OpenCloudOS-Kernel/drivers/net/wireless/ath/ath10k/htt_rx.c

1733 lines
47 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "htc.h"
#include "htt.h"
#include "txrx.h"
#include "debug.h"
#include "trace.h"
#include "mac.h"
#include <linux/log2.h>
/* slightly larger than one large A-MPDU */
#define HTT_RX_RING_SIZE_MIN 128
/* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
#define HTT_RX_RING_SIZE_MAX 2048
#define HTT_RX_AVG_FRM_BYTES 1000
/* ms, very conservative */
#define HTT_RX_HOST_LATENCY_MAX_MS 20
/* ms, conservative */
#define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
/* when under memory pressure rx ring refill may fail and needs a retry */
#define HTT_RX_RING_REFILL_RETRY_MS 50
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
static void ath10k_htt_txrx_compl_task(unsigned long ptr);
static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
{
int size;
/*
* It is expected that the host CPU will typically be able to
* service the rx indication from one A-MPDU before the rx
* indication from the subsequent A-MPDU happens, roughly 1-2 ms
* later. However, the rx ring should be sized very conservatively,
* to accomodate the worst reasonable delay before the host CPU
* services a rx indication interrupt.
*
* The rx ring need not be kept full of empty buffers. In theory,
* the htt host SW can dynamically track the low-water mark in the
* rx ring, and dynamically adjust the level to which the rx ring
* is filled with empty buffers, to dynamically meet the desired
* low-water mark.
*
* In contrast, it's difficult to resize the rx ring itself, once
* it's in use. Thus, the ring itself should be sized very
* conservatively, while the degree to which the ring is filled
* with empty buffers should be sized moderately conservatively.
*/
/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
size =
htt->max_throughput_mbps +
1000 /
(8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
if (size < HTT_RX_RING_SIZE_MIN)
size = HTT_RX_RING_SIZE_MIN;
if (size > HTT_RX_RING_SIZE_MAX)
size = HTT_RX_RING_SIZE_MAX;
size = roundup_pow_of_two(size);
return size;
}
static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
{
int size;
/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
size =
htt->max_throughput_mbps *
1000 /
(8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
/*
* Make sure the fill level is at least 1 less than the ring size.
* Leaving 1 element empty allows the SW to easily distinguish
* between a full ring vs. an empty ring.
*/
if (size >= htt->rx_ring.size)
size = htt->rx_ring.size - 1;
return size;
}
static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
{
struct sk_buff *skb;
struct ath10k_skb_cb *cb;
int i;
for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
skb = htt->rx_ring.netbufs_ring[i];
cb = ATH10K_SKB_CB(skb);
dma_unmap_single(htt->ar->dev, cb->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
htt->rx_ring.fill_cnt = 0;
}
static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
struct htt_rx_desc *rx_desc;
struct sk_buff *skb;
dma_addr_t paddr;
int ret = 0, idx;
idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
while (num > 0) {
skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
if (!skb) {
ret = -ENOMEM;
goto fail;
}
if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
skb_pull(skb,
PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
skb->data);
/* Clear rx_desc attention word before posting to Rx ring */
rx_desc = (struct htt_rx_desc *)skb->data;
rx_desc->attention.flags = __cpu_to_le32(0);
paddr = dma_map_single(htt->ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
dev_kfree_skb_any(skb);
ret = -ENOMEM;
goto fail;
}
ATH10K_SKB_CB(skb)->paddr = paddr;
htt->rx_ring.netbufs_ring[idx] = skb;
htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
htt->rx_ring.fill_cnt++;
num--;
idx++;
idx &= htt->rx_ring.size_mask;
}
fail:
*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
return ret;
}
static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
lockdep_assert_held(&htt->rx_ring.lock);
return __ath10k_htt_rx_ring_fill_n(htt, num);
}
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
{
int ret, num_deficit, num_to_fill;
/* Refilling the whole RX ring buffer proves to be a bad idea. The
* reason is RX may take up significant amount of CPU cycles and starve
* other tasks, e.g. TX on an ethernet device while acting as a bridge
* with ath10k wlan interface. This ended up with very poor performance
* once CPU the host system was overwhelmed with RX on ath10k.
*
* By limiting the number of refills the replenishing occurs
* progressively. This in turns makes use of the fact tasklets are
* processed in FIFO order. This means actual RX processing can starve
* out refilling. If there's not enough buffers on RX ring FW will not
* report RX until it is refilled with enough buffers. This
* automatically balances load wrt to CPU power.
*
* This probably comes at a cost of lower maximum throughput but
* improves the avarage and stability. */
spin_lock_bh(&htt->rx_ring.lock);
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
num_deficit -= num_to_fill;
ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
if (ret == -ENOMEM) {
/*
* Failed to fill it to the desired level -
* we'll start a timer and try again next time.
* As long as enough buffers are left in the ring for
* another A-MPDU rx, no special recovery is needed.
