OpenCloudOS-Kernel/drivers/gpu/drm/drm_crtc.c

5998 lines
162 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2008 Intel Corporation
* Copyright (c) 2007 Dave Airlie <airlied@linux.ie>
* Copyright (c) 2008 Red Hat Inc.
*
* DRM core CRTC related functions
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*
* Authors:
* Keith Packard
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/ctype.h>
#include <linux/list.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_modeset_lock.h>
#include <drm/drm_atomic.h>
#include <drm/drm_auth.h>
#include "drm_crtc_internal.h"
#include "drm_internal.h"
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
static struct drm_framebuffer *
internal_framebuffer_create(struct drm_device *dev,
const struct drm_mode_fb_cmd2 *r,
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
struct drm_file *file_priv);
/* Avoid boilerplate. I'm tired of typing. */
#define DRM_ENUM_NAME_FN(fnname, list) \
const char *fnname(int val) \
{ \
int i; \
for (i = 0; i < ARRAY_SIZE(list); i++) { \
if (list[i].type == val) \
return list[i].name; \
} \
return "(unknown)"; \
}
/*
* Global properties
*/
static const struct drm_prop_enum_list drm_dpms_enum_list[] = {
{ DRM_MODE_DPMS_ON, "On" },
{ DRM_MODE_DPMS_STANDBY, "Standby" },
{ DRM_MODE_DPMS_SUSPEND, "Suspend" },
{ DRM_MODE_DPMS_OFF, "Off" }
};
DRM_ENUM_NAME_FN(drm_get_dpms_name, drm_dpms_enum_list)
static const struct drm_prop_enum_list drm_plane_type_enum_list[] = {
{ DRM_PLANE_TYPE_OVERLAY, "Overlay" },
{ DRM_PLANE_TYPE_PRIMARY, "Primary" },
{ DRM_PLANE_TYPE_CURSOR, "Cursor" },
};
/*
* Optional properties
*/
static const struct drm_prop_enum_list drm_scaling_mode_enum_list[] = {
{ DRM_MODE_SCALE_NONE, "None" },
{ DRM_MODE_SCALE_FULLSCREEN, "Full" },
{ DRM_MODE_SCALE_CENTER, "Center" },
{ DRM_MODE_SCALE_ASPECT, "Full aspect" },
};
static const struct drm_prop_enum_list drm_aspect_ratio_enum_list[] = {
{ DRM_MODE_PICTURE_ASPECT_NONE, "Automatic" },
{ DRM_MODE_PICTURE_ASPECT_4_3, "4:3" },
{ DRM_MODE_PICTURE_ASPECT_16_9, "16:9" },
};
/*
* Non-global properties, but "required" for certain connectors.
*/
static const struct drm_prop_enum_list drm_dvi_i_select_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Automatic, "Automatic" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_DVID, "DVI-D" }, /* DVI-I */
{ DRM_MODE_SUBCONNECTOR_DVIA, "DVI-A" }, /* DVI-I */
};
DRM_ENUM_NAME_FN(drm_get_dvi_i_select_name, drm_dvi_i_select_enum_list)
static const struct drm_prop_enum_list drm_dvi_i_subconnector_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Unknown, "Unknown" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_DVID, "DVI-D" }, /* DVI-I */
{ DRM_MODE_SUBCONNECTOR_DVIA, "DVI-A" }, /* DVI-I */
};
DRM_ENUM_NAME_FN(drm_get_dvi_i_subconnector_name,
drm_dvi_i_subconnector_enum_list)
static const struct drm_prop_enum_list drm_tv_select_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Automatic, "Automatic" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_Composite, "Composite" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SVIDEO, "SVIDEO" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_Component, "Component" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SCART, "SCART" }, /* TV-out */
};
DRM_ENUM_NAME_FN(drm_get_tv_select_name, drm_tv_select_enum_list)
static const struct drm_prop_enum_list drm_tv_subconnector_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Unknown, "Unknown" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_Composite, "Composite" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SVIDEO, "SVIDEO" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_Component, "Component" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SCART, "SCART" }, /* TV-out */
};
DRM_ENUM_NAME_FN(drm_get_tv_subconnector_name,
drm_tv_subconnector_enum_list)
static const struct drm_prop_enum_list drm_dirty_info_enum_list[] = {
{ DRM_MODE_DIRTY_OFF, "Off" },
{ DRM_MODE_DIRTY_ON, "On" },
{ DRM_MODE_DIRTY_ANNOTATE, "Annotate" },
};
struct drm_conn_prop_enum_list {
int type;
const char *name;
struct ida ida;
};
/*
* Connector and encoder types.
