OpenCloudOS-Kernel/drivers/gpu/drm/nouveau/nouveau_bo.c

1660 lines
42 KiB
C
Raw Normal View History

/*
* Copyright 2007 Dave Airlied
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Authors: Dave Airlied <airlied@linux.ie>
* Ben Skeggs <darktama@iinet.net.au>
* Jeremy Kolb <jkolb@brandeis.edu>
*/
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_fence.h"
#include "nouveau_bo.h"
#include "nouveau_ttm.h"
#include "nouveau_gem.h"
/*
* NV10-NV40 tiling helpers
*/
static void
nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
u32 addr, u32 size, u32 pitch, u32 flags)
{
struct nouveau_drm *drm = nouveau_drm(dev);
int i = reg - drm->tile.reg;
struct nvkm_device *device = nvxx_device(&drm->device);
struct nvkm_fb *fb = device->fb;
struct nvkm_fb_tile *tile = &fb->tile.region[i];
nouveau_fence_unref(&reg->fence);
if (tile->pitch)
nvkm_fb_tile_fini(fb, i, tile);
if (pitch)
nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
nvkm_fb_tile_prog(fb, i, tile);
}
static struct nouveau_drm_tile *
nv10_bo_get_tile_region(struct drm_device *dev, int i)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_drm_tile *tile = &drm->tile.reg[i];
spin_lock(&drm->tile.lock);
if (!tile->used &&
(!tile->fence || nouveau_fence_done(tile->fence)))
tile->used = true;
else
tile = NULL;
spin_unlock(&drm->tile.lock);
return tile;
}
static void
nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
struct fence *fence)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (tile) {
spin_lock(&drm->tile.lock);
tile->fence = (struct nouveau_fence *)fence_get(fence);
tile->used = false;
spin_unlock(&drm->tile.lock);
}
}
static struct nouveau_drm_tile *
nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
u32 size, u32 pitch, u32 flags)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_fb *fb = nvxx_fb(&drm->device);
struct nouveau_drm_tile *tile, *found = NULL;
int i;
for (i = 0; i < fb->tile.regions; i++) {
tile = nv10_bo_get_tile_region(dev, i);
if (pitch && !found) {
found = tile;
continue;
} else if (tile && fb->tile.region[i].pitch) {
/* Kill an unused tile region. */
nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
}
nv10_bo_put_tile_region(dev, tile, NULL);
}
if (found)
nv10_bo_update_tile_region(dev, found, addr, size,
pitch, flags);
return found;
}
static void
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
if (unlikely(nvbo->gem.filp))
DRM_ERROR("bo %p still attached to GEM object\n", bo);
WARN_ON(nvbo->pin_refcnt > 0);
nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
kfree(nvbo);
}
static void
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
int *align, int *size)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct nvif_device *device = &drm->device;
if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
if (nvbo->tile_mode) {
if (device->info.chipset >= 0x40) {
*align = 65536;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (device->info.chipset >= 0x30) {
*align = 32768;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (device->info.chipset >= 0x20) {
*align = 16384;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (device->info.chipset >= 0x10) {
*align = 16384;
*size = roundup(*size, 32 * nvbo->tile_mode);
}
}
} else {
*size = roundup(*size, (1 << nvbo->page_shift));
*align = max((1 << nvbo->page_shift), *align);
}
*size = roundup(*size, PAGE_SIZE);
}
int
nouveau_bo_new(struct drm_device *dev, int size, int align,
uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
struct sg_table *sg, struct reservation_object *robj,
struct nouveau_bo **pnvbo)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_bo *nvbo;
size_t acc_size;
int ret;
int type = ttm_bo_type_device;
drm/nouveau: fix size check for cards without vm Op 24-07-13 17:55, Dan Carpenter schreef: > Hello Maarten Lankhorst, > > This is a semi-automatic email about new static checker warnings. > > The patch 0108bc808107: "drm/nouveau: do not allow negative sizes for > now" from Jul 7, 2013, leads to the following Smatch complaint: > > drivers/gpu/drm/nouveau/nouveau_bo.c:222 nouveau_bo_new() > warn: variable dereferenced before check 'drm->client.base.vm' (see line 201) > > drivers/gpu/drm/nouveau/nouveau_bo.c > 200 int type = ttm_bo_type_device; > 201 int max_size = INT_MAX & ~((1 << drm->client.base.vm->vmm->lpg_shift) - 1); > ^^^^^^^^^^^^^^^^^^^ > New dereference. > > 202 > 203 if (size <= 0 || size > max_size) { > 204 nv_warn(drm, "skipped size %x\n", (u32)size); > 205 return -EINVAL; > 206 } > 207 > 208 if (sg) > 209 type = ttm_bo_type_sg; > 210 > 211 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); > 212 if (!nvbo) > 213 return -ENOMEM; > 214 INIT_LIST_HEAD(&nvbo->head); > 215 INIT_LIST_HEAD(&nvbo->entry); > 216 INIT_LIST_HEAD(&nvbo->vma_list); > 217 nvbo->tile_mode = tile_mode; > 218 nvbo->tile_flags = tile_flags; > 219 nvbo->bo.bdev = &drm->ttm.bdev; > 220 > 221 nvbo->page_shift = 12; > 222 if (drm->client.base.vm) { > ^^^^^^^^^^^^^^^^^^^ > Old check. > > 223 if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024) > 224 nvbo->page_shift = drm->client.base.vm->vmm->lpg_shift; > > regards, > dan carpenter 8<----- Commit 0108bc808107: "drm/nouveau: do not allow negative sizes for now" broke older nvidia gpu's that lack a vm. Add an explicit check to handle this. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Reported-by: konrad wilk <konrad.wilk@oracle.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2013-07-27 16:17:12 +08:00
int lpg_shift = 12;
int max_size;
if (drm->client.vm)
lpg_shift = drm->client.vm->mmu->lpg_shift;
drm/nouveau: fix size check for cards without vm Op 24-07-13 17:55, Dan Carpenter schreef: > Hello Maarten Lankhorst, > > This is a semi-automatic email about new static checker warnings. > > The patch 0108bc808107: "drm/nouveau: do not allow negative sizes for > now" from Jul 7, 2013, leads to the following Smatch complaint: > > drivers/gpu/drm/nouveau/nouveau_bo.c:222 nouveau_bo_new() > warn: variable dereferenced before check 'drm->client.base.vm' (see line 201) > > drivers/gpu/drm/nouveau/nouveau_bo.c > 200 int type = ttm_bo_type_device; > 201 int max_size = INT_MAX & ~((1 << drm->client.base.vm->vmm->lpg_shift) - 1); > ^^^^^^^^^^^^^^^^^^^ > New dereference. > > 202 > 203 if (size <= 0 || size > max_size) { > 204 nv_warn(drm, "skipped size %x\n", (u32)size); > 205 return -EINVAL; > 206 } > 207 > 208 if (sg) > 209 type = ttm_bo_type_sg; > 210 > 211 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); > 212 if (!nvbo) > 213 return -ENOMEM; > 214 INIT_LIST_HEAD(&nvbo->head); > 215 INIT_LIST_HEAD(&nvbo->entry); > 216 INIT_LIST_HEAD(&nvbo->vma_list); > 217 nvbo->tile_mode = tile_mode; > 218 nvbo->tile_flags = tile_flags; > 219 nvbo->bo.bdev = &drm->ttm.bdev; > 220 > 221 nvbo->page_shift = 12; > 222 if (drm->client.base.vm) { > ^^^^^^^^^^^^^^^^^^^ > Old check. > > 223 if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024) > 224 nvbo->page_shift = drm->client.base.vm->vmm->lpg_shift; > > regards, > dan carpenter 8<----- Commit 0108bc808107: "drm/nouveau: do not allow negative sizes for now" broke older nvidia gpu's that lack a vm. Add an explicit check to handle this. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Reported-by: konrad wilk <konrad.wilk@oracle.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2013-07-27 16:17:12 +08:00
max_size = INT_MAX & ~((1 << lpg_shift) - 1);
if (size <= 0 || size > max_size) {
NV_WARN(drm, "skipped size %x\n", (u32)size);
return -EINVAL;
}
if (sg)
type = ttm_bo_type_sg;
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
if (!nvbo)
return -ENOMEM;
INIT_LIST_HEAD(&nvbo->head);
INIT_LIST_HEAD(&nvbo->entry);
INIT_LIST_HEAD(&nvbo->vma_list);
nvbo->tile_mode = tile_mode;
nvbo->tile_flags = tile_flags;
nvbo->bo.bdev = &drm->ttm.bdev;
if (!nvxx_device(&drm->device)->func->cpu_coherent)
nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
nvbo->page_shift = 12;
if (drm->client.vm) {
if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
}
nouveau_bo_fixup_align(nvbo, flags, &align, &size);
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
nouveau_bo_placement_set(nvbo, flags, 0);
acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
sizeof(struct nouveau_bo));
ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
type, &nvbo->placement,
align >> PAGE_SHIFT, false, NULL, acc_size, sg,
robj, nouveau_bo_del_ttm);
if (ret) {
/* ttm will call nouveau_bo_del_ttm if it fails.. */
return ret;
}
*pnvbo = nvbo;
return 0;
}
static void
set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
{
*n = 0;
if (type & TTM_PL_FLAG_VRAM)
pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
if (type & TTM_PL_FLAG_TT)
pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
if (type & TTM_PL_FLAG_SYSTEM)
pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
}
static void
set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
unsigned i, fpfn, lpfn;
if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
nvbo->bo.mem.num_pages < vram_pages / 4) {
/*
* Make sure that the color and depth buffers are handled
* by independent memory controller units. Up to a 9x
* speed up when alpha-blending and depth-test are enabled
* at the same time.