*/
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
} else if (num_deficit > 0) {
tasklet_schedule(&htt->rx_replenish_task);
}
spin_unlock_bh(&htt->rx_ring.lock);
}
static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
{
struct ath10k_htt *htt = (struct ath10k_htt *)arg;
ath10k_htt_rx_msdu_buff_replenish(htt);
}
static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
{
struct sk_buff *skb;
int i;
for (i = 0; i < htt->rx_ring.size; i++) {
skb = htt->rx_ring.netbufs_ring[i];
if (!skb)
continue;
dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
htt->rx_ring.netbufs_ring[i] = NULL;
}
}
void ath10k_htt_rx_free(struct ath10k_htt *htt)
{
del_timer_sync(&htt->rx_ring.refill_retry_timer);
tasklet_kill(&htt->rx_replenish_task);
tasklet_kill(&htt->txrx_compl_task);
skb_queue_purge(&htt->tx_compl_q);
skb_queue_purge(&htt->rx_compl_q);
ath10k_htt_rx_ring_clean_up(htt);
dma_free_coherent(htt->ar->dev,
(htt->rx_ring.size *
sizeof(htt->rx_ring.paddrs_ring)),
htt->rx_ring.paddrs_ring,
htt->rx_ring.base_paddr);
dma_free_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
htt->rx_ring.alloc_idx.vaddr,
htt->rx_ring.alloc_idx.paddr);
kfree(htt->rx_ring.netbufs_ring);
}
static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
int idx;
struct sk_buff *msdu;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_ring.fill_cnt == 0) {
ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
return NULL;
}
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
msdu = htt->rx_ring.netbufs_ring[idx];
htt->rx_ring.netbufs_ring[idx] = NULL;
idx++;
idx &= htt->rx_ring.size_mask;
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
htt->rx_ring.fill_cnt--;
return msdu;
}
static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
{
struct sk_buff *next;
while (skb) {
next = skb->next;
dev_kfree_skb_any(skb);
skb = next;
}
}
/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
u8 **fw_desc, int *fw_desc_len,
struct sk_buff **head_msdu,
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
struct sk_buff **tail_msdu,
u32 *attention)
{
struct ath10k *ar = htt->ar;
int msdu_len, msdu_chaining = 0;
struct sk_buff *msdu, *next;
struct htt_rx_desc *rx_desc;
u32 tsf;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_confused) {
ath10k_warn(ar, "htt is confused. refusing rx\n");
return -1;
}
msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
while (msdu) {
int last_msdu, msdu_len_invalid, msdu_chained;
dma_unmap_single(htt->ar->dev,
ATH10K_SKB_CB(msdu)->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ",
msdu->data, msdu->len + skb_tailroom(msdu));
trace_ath10k_htt_rx_pop_msdu(ar, msdu->data, msdu->len +
skb_tailroom(msdu));
rx_desc = (struct htt_rx_desc *)msdu->data;
/* FIXME: we must report msdu payload since this is what caller
* expects now */
skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
/*
* Sanity check - confirm the HW is finished filling in the
* rx data.
* If the HW and SW are working correctly, then it's guaranteed
* that the HW's MAC DMA is done before this point in the SW.
* To prevent the case that we handle a stale Rx descriptor,
* just assert for now until we have a way to recover.
*/
if (!(__le32_to_cpu(rx_desc->attention.flags)
& RX_ATTENTION_FLAGS_MSDU_DONE)) {
ath10k_htt_rx_free_msdu_chain(*head_msdu);
*head_msdu = NULL;
msdu = NULL;
ath10k_err(ar, "htt rx stopped. cannot recover\n");
htt->rx_confused = true;
break;
}
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
*attention |= __le32_to_cpu(rx_desc->attention.flags) &
(RX_ATTENTION_FLAGS_TKIP_MIC_ERR |
RX_ATTENTION_FLAGS_DECRYPT_ERR |
RX_ATTENTION_FLAGS_FCS_ERR |
RX_ATTENTION_FLAGS_MGMT_TYPE);
/*
* Copy the FW rx descriptor for this MSDU from the rx
* indication message into the MSDU's netbuf. HL uses the
* same rx indication message definition as LL, and simply
* appends new info (fields from the HW rx desc, and the
* MSDU payload itself). So, the offset into the rx
* indication message only has to account for the standard
* offset of the per-MSDU FW rx desc info within the
* message, and how many bytes of the per-MSDU FW rx desc
* info have already been consumed. (And the endianness of
* the host, since for a big-endian host, the rx ind
* message contents, including the per-MSDU rx desc bytes,
* were byteswapped during upload.)
*/
if (*fw_desc_len > 0) {
rx_desc->fw_desc.info0 = **fw_desc;
/*
* The target is expected to only provide the basic
* per-MSDU rx descriptors. Just to be sure, verify
* that the target has not attached extension data
* (e.g. LRO flow ID).
*/
/* or more, if there's extension data */
(*fw_desc)++;
(*fw_desc_len)--;
} else {
/*
* When an oversized AMSDU happened, FW will lost
* some of MSDU status - in this case, the FW
* descriptors provided will be less than the
* actual MSDUs inside this MPDU. Mark the FW
* descriptors so that it will still deliver to
* upper stack, if no CRC error for this MPDU.
*
* FIX THIS - the FW descriptors are actually for
* MSDUs in the end of this A-MSDU instead of the
* beginning.
*/
rx_desc->fw_desc.info0 = 0;
}
msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
RX_MSDU_START_INFO0_MSDU_LENGTH);
msdu_chained = rx_desc->frag_info.ring2_more_count;
if (msdu_len_invalid)
msdu_len = 0;
skb_trim(msdu, 0);
skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
msdu_len -= msdu->len;
/* FIXME: Do chained buffers include htt_rx_desc or not? */
while (msdu_chained--) {
struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
dma_unmap_single(htt->ar->dev,
ATH10K_SKB_CB(next)->paddr,
next->len + skb_tailroom(next),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
"htt rx chained: ", next->data,
next->len + skb_tailroom(next));
trace_ath10k_htt_rx_pop_msdu(ar, msdu->data, msdu->len +
skb_tailroom(msdu));
skb_trim(next, 0);
skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
msdu_len -= next->len;
msdu->next = next;
msdu = next;
msdu_chaining = 1;
}
last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
RX_MSDU_END_INFO0_LAST_MSDU;
tsf = __le32_to_cpu(rx_desc->ppdu_end.tsf_timestamp);
trace_ath10k_htt_rx_desc(ar, tsf, &rx_desc->attention,
sizeof(*rx_desc) - sizeof(u32));
if (last_msdu) {
msdu->next = NULL;
break;
}
next = ath10k_htt_rx_netbuf_pop(htt);
msdu->next = next;
msdu = next;
}
*tail_msdu = msdu;
if (*head_msdu == NULL)
msdu_chaining = -1;
/*
* Don't refill the ring yet.