*/
static struct drm_conn_prop_enum_list drm_connector_enum_list[] = {
{ DRM_MODE_CONNECTOR_Unknown, "Unknown" },
{ DRM_MODE_CONNECTOR_VGA, "VGA" },
{ DRM_MODE_CONNECTOR_DVII, "DVI-I" },
{ DRM_MODE_CONNECTOR_DVID, "DVI-D" },
{ DRM_MODE_CONNECTOR_DVIA, "DVI-A" },
{ DRM_MODE_CONNECTOR_Composite, "Composite" },
{ DRM_MODE_CONNECTOR_SVIDEO, "SVIDEO" },
{ DRM_MODE_CONNECTOR_LVDS, "LVDS" },
{ DRM_MODE_CONNECTOR_Component, "Component" },
{ DRM_MODE_CONNECTOR_9PinDIN, "DIN" },
{ DRM_MODE_CONNECTOR_DisplayPort, "DP" },
{ DRM_MODE_CONNECTOR_HDMIA, "HDMI-A" },
{ DRM_MODE_CONNECTOR_HDMIB, "HDMI-B" },
{ DRM_MODE_CONNECTOR_TV, "TV" },
{ DRM_MODE_CONNECTOR_eDP, "eDP" },
{ DRM_MODE_CONNECTOR_VIRTUAL, "Virtual" },
{ DRM_MODE_CONNECTOR_DSI, "DSI" },
{ DRM_MODE_CONNECTOR_DPI, "DPI" },
};
static const struct drm_prop_enum_list drm_encoder_enum_list[] = {
{ DRM_MODE_ENCODER_NONE, "None" },
{ DRM_MODE_ENCODER_DAC, "DAC" },
{ DRM_MODE_ENCODER_TMDS, "TMDS" },
{ DRM_MODE_ENCODER_LVDS, "LVDS" },
{ DRM_MODE_ENCODER_TVDAC, "TV" },
{ DRM_MODE_ENCODER_VIRTUAL, "Virtual" },
{ DRM_MODE_ENCODER_DSI, "DSI" },
{ DRM_MODE_ENCODER_DPMST, "DP MST" },
{ DRM_MODE_ENCODER_DPI, "DPI" },
};
static const struct drm_prop_enum_list drm_subpixel_enum_list[] = {
{ SubPixelUnknown, "Unknown" },
{ SubPixelHorizontalRGB, "Horizontal RGB" },
{ SubPixelHorizontalBGR, "Horizontal BGR" },
{ SubPixelVerticalRGB, "Vertical RGB" },
{ SubPixelVerticalBGR, "Vertical BGR" },
{ SubPixelNone, "None" },
};
void drm_connector_ida_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_connector_enum_list); i++)
ida_init(&drm_connector_enum_list[i].ida);
}
void drm_connector_ida_destroy(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_connector_enum_list); i++)
ida_destroy(&drm_connector_enum_list[i].ida);
}
/**
* drm_get_connector_status_name - return a string for connector status
* @status: connector status to compute name of
*
* In contrast to the other drm_get_*_name functions this one here returns a
* const pointer and hence is threadsafe.
*/
const char *drm_get_connector_status_name(enum drm_connector_status status)
{
if (status == connector_status_connected)
return "connected";
else if (status == connector_status_disconnected)
return "disconnected";
else
return "unknown";
}
EXPORT_SYMBOL(drm_get_connector_status_name);
/**
* drm_get_subpixel_order_name - return a string for a given subpixel enum
* @order: enum of subpixel_order
*
* Note you could abuse this and return something out of bounds, but that
* would be a caller error. No unscrubbed user data should make it here.
*/
const char *drm_get_subpixel_order_name(enum subpixel_order order)
{
return drm_subpixel_enum_list[order].name;
}
EXPORT_SYMBOL(drm_get_subpixel_order_name);
/*
* Internal function to assign a slot in the object idr and optionally
* register the object into the idr.
*/
static int drm_mode_object_get_reg(struct drm_device *dev,
struct drm_mode_object *obj,
uint32_t obj_type,
bool register_obj,
void (*obj_free_cb)(struct kref *kref))
{
int ret;
mutex_lock(&dev->mode_config.idr_mutex);
ret = idr_alloc(&dev->mode_config.crtc_idr, register_obj ? obj : NULL, 1, 0, GFP_KERNEL);
if (ret >= 0) {
/*
* Set up the object linking under the protection of the idr
* lock so that other users can't see inconsistent state.
*/
obj->id = ret;
obj->type = obj_type;
if (obj_free_cb) {
obj->free_cb = obj_free_cb;
kref_init(&obj->refcount);
}
}
mutex_unlock(&dev->mode_config.idr_mutex);
return ret < 0 ? ret : 0;
}
/**
* drm_mode_object_get - allocate a new modeset identifier
* @dev: DRM device
* @obj: object pointer, used to generate unique ID
* @obj_type: object type
*
* Create a unique identifier based on @ptr in @dev's identifier space. Used
* for tracking modes, CRTCs and connectors. Note that despite the _get postfix
* modeset identifiers are _not_ reference counted. Hence don't use this for
* reference counted modeset objects like framebuffers.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_mode_object_get(struct drm_device *dev,
struct drm_mode_object *obj, uint32_t obj_type)
{
return drm_mode_object_get_reg(dev, obj, obj_type, true, NULL);
}
static void drm_mode_object_register(struct drm_device *dev,
struct drm_mode_object *obj)
{
mutex_lock(&dev->mode_config.idr_mutex);
idr_replace(&dev->mode_config.crtc_idr, obj, obj->id);
mutex_unlock(&dev->mode_config.idr_mutex);
}
/**
* drm_mode_object_unregister - free a modeset identifer
* @dev: DRM device
* @object: object to free
*
* Free @id from @dev's unique identifier pool.
* This function can be called multiple times, and guards against
* multiple removals.
* These modeset identifiers are _not_ reference counted. Hence don't use this
* for reference counted modeset objects like framebuffers.
*/
void drm_mode_object_unregister(struct drm_device *dev,
struct drm_mode_object *object)
{
mutex_lock(&dev->mode_config.idr_mutex);
if (object->id) {
idr_remove(&dev->mode_config.crtc_idr, object->id);
object->id = 0;
}
mutex_unlock(&dev->mode_config.idr_mutex);
}
static struct drm_mode_object *_object_find(struct drm_device *dev,
uint32_t id, uint32_t type)
{
struct drm_mode_object *obj = NULL;
mutex_lock(&dev->mode_config.idr_mutex);
obj = idr_find(&dev->mode_config.crtc_idr, id);
if (obj && type != DRM_MODE_OBJECT_ANY && obj->type != type)
obj = NULL;
if (obj && obj->id != id)
obj = NULL;
if (obj && obj->free_cb) {
if (!kref_get_unless_zero(&obj->refcount))
obj = NULL;
}
mutex_unlock(&dev->mode_config.idr_mutex);
return obj;
}
/**
* drm_mode_object_find - look up a drm object with static lifetime
* @dev: drm device
* @id: id of the mode object
* @type: type of the mode object
*
* This function is used to look up a modeset object. It will acquire a
* reference for reference counted objects. This reference must be dropped again
* by callind drm_mode_object_unreference().