*/
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
fpfn = vram_pages / 2;
lpfn = ~0;
} else {
fpfn = 0;
lpfn = vram_pages / 2;
}
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = fpfn;
nvbo->placements[i].lpfn = lpfn;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = fpfn;
nvbo->busy_placements[i].lpfn = lpfn;
}
}
}
void
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
{
struct ttm_placement *pl = &nvbo->placement;
uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
TTM_PL_MASK_CACHING) |
(nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
pl->placement = nvbo->placements;
set_placement_list(nvbo->placements, &pl->num_placement,
type, flags);
pl->busy_placement = nvbo->busy_placements;
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
type | busy, flags);
set_placement_range(nvbo, type);
}
int
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
bool force = false, evict = false;
int ret;
ret = ttm_bo_reserve(bo, false, false, false, NULL);
if (ret)
return ret;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
memtype == TTM_PL_FLAG_VRAM && contig) {
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
if (bo->mem.mem_type == TTM_PL_VRAM) {
struct nvkm_mem *mem = bo->mem.mm_node;
if (!list_is_singular(&mem->regions))
evict = true;
}
nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
force = true;
}
}
if (nvbo->pin_refcnt) {
if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
NV_ERROR(drm, "bo %p pinned elsewhere: "
"0x%08x vs 0x%08x\n", bo,
1 << bo->mem.mem_type, memtype);
ret = -EBUSY;
}
nvbo->pin_refcnt++;
goto out;
}
if (evict) {
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
}
nvbo->pin_refcnt++;
nouveau_bo_placement_set(nvbo, memtype, 0);
/* drop pin_refcnt temporarily, so we don't trip the assertion
* in nouveau_bo_move() that makes sure we're not trying to
* move a pinned buffer
*/
nvbo->pin_refcnt--;
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
nvbo->pin_refcnt++;
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available -= bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available -= bo->mem.size;
break;
default:
break;
}
out:
if (force && ret)
nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_unpin(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
int ret, ref;
ret = ttm_bo_reserve(bo, false, false, false, NULL);
if (ret)
return ret;
ref = --nvbo->pin_refcnt;
WARN_ON_ONCE(ref < 0);
if (ref)
goto out;
nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret == 0) {
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available += bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available += bo->mem.size;
break;
default:
break;
}
}
out:
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_map(struct nouveau_bo *nvbo)
{
int ret;
ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
if (ret)
return ret;
/*
* TTM buffers allocated using the DMA API already have a mapping, let's
* use it instead.
*/
if (!nvbo->force_coherent)
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
&nvbo->kmap);
ttm_bo_unreserve(&nvbo->bo);
return ret;
}
void
nouveau_bo_unmap(struct nouveau_bo *nvbo)
{
if (!nvbo)
return;
/*
* TTM buffers allocated using the DMA API already had a coherent
* mapping which we used, no need to unmap.