*
* First, the elements popped here are still in use - it is not
* safe to overwrite them until the matching call to
* mpdu_desc_list_next. Second, for efficiency it is preferable to
* refill the rx ring with 1 PPDU's worth of rx buffers (something
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
* (something like 3 buffers). Consequently, we'll rely on the txrx
* SW to tell us when it is done pulling all the PPDU's rx buffers
* out of the rx ring, and then refill it just once.
*/
return msdu_chaining;
}
static void ath10k_htt_rx_replenish_task(unsigned long ptr)
{
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
ath10k_htt_rx_msdu_buff_replenish(htt);
}
int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
dma_addr_t paddr;
void *vaddr;
size_t size;
struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
if (!is_power_of_2(htt->rx_ring.size)) {
ath10k_warn(ar, "htt rx ring size is not power of 2\n");
return -EINVAL;
}
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
/*
* Set the initial value for the level to which the rx ring
* should be filled, based on the max throughput and the
* worst likely latency for the host to fill the rx ring
* with new buffers. In theory, this fill level can be
* dynamically adjusted from the initial value set here, to
* reflect the actual host latency rather than a
* conservative assumption about the host latency.
*/
htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
htt->rx_ring.netbufs_ring =
kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
GFP_KERNEL);
if (!htt->rx_ring.netbufs_ring)
goto err_netbuf;
size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
if (!vaddr)
goto err_dma_ring;
htt->rx_ring.paddrs_ring = vaddr;
htt->rx_ring.base_paddr = paddr;
vaddr = dma_alloc_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
&paddr, GFP_DMA);
if (!vaddr)
goto err_dma_idx;
htt->rx_ring.alloc_idx.vaddr = vaddr;
htt->rx_ring.alloc_idx.paddr = paddr;
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
*htt->rx_ring.alloc_idx.vaddr = 0;
/* Initialize the Rx refill retry timer */
setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
spin_lock_init(&htt->rx_ring.lock);
htt->rx_ring.fill_cnt = 0;
if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
goto err_fill_ring;
tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
(unsigned long)htt);
skb_queue_head_init(&htt->tx_compl_q);
skb_queue_head_init(&htt->rx_compl_q);
tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
(unsigned long)htt);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
htt->rx_ring.size, htt->rx_ring.fill_level);
return 0;
err_fill_ring:
ath10k_htt_rx_ring_free(htt);
dma_free_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
htt->rx_ring.alloc_idx.vaddr,
htt->rx_ring.alloc_idx.paddr);
err_dma_idx:
dma_free_coherent(htt->ar->dev,
(htt->rx_ring.size *
sizeof(htt->rx_ring.paddrs_ring)),
htt->rx_ring.paddrs_ring,
htt->rx_ring.base_paddr);
err_dma_ring:
kfree(htt->rx_ring.netbufs_ring);
err_netbuf:
return -ENOMEM;
}
static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
#define MICHAEL_MIC_LEN 8
static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
/* Applies for first msdu in chain, before altering it. */
static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
{
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format fmt;
rxd = (void *)skb->data - sizeof(*rxd);
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
if (fmt == RX_MSDU_DECAP_RAW)
return (void *)skb->data;
return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
}
/* This function only applies for first msdu in an msdu chain */
static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
{
u8 *qc;
if (ieee80211_is_data_qos(hdr->frame_control)) {
qc = ieee80211_get_qos_ctl(hdr);
if (qc[0] & 0x80)
return true;
}
return false;
}
struct rfc1042_hdr {
u8 llc_dsap;
u8 llc_ssap;
u8 llc_ctrl;
u8 snap_oui[3];
__be16 snap_type;
} __packed;
struct amsdu_subframe_hdr {
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
__be16 len;
} __packed;
static const u8 rx_legacy_rate_idx[] = {
3, /* 0x00 - 11Mbps */
2, /* 0x01 - 5.5Mbps */
1, /* 0x02 - 2Mbps */
0, /* 0x03 - 1Mbps */
3, /* 0x04 - 11Mbps */
2, /* 0x05 - 5.5Mbps */
1, /* 0x06 - 2Mbps */
0, /* 0x07 - 1Mbps */
10, /* 0x08 - 48Mbps */
8, /* 0x09 - 24Mbps */
6, /* 0x0A - 12Mbps */
4, /* 0x0B - 6Mbps */
11, /* 0x0C - 54Mbps */
9, /* 0x0D - 36Mbps */
7, /* 0x0E - 18Mbps */
5, /* 0x0F - 9Mbps */
};
static void ath10k_htt_rx_h_rates(struct ath10k *ar,
enum ieee80211_band band,
u8 info0, u32 info1, u32 info2,
struct ieee80211_rx_status *status)
{
u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
u8 preamble = 0;
/* Check if valid fields */
if (!(info0 & HTT_RX_INDICATION_INFO0_START_VALID))
return;
preamble = MS(info1, HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE);
switch (preamble) {
case HTT_RX_LEGACY:
cck = info0 & HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK;