*/
struct drm_mode_object *drm_mode_object_find(struct drm_device *dev,
uint32_t id, uint32_t type)
{
struct drm_mode_object *obj = NULL;
obj = _object_find(dev, id, type);
return obj;
}
EXPORT_SYMBOL(drm_mode_object_find);
/**
* drm_mode_object_unreference - decr the object refcnt
* @obj: mode_object
*
* This functions decrements the object's refcount if it is a refcounted modeset
* object. It is a no-op on any other object. This is used to drop references
* acquired with drm_mode_object_reference().
*/
void drm_mode_object_unreference(struct drm_mode_object *obj)
{
if (obj->free_cb) {
DRM_DEBUG("OBJ ID: %d (%d)\n", obj->id, atomic_read(&obj->refcount.refcount));
kref_put(&obj->refcount, obj->free_cb);
}
}
EXPORT_SYMBOL(drm_mode_object_unreference);
/**
* drm_mode_object_reference - incr the object refcnt
* @obj: mode_object
*
* This functions increments the object's refcount if it is a refcounted modeset
* object. It is a no-op on any other object. References should be dropped again
* by calling drm_mode_object_unreference().
*/
void drm_mode_object_reference(struct drm_mode_object *obj)
{
if (obj->free_cb) {
DRM_DEBUG("OBJ ID: %d (%d)\n", obj->id, atomic_read(&obj->refcount.refcount));
kref_get(&obj->refcount);
}
}
EXPORT_SYMBOL(drm_mode_object_reference);
/**
* drm_crtc_force_disable - Forcibly turn off a CRTC
* @crtc: CRTC to turn off
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_crtc_force_disable(struct drm_crtc *crtc)
{
struct drm_mode_set set = {
.crtc = crtc,
};
return drm_mode_set_config_internal(&set);
}
EXPORT_SYMBOL(drm_crtc_force_disable);
/**
* drm_crtc_force_disable_all - Forcibly turn off all enabled CRTCs
* @dev: DRM device whose CRTCs to turn off
*
* Drivers may want to call this on unload to ensure that all displays are
* unlit and the GPU is in a consistent, low power state. Takes modeset locks.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_crtc_force_disable_all(struct drm_device *dev)
{
struct drm_crtc *crtc;
int ret = 0;
drm_modeset_lock_all(dev);
drm_for_each_crtc(crtc, dev)
if (crtc->enabled) {
ret = drm_crtc_force_disable(crtc);
if (ret)
goto out;
}
out:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_crtc_force_disable_all);
static void drm_framebuffer_free(struct kref *kref)
{
struct drm_framebuffer *fb =
container_of(kref, struct drm_framebuffer, base.refcount);
struct drm_device *dev = fb->dev;
/*
* The lookup idr holds a weak reference, which has not necessarily been
* removed at this point. Check for that.
*/
drm_mode_object_unregister(dev, &fb->base);
fb->funcs->destroy(fb);
}
/**
* drm_framebuffer_init - initialize a framebuffer
* @dev: DRM device
* @fb: framebuffer to be initialized
* @funcs: ... with these functions
*
* Allocates an ID for the framebuffer's parent mode object, sets its mode
* functions & device file and adds it to the master fd list.
*
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
* IMPORTANT:
* This functions publishes the fb and makes it available for concurrent access
* by other users. Which means by this point the fb _must_ be fully set up -
* since all the fb attributes are invariant over its lifetime, no further
* locking but only correct reference counting is required.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_framebuffer_init(struct drm_device *dev, struct drm_framebuffer *fb,
const struct drm_framebuffer_funcs *funcs)
{
int ret;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
INIT_LIST_HEAD(&fb->filp_head);
fb->dev = dev;
fb->funcs = funcs;
ret = drm_mode_object_get_reg(dev, &fb->base, DRM_MODE_OBJECT_FB,
false, drm_framebuffer_free);
if (ret)
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
goto out;
mutex_lock(&dev->mode_config.fb_lock);
dev->mode_config.num_fb++;
list_add(&fb->head, &dev->mode_config.fb_list);
mutex_unlock(&dev->mode_config.fb_lock);
drm_mode_object_register(dev, &fb->base);
out:
return ret;
}
EXPORT_SYMBOL(drm_framebuffer_init);
/**
* drm_framebuffer_lookup - look up a drm framebuffer and grab a reference
* @dev: drm device
* @id: id of the fb object
*
* If successful, this grabs an additional reference to the framebuffer -
* callers need to make sure to eventually unreference the returned framebuffer
* again, using @drm_framebuffer_unreference.
*/
struct drm_framebuffer *drm_framebuffer_lookup(struct drm_device *dev,
uint32_t id)
{
struct drm_mode_object *obj;
struct drm_framebuffer *fb = NULL;
obj = _object_find(dev, id, DRM_MODE_OBJECT_FB);
if (obj)
fb = obj_to_fb(obj);
return fb;
}
EXPORT_SYMBOL(drm_framebuffer_lookup);
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
/**
* drm_framebuffer_unregister_private - unregister a private fb from the lookup idr
* @fb: fb to unregister
*
* Drivers need to call this when cleaning up driver-private framebuffers, e.g.
* those used for fbdev. Note that the caller must hold a reference of it's own,
* i.e. the object may not be destroyed through this call (since it'll lead to a
* locking inversion).
*/
void drm_framebuffer_unregister_private(struct drm_framebuffer *fb)
{
struct drm_device *dev;
if (!fb)
return;
dev = fb->dev;
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
/* Mark fb as reaped and drop idr ref. */
drm_mode_object_unregister(dev, &fb->base);
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
}
EXPORT_SYMBOL(drm_framebuffer_unregister_private);
/**
* drm_framebuffer_cleanup - remove a framebuffer object
* @fb: framebuffer to remove
*
* Cleanup framebuffer. This function is intended to be used from the drivers
* ->destroy callback. It can also be used to clean up driver private
* framebuffers embedded into a larger structure.
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
*
* Note that this function does not remove the fb from active usuage - if it is
* still used anywhere, hilarity can ensue since userspace could call getfb on
* the id and get back -EINVAL. Obviously no concern at driver unload time.