*/
if (!nvbo->force_coherent)
ttm_bo_kunmap(&nvbo->kmap);
}
void
nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct nvkm_device *device = nvxx_device(&drm->device);
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
int i;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
dma_sync_single_for_device(device->dev, ttm_dma->dma_address[i],
PAGE_SIZE, DMA_TO_DEVICE);
}
void
nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct nvkm_device *device = nvxx_device(&drm->device);
struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
int i;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->ttm.num_pages; i++)
dma_sync_single_for_cpu(device->dev, ttm_dma->dma_address[i],
PAGE_SIZE, DMA_FROM_DEVICE);
}
int
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
bool no_wait_gpu)
{
int ret;
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
interruptible, no_wait_gpu);
if (ret)
return ret;
nouveau_bo_sync_for_device(nvbo);
return 0;
}
static inline void *
_nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
{
struct ttm_dma_tt *dma_tt;
u8 *m = mem;
index *= sz;
if (m) {
/* kmap'd address, return the corresponding offset */
m += index;
} else {
/* DMA-API mapping, lookup the right address */
dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
m = dma_tt->cpu_address[index / PAGE_SIZE];
m += index % PAGE_SIZE;
}
return m;
}
#define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
void
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
{
bool is_iomem;
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = nouveau_bo_mem_index(nvbo, index, mem);
if (is_iomem)
iowrite16_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
u32
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = nouveau_bo_mem_index(nvbo, index, mem);
if (is_iomem)
return ioread32_native((void __force __iomem *)mem);
else
return *mem;
}
void
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = nouveau_bo_mem_index(nvbo, index, mem);
if (is_iomem)
iowrite32_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
uint32_t page_flags, struct page *dummy_read)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bdev);
if (drm->agp.bridge) {
return ttm_agp_tt_create(bdev, drm->agp.bridge, size,
page_flags, dummy_read);
}
#endif
return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
}
static int
nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
/* We'll do this from user space. */
return 0;
}
static int
nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct nouveau_drm *drm = nouveau_bdev(bdev);
switch (type) {
case TTM_PL_SYSTEM:
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_VRAM:
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
/* Some BARs do not support being ioremapped WC */
if (nvxx_bar(&drm->device)->iomap_uncached) {
man->available_caching = TTM_PL_FLAG_UNCACHED;
man->default_caching = TTM_PL_FLAG_UNCACHED;
}
man->func = &nouveau_vram_manager;
man->io_reserve_fastpath = false;
man->use_io_reserve_lru = true;
} else {
man->func = &ttm_bo_manager_func;
}
break;
case TTM_PL_TT:
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
man->func = &nouveau_gart_manager;
else
if (!drm->agp.bridge)
man->func = &nv04_gart_manager;
else
man->func = &ttm_bo_manager_func;
if (drm->agp.bridge) {
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
} else {
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
TTM_MEMTYPE_FLAG_CMA;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
TTM_PL_FLAG_SYSTEM);
break;
default:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
break;
}
*pl = nvbo->placement;
}
static int
nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 2);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle & 0x0000ffff);
FIRE_RING (chan);
}
return ret;
}
static int
nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
int ret = RING_SPACE(chan, 10);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, new_mem->num_pages);
BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
}
return ret;
}
static int
nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 2);
if (ret == 0) {
BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
}
return ret;
}
static int
nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
u64 src_offset = node->vma[0].offset;
u64 dst_offset = node->vma[1].offset;
u32 page_count = new_mem->num_pages;
int ret;
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 8191) ? 8191 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, line_count);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00000110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
u64 src_offset = node->vma[0].offset;
u64 dst_offset = node->vma[1].offset;
u32 page_count = new_mem->num_pages;
int ret;
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00100110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
u64 src_offset = node->vma[0].offset;
u64 dst_offset = node->vma[1].offset;
u32 page_count = new_mem->num_pages;
int ret;
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 8191) ? 8191 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, line_count);
BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, 0x00000110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
