
config &= ~AMC6821_CONF2_LTOIE;
config &= ~AMC6821_CONF2_RTOIE;
if (i2c_smbus_write_byte_data(client,
AMC6821_REG_CONF2, config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
return err;
}
config = i2c_smbus_read_byte_data(client, AMC6821_REG_CONF1);
if (config < 0) {
dev_err(&client->dev,
"Error reading configuration register, aborting.\n");
return err;
}
config &= ~AMC6821_CONF1_THERMOVIE;
config &= ~AMC6821_CONF1_FANIE;
config |= AMC6821_CONF1_START;
if (pwminv)
config |= AMC6821_CONF1_PWMINV;
else
config &= ~AMC6821_CONF1_PWMINV;
if (i2c_smbus_write_byte_data(
client, AMC6821_REG_CONF1, config)) {
dev_err(&client->dev,
"Configuration register write error, aborting.\n");
return err;
}
}
return 0;
}
static int amc6821_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct amc6821_data *data;
struct device *hwmon_dev;
int err;
data = devm_kzalloc(dev, sizeof(struct amc6821_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->update_lock);
/*
* Initialize the amc6821 chip
*/
err = amc6821_init_client(client);
if (err)
return err;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data,
amc6821_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id amc6821_id[] = {
{ "amc6821", amc6821 },
{ }
};
MODULE_DEVICE_TABLE(i2c, amc6821_id);
static struct i2c_driver amc6821_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "amc6821",
},
.probe = amc6821_probe,
.id_table = amc6821_id,
.detect = amc6821_detect,
.address_list = normal_i2c,
};
module_i2c_driver(amc6821_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("T. Mertelj <tomaz.mertelj@guest.arnes.si>");
MODULE_DESCRIPTION("Texas Instruments amc6821 hwmon driver");