*
* Also, the framebuffer will not be removed from the lookup idr - for
* user-created framebuffers this will happen in in the rmfb ioctl. For
* driver-private objects (e.g. for fbdev) drivers need to explicitly call
* drm_framebuffer_unregister_private.
*/
void drm_framebuffer_cleanup(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
drm: review locking rules in drm_crtc.c - config_cleanup was confused: It claimed that callers need to hold the modeset lock, but the connector|encoder_cleanup helpers grabbed that themselves (note that crtc_cleanup did _not_ grab the modeset lock). Which resulted in all drivers _not_ hodling the lock. Since this is for single-threaded cleanup code, drop the requirement from docs and also drop the lock_grabbing from all _cleanup functions. - Kill the LOCKING section in the doctype, since clearly we're not good enough to keep them up-to-date. And misleading locking documentation is worse than useless (see e.g. the comment in the vmgfx driver about the cleanup mess). And since for most functions the very first line either grabs the lock or has a WARN_ON(!locked) the documentation doesn't really add anything. - Instead put in some effort into explaining the only two special cases a bit better: config_init and config_cleanup are both called from single-threaded setup/teardown code, so don't do any locking. It's the driver's job though to enforce this. - Where lacking, add a WARN_ON(!is_locked). Not many places though, since locking around fbdev setup/teardown is through-roughly screwed up, and so will break almost every single WARN annotation I've tried to add. - Add a drm_modeset_is_locked helper - the Grate Modset Locking Rework will use the compiler to assist in the big reorg by renaming the mode lock, so start encapsulating things. Unfortunately this ended up in the "wrong" header file since it needs the definition of struct drm_device. v2: Drop most WARNS again - we hit them all over the place, mostly in the setup and teardown sequences. And trying to fix it up leads to nice deadlocks, since the locking in the setup code is really inconsistent. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-02 06:43:11 +08:00
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&dev->mode_config.fb_lock);
list_del(&fb->head);
dev->mode_config.num_fb--;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&dev->mode_config.fb_lock);
}
EXPORT_SYMBOL(drm_framebuffer_cleanup);
/**
* drm_framebuffer_remove - remove and unreference a framebuffer object
* @fb: framebuffer to remove
*
* Scans all the CRTCs and planes in @dev's mode_config. If they're
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
* using @fb, removes it, setting it to NULL. Then drops the reference to the
* passed-in framebuffer. Might take the modeset locks.
*
* Note that this function optimizes the cleanup away if the caller holds the
* last reference to the framebuffer. It is also guaranteed to not take the
* modeset locks in this case.
*/
void drm_framebuffer_remove(struct drm_framebuffer *fb)
{
struct drm_device *dev;
struct drm_crtc *crtc;
struct drm_plane *plane;
if (!fb)
return;
dev = fb->dev;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
WARN_ON(!list_empty(&fb->filp_head));
drm: review locking rules in drm_crtc.c - config_cleanup was confused: It claimed that callers need to hold the modeset lock, but the connector|encoder_cleanup helpers grabbed that themselves (note that crtc_cleanup did _not_ grab the modeset lock). Which resulted in all drivers _not_ hodling the lock. Since this is for single-threaded cleanup code, drop the requirement from docs and also drop the lock_grabbing from all _cleanup functions. - Kill the LOCKING section in the doctype, since clearly we're not good enough to keep them up-to-date. And misleading locking documentation is worse than useless (see e.g. the comment in the vmgfx driver about the cleanup mess). And since for most functions the very first line either grabs the lock or has a WARN_ON(!locked) the documentation doesn't really add anything. - Instead put in some effort into explaining the only two special cases a bit better: config_init and config_cleanup are both called from single-threaded setup/teardown code, so don't do any locking. It's the driver's job though to enforce this. - Where lacking, add a WARN_ON(!is_locked). Not many places though, since locking around fbdev setup/teardown is through-roughly screwed up, and so will break almost every single WARN annotation I've tried to add. - Add a drm_modeset_is_locked helper - the Grate Modset Locking Rework will use the compiler to assist in the big reorg by renaming the mode lock, so start encapsulating things. Unfortunately this ended up in the "wrong" header file since it needs the definition of struct drm_device. v2: Drop most WARNS again - we hit them all over the place, mostly in the setup and teardown sequences. And trying to fix it up leads to nice deadlocks, since the locking in the setup code is really inconsistent. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-02 06:43:11 +08:00
/*
* drm ABI mandates that we remove any deleted framebuffers from active
* useage. But since most sane clients only remove framebuffers they no
* longer need, try to optimize this away.
*
* Since we're holding a reference ourselves, observing a refcount of 1
* means that we're the last holder and can skip it. Also, the refcount
* can never increase from 1 again, so we don't need any barriers or
* locks.
*
* Note that userspace could try to race with use and instate a new
* usage _after_ we've cleared all current ones. End result will be an
* in-use fb with fb-id == 0. Userspace is allowed to shoot its own foot
* in this manner.