int ret = RING_SPACE(chan, 7);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
OUT_RING (chan, 0x00000000 /* COPY */);
OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
}
return ret;
}
static int
nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
int ret = RING_SPACE(chan, 7);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
OUT_RING (chan, upper_32_bits(node->vma[0].offset));
OUT_RING (chan, lower_32_bits(node->vma[0].offset));
OUT_RING (chan, upper_32_bits(node->vma[1].offset));
OUT_RING (chan, lower_32_bits(node->vma[1].offset));
OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
}
return ret;
}
static int
nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 6);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
OUT_RING (chan, chan->drm->ntfy.handle);
OUT_RING (chan, chan->vram.handle);
OUT_RING (chan, chan->vram.handle);
}
return ret;
}
static int
nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct nvkm_mem *node = old_mem->mm_node;
u64 length = (new_mem->num_pages << PAGE_SHIFT);
u64 src_offset = node->vma[0].offset;
u64 dst_offset = node->vma[1].offset;
int src_tiled = !!node->memtype;
int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
int ret;
while (length) {
u32 amount, stride, height;
ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
if (ret)
return ret;
amount = min(length, (u64)(4 * 1024 * 1024));
stride = 16 * 4;
height = amount / stride;
if (src_tiled) {
BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
OUT_RING (chan, 1);
}
if (dst_tiled) {
BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
OUT_RING (chan, 1);
}
BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
length -= amount;
src_offset += amount;
dst_offset += amount;
}
return 0;
}
static int
nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
{
int ret = RING_SPACE(chan, 4);
if (ret == 0) {
BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
OUT_RING (chan, handle);
BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
OUT_RING (chan, chan->drm->ntfy.handle);
}
return ret;
}
static inline uint32_t
nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
struct nouveau_channel *chan, struct ttm_mem_reg *mem)
{
if (mem->mem_type == TTM_PL_TT)
return NvDmaTT;
return chan->vram.handle;
}
static int
nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
u32 src_offset = old_mem->start << PAGE_SHIFT;
u32 dst_offset = new_mem->start << PAGE_SHIFT;
u32 page_count = new_mem->num_pages;
int ret;
ret = RING_SPACE(chan, 3);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_NV04(chan, NvSubCopy,
NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
OUT_RING (chan, src_offset);
OUT_RING (chan, dst_offset);
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem)
{
struct nvkm_mem *old_node = bo->mem.mm_node;
struct nvkm_mem *new_node = mem->mm_node;
u64 size = (u64)mem->num_pages << PAGE_SHIFT;
int ret;
ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
NV_MEM_ACCESS_RW, &old_node->vma[0]);
if (ret)
return ret;
ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
NV_MEM_ACCESS_RW, &old_node->vma[1]);
if (ret) {
nvkm_vm_put(&old_node->vma[0]);
return ret;
}
nvkm_vm_map(&old_node->vma[0], old_node);
nvkm_vm_map(&old_node->vma[1], new_node);
return 0;
}
static int
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_channel *chan = drm->ttm.chan;
struct nouveau_cli *cli = (void *)chan->user.client;
struct nouveau_fence *fence;
int ret;
/* create temporary vmas for the transfer and attach them to the
* old nvkm_mem node, these will get cleaned up after ttm has
* destroyed the ttm_mem_reg
*/
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_move_prep(drm, bo, new_mem);
if (ret)
return ret;
}
mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
if (ret == 0) {
ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
if (ret == 0) {
ret = nouveau_fence_new(chan, false, &fence);
if (ret == 0) {
ret = ttm_bo_move_accel_cleanup(bo,
&fence->base,
evict,
no_wait_gpu,
new_mem);
nouveau_fence_unref(&fence);
}
}
}
mutex_unlock(&cli->mutex);
return ret;
}
void
nouveau_bo_move_init(struct nouveau_drm *drm)
{
static const struct {
const char *name;
int engine;
s32 oclass;
int (*exec)(struct nouveau_channel *,
struct ttm_buffer_object *,
struct ttm_mem_reg *, struct ttm_mem_reg *);
int (*init)(struct nouveau_channel *, u32 handle);
} _methods[] = {
{ "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
{ "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
{ "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
{ "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
{},
{ "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
}, *mthd = _methods;
const char *name = "CPU";
int ret;
do {
struct nouveau_channel *chan;
if (mthd->engine)
chan = drm->cechan;
else
chan = drm->channel;
if (chan == NULL)
continue;
ret = nvif_object_init(&chan->user,
mthd->oclass | (mthd->engine << 16),
mthd->oclass, NULL, 0,
&drm->ttm.copy);
if (ret == 0) {
ret = mthd->init(chan, drm->ttm.copy.handle);
if (ret) {
nvif_object_fini(&drm->ttm.copy);
continue;
}
drm->ttm.move = mthd->exec;
drm->ttm.chan = chan;
name = mthd->name;