rate = MS(info0, HTT_RX_INDICATION_INFO0_LEGACY_RATE);
rate_idx = 0;
if (rate < 0x08 || rate > 0x0F)
break;
switch (band) {
case IEEE80211_BAND_2GHZ:
if (cck)
rate &= ~BIT(3);
rate_idx = rx_legacy_rate_idx[rate];
break;
case IEEE80211_BAND_5GHZ:
rate_idx = rx_legacy_rate_idx[rate];
/* We are using same rate table registering
HW - ath10k_rates[]. In case of 5GHz skip
CCK rates, so -4 here */
rate_idx -= 4;
break;
default:
break;
}
status->rate_idx = rate_idx;
break;
case HTT_RX_HT:
case HTT_RX_HT_WITH_TXBF:
/* HT-SIG - Table 20-11 in info1 and info2 */
mcs = info1 & 0x1F;
nss = mcs >> 3;
bw = (info1 >> 7) & 1;
sgi = (info2 >> 7) & 1;
status->rate_idx = mcs;
status->flag |= RX_FLAG_HT;
if (sgi)
status->flag |= RX_FLAG_SHORT_GI;
if (bw)
status->flag |= RX_FLAG_40MHZ;
break;
case HTT_RX_VHT:
case HTT_RX_VHT_WITH_TXBF:
/* VHT-SIG-A1 in info 1, VHT-SIG-A2 in info2
TODO check this */
mcs = (info2 >> 4) & 0x0F;
nss = ((info1 >> 10) & 0x07) + 1;
bw = info1 & 3;
sgi = info2 & 1;
status->rate_idx = mcs;
status->vht_nss = nss;
if (sgi)
status->flag |= RX_FLAG_SHORT_GI;
switch (bw) {
/* 20MHZ */
case 0:
break;
/* 40MHZ */
case 1:
status->flag |= RX_FLAG_40MHZ;
break;
/* 80MHZ */
case 2:
status->vht_flag |= RX_VHT_FLAG_80MHZ;
}
status->flag |= RX_FLAG_VHT;
break;
default:
break;
}
}
static void ath10k_htt_rx_h_protected(struct ath10k_htt *htt,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb,
enum htt_rx_mpdu_encrypt_type enctype,
enum rx_msdu_decap_format fmt,
bool dot11frag)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
rx_status->flag &= ~(RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED);
if (enctype == HTT_RX_MPDU_ENCRYPT_NONE)
return;
/*
* There's no explicit rx descriptor flag to indicate whether a given
* frame has been decrypted or not. We're forced to use the decap
* format as an implicit indication. However fragmentation rx is always
* raw and it probably never reports undecrypted raws.
*
* This makes sure sniffed frames are reported as-is without stripping
* the protected flag.
*/
if (fmt == RX_MSDU_DECAP_RAW && !dot11frag)
return;
rx_status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
hdr->frame_control = __cpu_to_le16(__le16_to_cpu(hdr->frame_control) &
~IEEE80211_FCTL_PROTECTED);
}
static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
struct ieee80211_rx_status *status)
{
struct ieee80211_channel *ch;
spin_lock_bh(&ar->data_lock);
ch = ar->scan_channel;
if (!ch)
ch = ar->rx_channel;
spin_unlock_bh(&ar->data_lock);
if (!ch)
return false;
status->band = ch->band;
status->freq = ch->center_freq;
return true;
}
static const char * const tid_to_ac[] = {
"BE",
"BK",
"BK",
"BE",
"VI",
"VI",
"VO",
"VO",
};
static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
{
u8 *qc;
int tid;
if (!ieee80211_is_data_qos(hdr->frame_control))
return "";
qc = ieee80211_get_qos_ctl(hdr);
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (tid < 8)
snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
else
snprintf(out, size, "tid %d", tid);
return out;
}
static void ath10k_process_rx(struct ath10k *ar,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb)
{
struct ieee80211_rx_status *status;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
char tid[32];
status = IEEE80211_SKB_RXCB(skb);
*status = *rx_status;
ath10k_dbg(ar, ATH10K_DBG_DATA,
"rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
skb,
skb->len,
ieee80211_get_SA(hdr),
ath10k_get_tid(hdr, tid, sizeof(tid)),
is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
"mcast" : "ucast",
(__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
status->flag == 0 ? "legacy" : "",
status->flag & RX_FLAG_HT ? "ht" : "",
status->flag & RX_FLAG_VHT ? "vht" : "",
status->flag & RX_FLAG_40MHZ ? "40" : "",
status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
status->rate_idx,
status->vht_nss,
status->freq,
status->band, status->flag,
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
!!(status->flag & RX_FLAG_MMIC_ERROR),
!!(status->flag & RX_FLAG_AMSDU_MORE));
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
skb->data, skb->len);
ieee80211_rx(ar->hw, skb);
}
static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
{
/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
}
static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb_in)
{
struct ath10k *ar = htt->ar;
struct htt_rx_desc *rxd;
struct sk_buff *skb = skb_in;
struct sk_buff *first;
enum rx_msdu_decap_format fmt;
enum htt_rx_mpdu_encrypt_type enctype;
struct ieee80211_hdr *hdr;
u8 hdr_buf[64], da[ETH_ALEN], sa[ETH_ALEN], *qos;
unsigned int hdr_len;
rxd = (void *)skb->data - sizeof(*rxd);
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(hdr_buf, hdr, hdr_len);
hdr = (struct ieee80211_hdr *)hdr_buf;
first = skb;
while (skb) {
void *decap_hdr;
int len;
rxd = (void *)skb->data - sizeof(*rxd);
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
decap_hdr = (void *)rxd->rx_hdr_status;
skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
/* First frame in an A-MSDU chain has more decapped data. */
if (skb == first) {
len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
len += round_up(ath10k_htt_rx_crypto_param_len(ar,
enctype), 4);
decap_hdr += len;
}
switch (fmt) {
case RX_MSDU_DECAP_RAW:
/* remove trailing FCS */
skb_trim(skb, skb->len - FCS_LEN);
break;
case RX_MSDU_DECAP_NATIVE_WIFI:
/* pull decapped header and copy SA & DA */
hdr = (struct ieee80211_hdr *)skb->data;
hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
ether_addr_copy(da, ieee80211_get_DA(hdr));
ether_addr_copy(sa, ieee80211_get_SA(hdr));
skb_pull(skb, hdr_len);
/* push original 802.11 header */
hdr = (struct ieee80211_hdr *)hdr_buf;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
/* original A-MSDU header has the bit set but we're
* not including A-MSDU subframe header */
hdr = (struct ieee80211_hdr *)skb->data;
qos = ieee80211_get_qos_ctl(hdr);
qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
break;
case RX_MSDU_DECAP_ETHERNET2_DIX:
/* strip ethernet header and insert decapped 802.11
* header, amsdu subframe header and rfc1042 header */
len = 0;
len += sizeof(struct rfc1042_hdr);
len += sizeof(struct amsdu_subframe_hdr);
skb_pull(skb, sizeof(struct ethhdr));
memcpy(skb_push(skb, len), decap_hdr, len);
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
break;
case RX_MSDU_DECAP_8023_SNAP_LLC:
/* insert decapped 802.11 header making a singly
* A-MSDU */
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
break;
}
skb_in = skb;
ath10k_htt_rx_h_protected(htt, rx_status, skb_in, enctype, fmt,
false);
skb = skb->next;
skb_in->next = NULL;
if (skb)
rx_status->flag |= RX_FLAG_AMSDU_MORE;
else
rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
ath10k_process_rx(htt->ar, rx_status, skb_in);
}
/* FIXME: It might be nice to re-assemble the A-MSDU when there's a
* monitor interface active for sniffing purposes. */
}
static void ath10k_htt_rx_msdu(struct ath10k_htt *htt,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb)
{
struct ath10k *ar = htt->ar;
struct htt_rx_desc *rxd;
struct ieee80211_hdr *hdr;
enum rx_msdu_decap_format fmt;
enum htt_rx_mpdu_encrypt_type enctype;
int hdr_len;
void *rfc1042;
/* This shouldn't happen. If it does than it may be a FW bug. */
if (skb->next) {
ath10k_warn(ar, "htt rx received chained non A-MSDU frame\n");
ath10k_htt_rx_free_msdu_chain(skb->next);
skb->next = NULL;
}
rxd = (void *)skb->data - sizeof(*rxd);
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
switch (fmt) {
case RX_MSDU_DECAP_RAW:
/* remove trailing FCS */
skb_trim(skb, skb->len - FCS_LEN);
break;
case RX_MSDU_DECAP_NATIVE_WIFI:
/* Pull decapped header */
hdr = (struct ieee80211_hdr *)skb->data;
hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
skb_pull(skb, hdr_len);
/* Push original header */
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
break;
case RX_MSDU_DECAP_ETHERNET2_DIX:
/* strip ethernet header and insert decapped 802.11 header and
* rfc1042 header */
rfc1042 = hdr;
rfc1042 += roundup(hdr_len, 4);
rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(ar,
enctype), 4);
skb_pull(skb, sizeof(struct ethhdr));
memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
rfc1042, sizeof(struct rfc1042_hdr));
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
break;
case RX_MSDU_DECAP_8023_SNAP_LLC:
/* remove A-MSDU subframe header and insert
* decapped 802.11 header. rfc1042 header is already there */
skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
break;
}
ath10k_htt_rx_h_protected(htt, rx_status, skb, enctype, fmt, false);
ath10k_process_rx(htt->ar, rx_status, skb);
}
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
{
struct htt_rx_desc *rxd;
u32 flags, info;
bool is_ip4, is_ip6;
bool is_tcp, is_udp;
bool ip_csum_ok, tcpudp_csum_ok;
rxd = (void *)skb->data - sizeof(*rxd);
flags = __le32_to_cpu(rxd->attention.flags);
info = __le32_to_cpu(rxd->msdu_start.info1);
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
if (!is_ip4 && !is_ip6)
return CHECKSUM_NONE;
if (!is_tcp && !is_udp)
return CHECKSUM_NONE;
if (!ip_csum_ok)
return CHECKSUM_NONE;
if (!tcpudp_csum_ok)
return CHECKSUM_NONE;
return CHECKSUM_UNNECESSARY;
}
static int ath10k_unchain_msdu(struct sk_buff *msdu_head)
{
struct sk_buff *next = msdu_head->next;
struct sk_buff *to_free = next;
int space;
int total_len = 0;
/* TODO: Might could optimize this by using
* skb_try_coalesce or similar method to
* decrease copying, or maybe get mac80211 to
* provide a way to just receive a list of
* skb?
*/
msdu_head->next = NULL;
/* Allocate total length all at once. */
while (next) {
total_len += next->len;
next = next->next;
}
space = total_len - skb_tailroom(msdu_head);
if ((space > 0) &&
(pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) {
/* TODO: bump some rx-oom error stat */
/* put it back together so we can free the
* whole list at once.