*/
if (drm_framebuffer_read_refcount(fb) > 1) {
drm_modeset_lock_all(dev);
/* remove from any CRTC */
drm: Add modeset object iterators And roll them out across drm_* files. The point here isn't code prettification (it helps with that too) but that some of these lists aren't static any more. And having macros will gives us a convenient place to put locking checks into. I didn't add an iterator for props since that's only used by a list_for_each_entry_safe in the driver teardown code. Search&replace was done with the below cocci spatch. Note that there's a bunch more places that didn't match and which would need some manual changes, but I've intentially left these out for this mostly automated patch. iterator name drm_for_each_crtc; struct drm_crtc *crtc; struct drm_device *dev; expression head; @@ - list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { + drm_for_each_crtc (crtc, dev) { ... } @@ iterator name drm_for_each_encoder; struct drm_encoder *encoder; struct drm_device *dev; expression head; @@ - list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { + drm_for_each_encoder (encoder, dev) { ... } @@ iterator name drm_for_each_fb; struct drm_framebuffer *fb; struct drm_device *dev; expression head; @@ - list_for_each_entry(fb, &dev->mode_config.fb_list, head) { + drm_for_each_fb (fb, dev) { ... } @@ iterator name drm_for_each_connector; struct drm_connector *connector; struct drm_device *dev; expression head; @@ - list_for_each_entry(connector, &dev->mode_config.connector_list, head) { + drm_for_each_connector (connector, dev) { ... } Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-07-10 05:44:25 +08:00
drm_for_each_crtc(crtc, dev) {
if (crtc->primary->fb == fb) {
/* should turn off the crtc */
if (drm_crtc_force_disable(crtc))
DRM_ERROR("failed to reset crtc %p when fb was deleted\n", crtc);
}
}
drm: Add modeset object iterators And roll them out across drm_* files. The point here isn't code prettification (it helps with that too) but that some of these lists aren't static any more. And having macros will gives us a convenient place to put locking checks into. I didn't add an iterator for props since that's only used by a list_for_each_entry_safe in the driver teardown code. Search&replace was done with the below cocci spatch. Note that there's a bunch more places that didn't match and which would need some manual changes, but I've intentially left these out for this mostly automated patch. iterator name drm_for_each_crtc; struct drm_crtc *crtc; struct drm_device *dev; expression head; @@ - list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { + drm_for_each_crtc (crtc, dev) { ... } @@ iterator name drm_for_each_encoder; struct drm_encoder *encoder; struct drm_device *dev; expression head; @@ - list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { + drm_for_each_encoder (encoder, dev) { ... } @@ iterator name drm_for_each_fb; struct drm_framebuffer *fb; struct drm_device *dev; expression head; @@ - list_for_each_entry(fb, &dev->mode_config.fb_list, head) { + drm_for_each_fb (fb, dev) { ... } @@ iterator name drm_for_each_connector; struct drm_connector *connector; struct drm_device *dev; expression head; @@ - list_for_each_entry(connector, &dev->mode_config.connector_list, head) { + drm_for_each_connector (connector, dev) { ... } Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-07-10 05:44:25 +08:00
drm_for_each_plane(plane, dev) {
if (plane->fb == fb)
drm_plane_force_disable(plane);
}
drm_modeset_unlock_all(dev);
}
drm_framebuffer_unreference(fb);
}
EXPORT_SYMBOL(drm_framebuffer_remove);
DEFINE_WW_CLASS(crtc_ww_class);
static unsigned int drm_num_crtcs(struct drm_device *dev)
{
unsigned int num = 0;
struct drm_crtc *tmp;
drm_for_each_crtc(tmp, dev) {
num++;
}
return num;
}
static int drm_crtc_register_all(struct drm_device *dev)
{
struct drm_crtc *crtc;
int ret = 0;
drm_for_each_crtc(crtc, dev) {
if (crtc->funcs->late_register)
ret = crtc->funcs->late_register(crtc);
if (ret)
return ret;
}
return 0;
}
static void drm_crtc_unregister_all(struct drm_device *dev)
{
struct drm_crtc *crtc;
drm_for_each_crtc(crtc, dev) {
if (crtc->funcs->early_unregister)
crtc->funcs->early_unregister(crtc);
}
}
/**
* drm_crtc_init_with_planes - Initialise a new CRTC object with
* specified primary and cursor planes.
* @dev: DRM device
* @crtc: CRTC object to init
* @primary: Primary plane for CRTC
* @cursor: Cursor plane for CRTC
* @funcs: callbacks for the new CRTC
2015-12-09 22:19:31 +08:00
* @name: printf style format string for the CRTC name, or NULL for default name
*
* Inits a new object created as base part of a driver crtc object.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_crtc_init_with_planes(struct drm_device *dev, struct drm_crtc *crtc,
struct drm_plane *primary,
struct drm_plane *cursor,
2015-12-09 22:19:31 +08:00
const struct drm_crtc_funcs *funcs,
const char *name, ...)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
WARN_ON(primary && primary->type != DRM_PLANE_TYPE_PRIMARY);
WARN_ON(cursor && cursor->type != DRM_PLANE_TYPE_CURSOR);
crtc->dev = dev;
crtc->funcs = funcs;
INIT_LIST_HEAD(&crtc->commit_list);
spin_lock_init(&crtc->commit_lock);
drm_modeset_lock_init(&crtc->mutex);
ret = drm_mode_object_get(dev, &crtc->base, DRM_MODE_OBJECT_CRTC);
if (ret)
return ret;
if (name) {
va_list ap;
va_start(ap, name);
crtc->name = kvasprintf(GFP_KERNEL, name, ap);
va_end(ap);
} else {
crtc->name = kasprintf(GFP_KERNEL, "crtc-%d",
drm_num_crtcs(dev));
}
if (!crtc->name) {
drm_mode_object_unregister(dev, &crtc->base);
return -ENOMEM;
}
crtc->base.properties = &crtc->properties;
list_add_tail(&crtc->head, &config->crtc_list);
crtc->index = config->num_crtc++;
crtc->primary = primary;
crtc->cursor = cursor;
if (primary)
primary->possible_crtcs = 1 << drm_crtc_index(crtc);
if (cursor)
cursor->possible_crtcs = 1 << drm_crtc_index(crtc);