break;
}
} while ((++mthd)->exec);
NV_INFO(drm, "MM: using %s for buffer copies\n", name);
}
static int
nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
{
struct ttm_place placement_memtype = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
};
struct ttm_placement placement;
struct ttm_mem_reg tmp_mem;
int ret;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
if (ret)
return ret;
ret = ttm_tt_bind(bo->ttm, &tmp_mem);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
if (ret)
goto out;
ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
out:
ttm_bo_mem_put(bo, &tmp_mem);
return ret;
}
static int
nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
{
struct ttm_place placement_memtype = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
};
struct ttm_placement placement;
struct ttm_mem_reg tmp_mem;
int ret;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
if (ret)
return ret;
ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
if (ret)
goto out;
out:
ttm_bo_mem_put(bo, &tmp_mem);
return ret;
}
static void
nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nvkm_vma *vma;
2012-01-25 13:34:22 +08:00
/* ttm can now (stupidly) pass the driver bos it didn't create... */
if (bo->destroy != nouveau_bo_del_ttm)
return;
list_for_each_entry(vma, &nvbo->vma_list, head) {
if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
(new_mem->mem_type == TTM_PL_VRAM ||
nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
nvkm_vm_map(vma, new_mem->mm_node);
} else {
nvkm_vm_unmap(vma);
}
}
}
static int
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
struct nouveau_drm_tile **new_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
u64 offset = new_mem->start << PAGE_SHIFT;
*new_tile = NULL;
if (new_mem->mem_type != TTM_PL_VRAM)
return 0;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
*new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
nvbo->tile_mode,
nvbo->tile_flags);
}
return 0;
}
static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
struct nouveau_drm_tile *new_tile,
struct nouveau_drm_tile **old_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct fence *fence = reservation_object_get_excl(bo->resv);
nv10_bo_put_tile_region(dev, *old_tile, fence);
*old_tile = new_tile;
}
static int
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_gpu, struct ttm_mem_reg *new_mem)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct ttm_mem_reg *old_mem = &bo->mem;
struct nouveau_drm_tile *new_tile = NULL;
int ret = 0;
if (nvbo->pin_refcnt)
NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
if (ret)
return ret;
}
/* Fake bo copy. */
if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
BUG_ON(bo->mem.mm_node != NULL);
bo->mem = *new_mem;
new_mem->mm_node = NULL;
goto out;
}
/* Hardware assisted copy. */
if (drm->ttm.move) {
if (new_mem->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flipd(bo, evict, intr,
no_wait_gpu, new_mem);
else if (old_mem->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flips(bo, evict, intr,
no_wait_gpu, new_mem);
else
ret = nouveau_bo_move_m2mf(bo, evict, intr,
no_wait_gpu, new_mem);
if (!ret)
goto out;
}
/* Fallback to software copy. */
ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
if (ret == 0)
ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
out:
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
if (ret)
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
else
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
}
return ret;
}
static int
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
}
static int
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct nouveau_drm *drm = nouveau_bdev(bdev);
struct nvkm_device *device = nvxx_device(&drm->device);
struct nvkm_mem *node = mem->mm_node;
int ret;
mem->bus.addr = NULL;
mem->bus.offset = 0;
mem->bus.size = mem->num_pages << PAGE_SHIFT;
mem->bus.base = 0;
mem->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* System memory */
return 0;
case TTM_PL_TT:
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.base = drm->agp.base;
mem->bus.is_iomem = !drm->agp.cma;
}
#endif
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
/* untiled */
break;
/* fallthrough, tiled memory */
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.base = device->func->resource_addr(device, 1);
mem->bus.is_iomem = true;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
struct nvkm_bar *bar = nvxx_bar(&drm->device);
int page_shift = 12;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_FERMI)
page_shift = node->page_shift;
ret = nvkm_bar_umap(bar, node->size << 12, page_shift,
&node->bar_vma);
if (ret)
return ret;
nvkm_vm_map(&node->bar_vma, node);
mem->bus.offset = node->bar_vma.offset;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct nvkm_mem *node = mem->mm_node;
if (!node->bar_vma.node)
return;
nvkm_vm_unmap(&node->bar_vma);
nvkm_vm_put(&node->bar_vma);
}
static int
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nvkm_device *device = nvxx_device(&drm->device);
u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
int i, ret;
/* as long as the bo isn't in vram, and isn't tiled, we've got
* nothing to do here.