*/
msdu_head->next = to_free;
return -1;
}
/* Walk list again, copying contents into
* msdu_head
*/
next = to_free;
while (next) {
skb_copy_from_linear_data(next, skb_put(msdu_head, next->len),
next->len);
next = next->next;
}
/* If here, we have consolidated skb. Free the
* fragments and pass the main skb on up the
* stack.
*/
ath10k_htt_rx_free_msdu_chain(to_free);
return 0;
}
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k_htt *htt,
struct sk_buff *head,
enum htt_rx_mpdu_status status,
bool channel_set,
u32 attention)
{
struct ath10k *ar = htt->ar;
if (head->len == 0) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx dropping due to zero-len\n");
return false;
}
if (attention & RX_ATTENTION_FLAGS_DECRYPT_ERR) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx dropping due to decrypt-err\n");
return false;
}
if (!channel_set) {
ath10k_warn(ar, "no channel configured; ignoring frame!\n");
return false;
}
/* Skip mgmt frames while we handle this in WMI */
if (attention & RX_ATTENTION_FLAGS_MGMT_TYPE) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
return false;
}
if (status != HTT_RX_IND_MPDU_STATUS_OK &&
status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER &&
!htt->ar->monitor_started) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx ignoring frame w/ status %d\n",
status);
return false;
}
if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx CAC running\n");
return false;
}
return true;
}
static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
struct htt_rx_indication *rx)
{
struct ath10k *ar = htt->ar;
struct ieee80211_rx_status *rx_status = &htt->rx_status;
struct htt_rx_indication_mpdu_range *mpdu_ranges;
enum htt_rx_mpdu_status status;
struct ieee80211_hdr *hdr;
int num_mpdu_ranges;
u32 attention;
int fw_desc_len;
u8 *fw_desc;
bool channel_set;
int i, j;
int ret;
lockdep_assert_held(&htt->rx_ring.lock);
fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
fw_desc = (u8 *)&rx->fw_desc;
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
/* Fill this once, while this is per-ppdu */
if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_START_VALID) {
memset(rx_status, 0, sizeof(*rx_status));
rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
rx->ppdu.combined_rssi;
}
if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_END_VALID) {
/* TSF available only in 32-bit */
rx_status->mactime = __le32_to_cpu(rx->ppdu.tsf) & 0xffffffff;
rx_status->flag |= RX_FLAG_MACTIME_END;
}
channel_set = ath10k_htt_rx_h_channel(htt->ar, rx_status);
if (channel_set) {
ath10k_htt_rx_h_rates(htt->ar, rx_status->band,
rx->ppdu.info0,
__le32_to_cpu(rx->ppdu.info1),
__le32_to_cpu(rx->ppdu.info2),
rx_status);
}
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
rx, sizeof(*rx) +
(sizeof(struct htt_rx_indication_mpdu_range) *
num_mpdu_ranges));
for (i = 0; i < num_mpdu_ranges; i++) {
status = mpdu_ranges[i].mpdu_range_status;
for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
struct sk_buff *msdu_head, *msdu_tail;
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
attention = 0;
msdu_head = NULL;
msdu_tail = NULL;
ret = ath10k_htt_rx_amsdu_pop(htt,
&fw_desc,
&fw_desc_len,
&msdu_head,
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
&msdu_tail,
&attention);
if (ret < 0) {
ath10k_warn(ar, "failed to pop amsdu from htt rx ring %d\n",
ret);
ath10k_htt_rx_free_msdu_chain(msdu_head);
continue;
}
if (!ath10k_htt_rx_amsdu_allowed(htt, msdu_head,
status,
channel_set,
attention)) {
ath10k_htt_rx_free_msdu_chain(msdu_head);
continue;
}
if (ret > 0 &&
ath10k_unchain_msdu(msdu_head) < 0) {
ath10k_htt_rx_free_msdu_chain(msdu_head);
continue;
}
if (attention & RX_ATTENTION_FLAGS_FCS_ERR)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
else
rx_status->flag &= ~RX_FLAG_FAILED_FCS_CRC;
if (attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
rx_status->flag |= RX_FLAG_MMIC_ERROR;
else
rx_status->flag &= ~RX_FLAG_MMIC_ERROR;
hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
if (ath10k_htt_rx_hdr_is_amsdu(hdr))
ath10k_htt_rx_amsdu(htt, rx_status, msdu_head);
else
ath10k_htt_rx_msdu(htt, rx_status, msdu_head);
}
}
tasklet_schedule(&htt->rx_replenish_task);
}
static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
struct htt_rx_fragment_indication *frag)
{
struct ath10k *ar = htt->ar;
struct sk_buff *msdu_head, *msdu_tail;
enum htt_rx_mpdu_encrypt_type enctype;
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format fmt;
struct ieee80211_rx_status *rx_status = &htt->rx_status;
struct ieee80211_hdr *hdr;
int ret;
bool tkip_mic_err;
bool decrypt_err;
u8 *fw_desc;
int fw_desc_len, hdrlen, paramlen;
int trim;
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
u32 attention = 0;
fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
fw_desc = (u8 *)frag->fw_msdu_rx_desc;
msdu_head = NULL;
msdu_tail = NULL;
spin_lock_bh(&htt->rx_ring.lock);
ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
&msdu_head, &msdu_tail,
&attention);