drm/atomic: Add drm_crtc_state->active This is the infrastructure for DPMS ported to the atomic world. Fundamental changes compare to legacy DPMS are: - No more per-connector dpms state, instead there's just one per each display pipeline. So if you clone either you have to unclone first if you only want to switch off one screen, or you just switch of everything (like all desktops do). This massively reduces complexity for cloning since now there's no more half-enabled cloned configs to consider. - Only on/off, dpms standby/suspend are as dead as real CRTs. Again reduces complexity a lot. Now especially for backwards compat the really important part for dpms support is that dpms on always succeeds (except for hw death and unplugged cables ofc). Which means everything that could fail (like configuration checking, resources assignments and buffer management) must be done irrespective from ->active. ->active is really only a toggle to change the hardware state. More precisely: - Drivers MUST NOT look at ->active in their ->atomic_check callbacks. Changes to ->active MUST always suceed if nothing else changes. - Drivers using the atomic helpers MUST NOT look at ->active anywhere, period. The helpers will take care of calling the respective enable/modeset/disable hooks as necessary. As before the helpers will carefully keep track of the state and not call any hooks unecessarily, so still no double-disables or enables like with crtc helpers. - ->mode_set hooks are only called when the mode or output configuration changes, not for changes in ->active state. - Drivers which reconstruct the state objects in their ->reset hooks or through some other hw state readout infrastructure must ensure that ->active reflects actual hw state. This just implements the core bits and helper logic, a subsequent patch will implement the helper code to implement legacy dpms with this. v2: Rebase on top of the drm ioctl work: - Move crtc checks to the core check function. - Also check for ->active_changed when deciding whether a modeset might happen (for the ALLOW_MODESET mode). - Expose the ->active state with an atomic prop. v3: Review from Rob - Spelling fix in comment. - Extract needs_modeset helper to consolidate the ->mode_changed || ->active_changed checks. v4: Fixup fumble between crtc->state and crtc_state. Cc: Rob Clark <robdclark@gmail.com> Reviewed-by: Thierry Reding <treding@nvidia.com> Tested-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-01-22 23:36:21 +08:00
if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
drm_object_attach_property(&crtc->base, config->prop_active, 0);
drm_object_attach_property(&crtc->base, config->prop_mode_id, 0);
drm/atomic: Add drm_crtc_state->active This is the infrastructure for DPMS ported to the atomic world. Fundamental changes compare to legacy DPMS are: - No more per-connector dpms state, instead there's just one per each display pipeline. So if you clone either you have to unclone first if you only want to switch off one screen, or you just switch of everything (like all desktops do). This massively reduces complexity for cloning since now there's no more half-enabled cloned configs to consider. - Only on/off, dpms standby/suspend are as dead as real CRTs. Again reduces complexity a lot. Now especially for backwards compat the really important part for dpms support is that dpms on always succeeds (except for hw death and unplugged cables ofc). Which means everything that could fail (like configuration checking, resources assignments and buffer management) must be done irrespective from ->active. ->active is really only a toggle to change the hardware state. More precisely: - Drivers MUST NOT look at ->active in their ->atomic_check callbacks. Changes to ->active MUST always suceed if nothing else changes. - Drivers using the atomic helpers MUST NOT look at ->active anywhere, period. The helpers will take care of calling the respective enable/modeset/disable hooks as necessary. As before the helpers will carefully keep track of the state and not call any hooks unecessarily, so still no double-disables or enables like with crtc helpers. - ->mode_set hooks are only called when the mode or output configuration changes, not for changes in ->active state. - Drivers which reconstruct the state objects in their ->reset hooks or through some other hw state readout infrastructure must ensure that ->active reflects actual hw state. This just implements the core bits and helper logic, a subsequent patch will implement the helper code to implement legacy dpms with this. v2: Rebase on top of the drm ioctl work: - Move crtc checks to the core check function. - Also check for ->active_changed when deciding whether a modeset might happen (for the ALLOW_MODESET mode). - Expose the ->active state with an atomic prop. v3: Review from Rob - Spelling fix in comment. - Extract needs_modeset helper to consolidate the ->mode_changed || ->active_changed checks. v4: Fixup fumble between crtc->state and crtc_state. Cc: Rob Clark <robdclark@gmail.com> Reviewed-by: Thierry Reding <treding@nvidia.com> Tested-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-01-22 23:36:21 +08:00
}
return 0;
}
EXPORT_SYMBOL(drm_crtc_init_with_planes);
/**
* drm_crtc_cleanup - Clean up the core crtc usage
* @crtc: CRTC to cleanup
*
* This function cleans up @crtc and removes it from the DRM mode setting
* core. Note that the function does *not* free the crtc structure itself,
* this is the responsibility of the caller.
*/
void drm_crtc_cleanup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
/* Note that the crtc_list is considered to be static; should we
* remove the drm_crtc at runtime we would have to decrement all
* the indices on the drm_crtc after us in the crtc_list.
*/
kfree(crtc->gamma_store);
crtc->gamma_store = NULL;
drm_modeset_lock_fini(&crtc->mutex);
drm_mode_object_unregister(dev, &crtc->base);
list_del(&crtc->head);
dev->mode_config.num_crtc--;
WARN_ON(crtc->state && !crtc->funcs->atomic_destroy_state);
if (crtc->state && crtc->funcs->atomic_destroy_state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
kfree(crtc->name);
memset(crtc, 0, sizeof(*crtc));
}
EXPORT_SYMBOL(drm_crtc_cleanup);
/*
* drm_mode_remove - remove and free a mode
* @connector: connector list to modify
* @mode: mode to remove
*
* Remove @mode from @connector's mode list, then free it.
*/
static void drm_mode_remove(struct drm_connector *connector,
struct drm_display_mode *mode)
{
list_del(&mode->head);
drm_mode_destroy(connector->dev, mode);
}
/**
* drm_display_info_set_bus_formats - set the supported bus formats
* @info: display info to store bus formats in
* @formats: array containing the supported bus formats
* @num_formats: the number of entries in the fmts array
*
* Store the supported bus formats in display info structure.
* See MEDIA_BUS_FMT_* definitions in include/uapi/linux/media-bus-format.h for
* a full list of available formats.