*/
if (bo->mem.mem_type != TTM_PL_VRAM) {
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
!nouveau_bo_tile_layout(nvbo))
return 0;
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
return ret;
}
return 0;
}
/* make sure bo is in mappable vram */
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
bo->mem.start + bo->mem.num_pages < mappable)
return 0;
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = 0;
nvbo->placements[i].lpfn = mappable;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = 0;
nvbo->busy_placements[i].lpfn = mappable;
}
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
return nouveau_bo_validate(nvbo, false, false);
}
static int
nouveau_ttm_tt_populate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct nouveau_drm *drm;
struct nvkm_device *device;
struct drm_device *dev;
struct device *pdev;
unsigned i;
int r;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (ttm->state != tt_unpopulated)
return 0;
if (slave && ttm->sg) {
/* make userspace faulting work */
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
ttm_dma->dma_address, ttm->num_pages);
ttm->state = tt_unbound;
return 0;
}
drm = nouveau_bdev(ttm->bdev);
device = nvxx_device(&drm->device);
dev = drm->dev;
pdev = device->dev;
/*
* Objects matching this condition have been marked as force_coherent,
* so use the DMA API for them.
*/
if (!nvxx_device(&drm->device)->func->cpu_coherent &&
ttm->caching_state == tt_uncached)
return ttm_dma_populate(ttm_dma, dev->dev);
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
return ttm_agp_tt_populate(ttm);
}
#endif
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
if (swiotlb_nr_tbl()) {
return ttm_dma_populate((void *)ttm, dev->dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
dma_addr_t addr;
addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(pdev, addr)) {
while (i--) {
dma_unmap_page(pdev, ttm_dma->dma_address[i],
PAGE_SIZE, DMA_BIDIRECTIONAL);
ttm_dma->dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
ttm_dma->dma_address[i] = addr;
}
return 0;
}
static void
nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct nouveau_drm *drm;
struct nvkm_device *device;
struct drm_device *dev;
struct device *pdev;
unsigned i;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (slave)
return;
drm = nouveau_bdev(ttm->bdev);
device = nvxx_device(&drm->device);
dev = drm->dev;
pdev = device->dev;
/*
* Objects matching this condition have been marked as force_coherent,
* so use the DMA API for them.
*/
if (!nvxx_device(&drm->device)->func->cpu_coherent &&
ttm->caching_state == tt_uncached) {
ttm_dma_unpopulate(ttm_dma, dev->dev);
return;
}
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
ttm_agp_tt_unpopulate(ttm);
return;
}
#endif
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate((void *)ttm, dev->dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (ttm_dma->dma_address[i]) {
dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
void
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
{
struct reservation_object *resv = nvbo->bo.resv;
if (exclusive)
reservation_object_add_excl_fence(resv, &fence->base);
else if (fence)
reservation_object_add_shared_fence(resv, &fence->base);
}
struct ttm_bo_driver nouveau_bo_driver = {
.ttm_tt_create = &nouveau_ttm_tt_create,
.ttm_tt_populate = &nouveau_ttm_tt_populate,
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
.invalidate_caches = nouveau_bo_invalidate_caches,
.init_mem_type = nouveau_bo_init_mem_type,
.evict_flags = nouveau_bo_evict_flags,
.move_notify = nouveau_bo_move_ntfy,
.move = nouveau_bo_move,
.verify_access = nouveau_bo_verify_access,
.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
.io_mem_free = &nouveau_ttm_io_mem_free,
};
struct nvkm_vma *
nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
{
struct nvkm_vma *vma;
list_for_each_entry(vma, &nvbo->vma_list, head) {
if (vma->vm == vm)
return vma;
}
return NULL;
}
int
nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
struct nvkm_vma *vma)
{
const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
int ret;
ret = nvkm_vm_get(vm, size, nvbo->page_shift,
NV_MEM_ACCESS_RW, vma);
if (ret)
return ret;
if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
(nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
nvbo->page_shift != vma->vm->mmu->lpg_shift))
nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
list_add_tail(&vma->head, &nvbo->vma_list);
vma->refcount = 1;
return 0;
}
void
nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
{
if (vma->node) {
if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
nvkm_vm_unmap(vma);
nvkm_vm_put(vma);
list_del(&vma->head);
}
}