spin_unlock_bh(&htt->rx_ring.lock);
ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
if (ret) {
ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
ret);
ath10k_htt_rx_free_msdu_chain(msdu_head);
return;
}
/* FIXME: implement signal strength */
rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
hdr = (struct ieee80211_hdr *)msdu_head->data;
rxd = (void *)msdu_head->data - sizeof(*rxd);
ath10k: handle attention flags correctly when using A-MSDU In case of A-MSDU RX we should check attention flags correctly to be sure we report correct FCS status for A-MSDU subframes. Without a patch we could report A-MSDU subframes with wrong FCS as a correct to the stack, next get a lot of DUP ACK TCP packets. Finally TP drop is seen and this drop depends on FCS errors ratio for A-MSDU frame. Example test case when TP drop is seen: - ath10k configured as an AP - used ath10k station - forced A-MSDU (7 frames) on STA - other traffic on channel (often FCS errors) - monitor iface added on AP - TCP STA -> AP traffic (iperf) a) Iperf logs for case without the patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 56.6 MBytes 95.0 Mbits/sec [ 3] 5.0-10.0 sec 60.4 MBytes 101 Mbits/sec [ 3] 10.0-15.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 15.0-20.0 sec 60.2 MBytes 101 Mbits/sec [ 3] 20.0-25.0 sec 63.8 MBytes 107 Mbits/sec [ 3] 25.0-30.0 sec 64.9 MBytes 109 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 30.0-35.0 sec 40.0 MBytes 67.1 Mbits/sec [ 3] 35.0-40.0 sec 35.9 MBytes 60.2 Mbits/sec [ 3] 40.0-45.0 sec 36.9 MBytes 61.9 Mbits/sec [ 3] 45.0-50.0 sec 37.9 MBytes 63.5 Mbits/sec [ 3] 50.0-55.0 sec 34.5 MBytes 57.9 Mbits/sec [ 3] 55.0-60.0 sec 25.4 MBytes 42.6 Mbits/sec [ 3] 60.0-65.0 sec 48.2 MBytes 81.0 Mbits/sec [ 3] 65.0-70.0 sec 28.8 MBytes 48.2 Mbits/sec [ 3] 70.0-75.0 sec 29.2 MBytes 49.1 Mbits/sec [ 3] 75.0-80.0 sec 22.9 MBytes 38.4 Mbits/sec [ 3] 80.0-85.0 sec 26.4 MBytes 44.2 Mbits/sec [ 3] 85.0-90.0 sec 31.5 MBytes 52.8 Mbits/sec b) Iperf logs for case with patch: echo "1 64" > htt_max_amsdu_ampdu // disable A-MSDU [ 3] local 192.168.12.2 port 57512 connected with 192.168.12.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 5.0 sec 60.8 MBytes 102 Mbits/sec [ 3] 5.0-10.0 sec 62.2 MBytes 104 Mbits/sec [ 3] 10.0-15.0 sec 60.9 MBytes 102 Mbits/sec echo "7 64" > htt_max_amsdu_ampdu // set 7 A-MSDU subframes [ 3] 15.0-20.0 sec 68.1 MBytes 114 Mbits/sec [ 3] 20.0-25.0 sec 80.5 MBytes 135 Mbits/sec [ 3] 25.0-30.0 sec 83.0 MBytes 139 Mbits/sec [ 3] 30.0-35.0 sec 79.1 MBytes 133 Mbits/sec [ 3] 35.0-40.0 sec 77.1 MBytes 129 Mbits/sec [ 3] 40.0-45.0 sec 77.4 MBytes 130 Mbits/sec Reported-by: Denton Gentry <denton.gentry@gmail.com> Signed-off-by: Janusz Dziedzic <janusz.dziedzic@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-07-25 16:28:50 +08:00
tkip_mic_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
decrypt_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
if (fmt != RX_MSDU_DECAP_RAW) {
ath10k_warn(ar, "we dont support non-raw fragmented rx yet\n");
dev_kfree_skb_any(msdu_head);
goto end;
}
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
ath10k_htt_rx_h_protected(htt, rx_status, msdu_head, enctype, fmt,
true);
msdu_head->ip_summed = ath10k_htt_rx_get_csum_state(msdu_head);
if (tkip_mic_err)
ath10k_warn(ar, "tkip mic error\n");
if (decrypt_err) {
ath10k_warn(ar, "decryption err in fragmented rx\n");
dev_kfree_skb_any(msdu_head);
goto end;
}
if (enctype != HTT_RX_MPDU_ENCRYPT_NONE) {
hdrlen = ieee80211_hdrlen(hdr->frame_control);
paramlen = ath10k_htt_rx_crypto_param_len(ar, enctype);
/* It is more efficient to move the header than the payload */
memmove((void *)msdu_head->data + paramlen,
(void *)msdu_head->data,
hdrlen);
skb_pull(msdu_head, paramlen);
hdr = (struct ieee80211_hdr *)msdu_head->data;
}
/* remove trailing FCS */
trim = 4;
/* remove crypto trailer */
trim += ath10k_htt_rx_crypto_tail_len(ar, enctype);
/* last fragment of TKIP frags has MIC */
if (!ieee80211_has_morefrags(hdr->frame_control) &&
enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
trim += MICHAEL_MIC_LEN;
if (trim > msdu_head->len) {
ath10k_warn(ar, "htt rx fragment: trailer longer than the frame itself? drop\n");
dev_kfree_skb_any(msdu_head);
goto end;
}
skb_trim(msdu_head, msdu_head->len - trim);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ",
msdu_head->data, msdu_head->len);
ath10k_process_rx(htt->ar, rx_status, msdu_head);
end:
if (fw_desc_len > 0) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"expecting more fragmented rx in one indication %d\n",
fw_desc_len);
}
}
static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
struct htt_tx_done tx_done = {};
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
__le16 msdu_id;
int i;
lockdep_assert_held(&htt->tx_lock);
switch (status) {
case HTT_DATA_TX_STATUS_NO_ACK:
tx_done.no_ack = true;
break;
case HTT_DATA_TX_STATUS_OK:
break;
case HTT_DATA_TX_STATUS_DISCARD:
case HTT_DATA_TX_STATUS_POSTPONE:
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
tx_done.discard = true;
break;
default:
ath10k_warn(ar, "unhandled tx completion status %d\n", status);
tx_done.discard = true;
break;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
resp->data_tx_completion.num_msdus);
for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
msdu_id = resp->data_tx_completion.msdus[i];
tx_done.msdu_id = __le16_to_cpu(msdu_id);
ath10k_txrx_tx_unref(htt, &tx_done);
}
}
static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_addba *ev = &resp->rx_addba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx addba tid %hu peer_id %hu size %hhu\n",
tid, peer_id, ev->window_size);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx start rx ba session sta %pM tid %hu size %hhu\n",
peer->addr, tid, ev->window_size);
ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_delba *ev = &resp->rx_delba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx delba tid %hu peer_id %hu\n",
tid, peer_id);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx stop rx ba session sta %pM tid %hu\n",
peer->addr, tid);
ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
/* confirm alignment */
if (!IS_ALIGNED((unsigned long)skb->data, 4))
ath10k_warn(ar, "unaligned htt message, expect trouble\n");
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
resp->hdr.msg_type);
switch (resp->hdr.msg_type) {
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
htt->target_version_major = resp->ver_resp.major;
htt->target_version_minor = resp->ver_resp.minor;
complete(&htt->target_version_received);
break;
}
case HTT_T2H_MSG_TYPE_RX_IND:
spin_lock_bh(&htt->rx_ring.lock);
__skb_queue_tail(&htt->rx_compl_q, skb);
spin_unlock_bh(&htt->rx_ring.lock);
tasklet_schedule(&htt->txrx_compl_task);
return;
case HTT_T2H_MSG_TYPE_PEER_MAP: {
struct htt_peer_map_event ev = {
.vdev_id = resp->peer_map.vdev_id,
.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
};
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
ath10k_peer_map_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
struct htt_peer_unmap_event ev = {
.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
};
ath10k_peer_unmap_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
struct htt_tx_done tx_done = {};
int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
tx_done.msdu_id =
__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
switch (status) {
case HTT_MGMT_TX_STATUS_OK:
break;
case HTT_MGMT_TX_STATUS_RETRY:
tx_done.no_ack = true;
break;
case HTT_MGMT_TX_STATUS_DROP:
tx_done.discard = true;
break;
}
spin_lock_bh(&htt->tx_lock);
ath10k_txrx_tx_unref(htt, &tx_done);
spin_unlock_bh(&htt->tx_lock);
break;
}
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
spin_lock_bh(&htt->tx_lock);
__skb_queue_tail(&htt->tx_compl_q, skb);
spin_unlock_bh(&htt->tx_lock);
tasklet_schedule(&htt->txrx_compl_task);
return;
case HTT_T2H_MSG_TYPE_SEC_IND: {
struct ath10k *ar = htt->ar;
struct htt_security_indication *ev = &resp->security_indication;
ath10k_dbg(ar, ATH10K_DBG_HTT,
"sec ind peer_id %d unicast %d type %d\n",
__le16_to_cpu(ev->peer_id),
!!(ev->flags & HTT_SECURITY_IS_UNICAST),
MS(ev->flags, HTT_SECURITY_TYPE));
complete(&ar->install_key_done);
break;
}
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
break;
}
case HTT_T2H_MSG_TYPE_TEST:
/* FIX THIS */
break;
case HTT_T2H_MSG_TYPE_STATS_CONF:
trace_ath10k_htt_stats(ar, skb->data, skb->len);
break;
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
/* Firmware can return tx frames if it's unable to fully
* process them and suspects host may be able to fix it. ath10k
* sends all tx frames as already inspected so this shouldn't
* happen unless fw has a bug.
*/
ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
break;
case HTT_T2H_MSG_TYPE_RX_ADDBA:
ath10k_htt_rx_addba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_RX_DELBA:
ath10k_htt_rx_delba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_PKTLOG: {
struct ath10k_pktlog_hdr *hdr =
(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
sizeof(*hdr) +
__le16_to_cpu(hdr->size));
break;
}
case HTT_T2H_MSG_TYPE_RX_FLUSH: {
/* Ignore this event because mac80211 takes care of Rx
* aggregation reordering.
*/
break;
}
default:
ath10k_warn(ar, "htt event (%d) not handled\n",
resp->hdr.msg_type);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
break;
};
/* Free the indication buffer */
dev_kfree_skb_any(skb);
}
static void ath10k_htt_txrx_compl_task(unsigned long ptr)
{
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
struct htt_resp *resp;
struct sk_buff *skb;
spin_lock_bh(&htt->tx_lock);
while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
dev_kfree_skb_any(skb);
}
spin_unlock_bh(&htt->tx_lock);
spin_lock_bh(&htt->rx_ring.lock);
while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
resp = (struct htt_resp *)skb->data;
ath10k_htt_rx_handler(htt, &resp->rx_ind);
dev_kfree_skb_any(skb);
}
spin_unlock_bh(&htt->rx_ring.lock);
}