*/
int drm_display_info_set_bus_formats(struct drm_display_info *info,
const u32 *formats,
unsigned int num_formats)
{
u32 *fmts = NULL;
if (!formats && num_formats)
return -EINVAL;
if (formats && num_formats) {
fmts = kmemdup(formats, sizeof(*formats) * num_formats,
GFP_KERNEL);
if (!fmts)
return -ENOMEM;
}
kfree(info->bus_formats);
info->bus_formats = fmts;
info->num_bus_formats = num_formats;
return 0;
}
EXPORT_SYMBOL(drm_display_info_set_bus_formats);
drm: Perform cmdline mode parsing during connector initialisation i915.ko has a custom fbdev initialisation routine that aims to preserve the current mode set by the BIOS, unless overruled by the user. The user's wishes are determined by what, if any, mode is specified on the command line (via the video= parameter). However, that command line mode is first parsed by drm_fb_helper_initial_config() which is called after i915.ko's custom initial_config() as a fallback method. So in order for us to honour it, we need to move the cmdline parser earlier. If we perform the connector cmdline parsing as soon as we initialise the connector, that cmdline mode and forced status is then available even if the fbdev helper is not compiled in or never called. We also then expose the cmdline user mode in the connector mode lists. v2: Rebase after connector->name upheaval. v3: Adapt mga200 to look for the cmdline mode in the new place. Nicely simplifies things while at that. v4: Fix checkpatch. v5: Select FB_CMDLINE to adapt to the changed fbdev patch. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73154 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v2) Cc: dri-devel@lists.freedesktop.org Cc: Julia Lemire <jlemire@matrox.com> Cc: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 16:08:32 +08:00
/**
* drm_connector_get_cmdline_mode - reads the user's cmdline mode
* @connector: connector to quwery
*
* The kernel supports per-connector configration of its consoles through
* use of the video= parameter. This function parses that option and
* extracts the user's specified mode (or enable/disable status) for a
* particular connector. This is typically only used during the early fbdev
* setup.
*/
static void drm_connector_get_cmdline_mode(struct drm_connector *connector)
{
struct drm_cmdline_mode *mode = &connector->cmdline_mode;
char *option = NULL;
if (fb_get_options(connector->name, &option))
return;
if (!drm_mode_parse_command_line_for_connector(option,
connector,
mode))
return;
if (mode->force) {
const char *s;
switch (mode->force) {
case DRM_FORCE_OFF:
s = "OFF";
break;
case DRM_FORCE_ON_DIGITAL:
s = "ON - dig";
break;
default:
case DRM_FORCE_ON:
s = "ON";
break;
}
DRM_INFO("forcing %s connector %s\n", connector->name, s);
connector->force = mode->force;
}
DRM_DEBUG_KMS("cmdline mode for connector %s %dx%d@%dHz%s%s%s\n",
connector->name,
mode->xres, mode->yres,
mode->refresh_specified ? mode->refresh : 60,
mode->rb ? " reduced blanking" : "",
mode->margins ? " with margins" : "",
mode->interlace ? " interlaced" : "");
}
static void drm_connector_free(struct kref *kref)
{
struct drm_connector *connector =
container_of(kref, struct drm_connector, base.refcount);
struct drm_device *dev = connector->dev;
drm_mode_object_unregister(dev, &connector->base);
connector->funcs->destroy(connector);
}
/**
* drm_connector_init - Init a preallocated connector
* @dev: DRM device
* @connector: the connector to init
* @funcs: callbacks for this connector
* @connector_type: user visible type of the connector
*
* Initialises a preallocated connector. Connectors should be
* subclassed as part of driver connector objects.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_connector_init(struct drm_device *dev,
struct drm_connector *connector,
const struct drm_connector_funcs *funcs,
int connector_type)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
struct ida *connector_ida =
&drm_connector_enum_list[connector_type].ida;
drm_modeset_lock_all(dev);
ret = drm_mode_object_get_reg(dev, &connector->base,
DRM_MODE_OBJECT_CONNECTOR,
false, drm_connector_free);
if (ret)
goto out_unlock;
connector->base.properties = &connector->properties;
connector->dev = dev;
connector->funcs = funcs;
ret = ida_simple_get(&config->connector_ida, 0, 0, GFP_KERNEL);
if (ret < 0)
goto out_put;
connector->index = ret;
ret = 0;
connector->connector_type = connector_type;
connector->connector_type_id =
ida_simple_get(connector_ida, 1, 0, GFP_KERNEL);
if (connector->connector_type_id < 0) {
ret = connector->connector_type_id;
goto out_put_id;
}
connector->name =
kasprintf(GFP_KERNEL, "%s-%d",
drm_connector_enum_list[connector_type].name,
connector->connector_type_id);
if (!connector->name) {
ret = -ENOMEM;
goto out_put_type_id;
}
INIT_LIST_HEAD(&connector->probed_modes);
INIT_LIST_HEAD(&connector->modes);
connector->edid_blob_ptr = NULL;
connector->status = connector_status_unknown;
drm: Perform cmdline mode parsing during connector initialisation i915.ko has a custom fbdev initialisation routine that aims to preserve the current mode set by the BIOS, unless overruled by the user. The user's wishes are determined by what, if any, mode is specified on the command line (via the video= parameter). However, that command line mode is first parsed by drm_fb_helper_initial_config() which is called after i915.ko's custom initial_config() as a fallback method. So in order for us to honour it, we need to move the cmdline parser earlier. If we perform the connector cmdline parsing as soon as we initialise the connector, that cmdline mode and forced status is then available even if the fbdev helper is not compiled in or never called. We also then expose the cmdline user mode in the connector mode lists. v2: Rebase after connector->name upheaval. v3: Adapt mga200 to look for the cmdline mode in the new place. Nicely simplifies things while at that. v4: Fix checkpatch. v5: Select FB_CMDLINE to adapt to the changed fbdev patch. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73154 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v2) Cc: dri-devel@lists.freedesktop.org Cc: Julia Lemire <jlemire@matrox.com> Cc: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 16:08:32 +08:00
drm_connector_get_cmdline_mode(connector);
/* We should add connectors at the end to avoid upsetting the connector
* index too much. */
list_add_tail(&connector->head, &config->connector_list);
config->num_connector++;
if (connector_type != DRM_MODE_CONNECTOR_VIRTUAL)
drm_object_attach_property(&connector->base,
config->edid_property,
0);
drm_object_attach_property(&connector->base,
config->dpms_property, 0);
if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
drm_object_attach_property(&connector->base, config->prop_crtc_id, 0);
}
connector->debugfs_entry = NULL;
out_put_type_id:
if (ret)
ida_remove(connector_ida, connector->connector_type_id);
out_put_id:
if (ret)
ida_remove(&config->connector_ida, connector->index);
out_put:
if (ret)
drm_mode_object_unregister(dev, &connector->base);
out_unlock:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_connector_init);
/**
* drm_connector_cleanup - cleans up an initialised connector
* @connector: connector to cleanup
*
* Cleans up the connector but doesn't free the object.
