OpenCloudOS-Kernel/drivers/net/ethernet/atheros/atl1e/atl1e_hw.c

651 lines
16 KiB
C
Raw Normal View History

/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include "atl1e.h"
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
{
u32 value;
value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* atl1e_get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1e_get_permanent_address(struct atl1e_hw *hw)
{
u32 addr[2];
u32 i;
u32 twsi_ctrl_data;
u8 eth_addr[ETH_ALEN];
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
/* init */
addr[0] = addr[1] = 0;
if (!atl1e_check_eeprom_exist(hw)) {
/* eeprom exist */
twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
msleep(10);
twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
break;
}
if (i >= AT_TWSI_EEPROM_TIMEOUT)
return AT_ERR_TIMEOUT;
}
/* maybe MAC-address is from BIOS */
addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return AT_ERR_EEPROM;
}
bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
{
return true;
}
bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
{
int i;
u32 control;
if (offset & 3)
return false; /* address do not align */
AT_WRITE_REG(hw, REG_VPD_DATA, 0);
control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
AT_WRITE_REG(hw, REG_VPD_CAP, control);
for (i = 0; i < 10; i++) {
msleep(2);
control = AT_READ_REG(hw, REG_VPD_CAP);
if (control & VPD_CAP_VPD_FLAG)
break;
}
if (control & VPD_CAP_VPD_FLAG) {
*p_value = AT_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
void atl1e_force_ps(struct atl1e_hw *hw)
{
AT_WRITE_REGW(hw, REG_GPHY_CTRL,
GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
int atl1e_read_mac_addr(struct atl1e_hw *hw)
{
int err = 0;
err = atl1e_get_permanent_address(hw);
if (err)
return AT_ERR_EEPROM;
memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
return 0;
}
/*
* atl1e_hash_mc_addr
* purpose
* set hash value for a multicast address
*/
u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
{
u32 crc32;
u32 value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return AT_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return AT_ERR_PHY;
}
/*
* atl1e_init_pcie - init PCIE module
*/
static void atl1e_init_pcie(struct atl1e_hw *hw)
{
u32 value;
/* comment 2lines below to save more power when sususpend
value = LTSSM_TEST_MODE_DEF;
AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
*/
/* pcie flow control mode change */
value = AT_READ_REG(hw, 0x1008);
value |= 0x8000;
AT_WRITE_REG(hw, 0x1008, value);
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
{
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg;
if (0 != hw->mii_autoneg_adv_reg)
return 0;
/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
/*
* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
/*
* Need to parse MediaType and setup the
* appropriate PHY registers.
*/
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |= ADVERTISE_ALL;
hw->autoneg_advertised = ADVERTISE_ALL;
if (hw->nic_type == athr_l1e) {
mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
hw->autoneg_advertised |= ADVERTISE_1000_FULL;
}
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= ADVERTISE_100FULL;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= ADVERTISE_100_HALF;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= ADVERTISE_10_FULL;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= ADVERTISE_10_HALF;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return 0;
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII control regiser (for F001 bug)
*/
int atl1e_phy_commit(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = hw->adapter;
int ret_val;
u16 phy_data;
phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/**************************************
* pcie serdes link may be down !
**************************************/
for (i = 0; i < 25; i++) {
msleep(1);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
netdev_err(adapter->netdev,
"pcie linkdown at least for 25ms\n");
return ret_val;
}
netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
}
return 0;
}
int atl1e_phy_init(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = hw->adapter;
s32 ret_val;
u16 phy_val;
if (hw->phy_configured) {
if (hw->re_autoneg) {
hw->re_autoneg = false;
return atl1e_restart_autoneg(hw);
}
return 0;
}
/* RESET GPHY Core */
AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
msleep(2);
AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
GPHY_CTRL_EXT_RESET);
msleep(2);
/* patches */
/* p1. eable hibernation mode */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
if (ret_val)
return ret_val;
/* p2. set Class A/B for all modes */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
if (ret_val)
return ret_val;
phy_val = 0x02ef;
/* remove Class AB */
/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
if (ret_val)
return ret_val;
/* p3. 10B ??? */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
if (ret_val)
return ret_val;
/* p4. 1000T power */
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
if (ret_val)
return ret_val;
ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
if (ret_val)
return ret_val;
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
if (ret_val) {
netdev_err(adapter->netdev,
"Error enable PHY linkChange Interrupt\n");
return ret_val;
}
/* setup AutoNeg parameters */
ret_val = atl1e_phy_setup_autoneg_adv(hw);
if (ret_val) {
netdev_err(adapter->netdev,
"Error Setting up Auto-Negotiation\n");
return ret_val;
}
/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
ret_val = atl1e_phy_commit(hw);
if (ret_val) {
netdev_err(adapter->netdev, "Error resetting the phy\n");
return ret_val;
}
hw->phy_configured = true;
return 0;
}
/*
* Reset the transmit and receive units; mask and clear all interrupts.
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
int atl1e_reset_hw(struct atl1e_hw *hw)
{
struct atl1e_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
u32 idle_status_data = 0;
u16 pci_cfg_cmd_word = 0;
int timeout = 0;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
CMD_MEMORY_SPACE | CMD_BUS_MASTER))
!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
pci_cfg_cmd_word |= (CMD_IO_SPACE |
CMD_MEMORY_SPACE | CMD_BUS_MASTER);
pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
}
/*
* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
AT_WRITE_REG(hw, REG_MASTER_CTRL,
MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
wmb();
msleep(1);
/* Wait at least 10ms for All module to be Idle */
for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
if (idle_status_data == 0)
break;
msleep(1);
cpu_relax();
}
if (timeout >= AT_HW_MAX_IDLE_DELAY) {
netdev_err(adapter->netdev,
"MAC state machine can't be idle since disabled for 10ms second\n");
return AT_ERR_TIMEOUT;
}
return 0;
}
/*
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
*/
int atl1e_init_hw(struct atl1e_hw *hw)
{
s32 ret_val = 0;
atl1e_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
ret_val = atl1e_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
{
int err;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
if (err)
return err;
if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
return AT_ERR_PHY_RES;
switch (phy_data & MII_AT001_PSSR_SPEED) {
case MII_AT001_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case MII_AT001_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_AT001_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return AT_ERR_PHY_SPEED;
}
if (phy_data & MII_AT001_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
int atl1e_restart_autoneg(struct atl1e_hw *hw)
{
int err = 0;
err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
if (err)
return err;
if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
err = atl1e_write_phy_reg(hw, MII_CTRL1000,
hw->mii_1000t_ctrl_reg);
if (err)
return err;
}
err = atl1e_write_phy_reg(hw, MII_BMCR,
BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
return err;
}