*/
void drm_connector_cleanup(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *t;
/* The connector should have been removed from userspace long before
* it is finally destroyed.
*/
if (WARN_ON(connector->registered))
drm_connector_unregister(connector);
if (connector->tile_group) {
drm_mode_put_tile_group(dev, connector->tile_group);
connector->tile_group = NULL;
}
list_for_each_entry_safe(mode, t, &connector->probed_modes, head)
drm_mode_remove(connector, mode);
list_for_each_entry_safe(mode, t, &connector->modes, head)
drm_mode_remove(connector, mode);
ida_remove(&drm_connector_enum_list[connector->connector_type].ida,
connector->connector_type_id);
ida_remove(&dev->mode_config.connector_ida,
connector->index);
kfree(connector->display_info.bus_formats);
drm_mode_object_unregister(dev, &connector->base);
kfree(connector->name);
connector->name = NULL;
list_del(&connector->head);
dev->mode_config.num_connector--;
WARN_ON(connector->state && !connector->funcs->atomic_destroy_state);
if (connector->state && connector->funcs->atomic_destroy_state)
connector->funcs->atomic_destroy_state(connector,
connector->state);
memset(connector, 0, sizeof(*connector));
}
EXPORT_SYMBOL(drm_connector_cleanup);
/**
* drm_connector_register - register a connector
* @connector: the connector to register
*
* Register userspace interfaces for a connector
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_connector_register(struct drm_connector *connector)
{
int ret;
if (connector->registered)
return 0;
ret = drm_sysfs_connector_add(connector);
if (ret)
return ret;
ret = drm_debugfs_connector_add(connector);
if (ret) {
goto err_sysfs;
}
if (connector->funcs->late_register) {
ret = connector->funcs->late_register(connector);
if (ret)
goto err_debugfs;
}
drm_mode_object_register(connector->dev, &connector->base);
connector->registered = true;
return 0;
err_debugfs:
drm_debugfs_connector_remove(connector);
err_sysfs:
drm_sysfs_connector_remove(connector);
return ret;
}
EXPORT_SYMBOL(drm_connector_register);
/**
* drm_connector_unregister - unregister a connector
* @connector: the connector to unregister
*
* Unregister userspace interfaces for a connector
*/
void drm_connector_unregister(struct drm_connector *connector)
{
if (!connector->registered)
return;
if (connector->funcs->early_unregister)
connector->funcs->early_unregister(connector);
drm_sysfs_connector_remove(connector);
drm_debugfs_connector_remove(connector);
connector->registered = false;
}
EXPORT_SYMBOL(drm_connector_unregister);
static void drm_connector_unregister_all(struct drm_device *dev)
{
struct drm_connector *connector;
/* FIXME: taking the mode config mutex ends up in a clash with sysfs */
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
drm_connector_unregister(connector);
}
static int drm_connector_register_all(struct drm_device *dev)
{
struct drm_connector *connector;
int ret;
drm: Paper over locking inversion after registration rework drm_connector_register_all requires a few too many locks because our connector_list locking is busted. Add another FIXME+hack to work around this. This should address the below lockdep splat: ====================================================== [ INFO: possible circular locking dependency detected ] 4.7.0-rc5+ #524 Tainted: G O ------------------------------------------------------- kworker/u8:0/6 is trying to acquire lock: (&dev->mode_config.mutex){+.+.+.}, at: [<ffffffff815afde0>] drm_modeset_lock_all+0x40/0x120 but task is already holding lock: ((fb_notifier_list).rwsem){++++.+}, at: [<ffffffff810ac195>] __blocking_notifier_call_chain+0x35/0x70 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 ((fb_notifier_list).rwsem){++++.+}: [<ffffffff810df611>] lock_acquire+0xb1/0x200 [<ffffffff819a55b4>] down_write+0x44/0x80 [<ffffffff810abf91>] blocking_notifier_chain_register+0x21/0xb0 [<ffffffff814c7448>] fb_register_client+0x18/0x20 [<ffffffff814c6c86>] backlight_device_register+0x136/0x260 [<ffffffffa0127eb2>] intel_backlight_device_register+0xa2/0x160 [i915] [<ffffffffa00f46be>] intel_connector_register+0xe/0x10 [i915] [<ffffffffa0112bfb>] intel_dp_connector_register+0x1b/0x80 [i915] [<ffffffff8159dfea>] drm_connector_register+0x4a/0x80 [<ffffffff8159fe44>] drm_connector_register_all+0x64/0xf0 [<ffffffff815a2a64>] drm_modeset_register_all+0x174/0x1c0 [<ffffffff81599b72>] drm_dev_register+0xc2/0xd0 [<ffffffffa00621d7>] i915_driver_load+0x1547/0x2200 [i915] [<ffffffffa006d80f>] i915_pci_probe+0x4f/0x70 [i915] [<ffffffff814a2135>] local_pci_probe+0x45/0xa0 [<ffffffff814a349b>] pci_device_probe+0xdb/0x130 [<ffffffff815c07e3>] driver_probe_device+0x223/0x440 [<ffffffff815c0ad5>] __driver_attach+0xd5/0x100 [<ffffffff815be386>] bus_for_each_dev+0x66/0xa0 [<ffffffff815c002e>] driver_attach+0x1e/0x20 [<ffffffff815bf9be>] bus_add_driver+0x1ee/0x280 [<ffffffff815c1810>] driver_register+0x60/0xe0 [<ffffffff814a1a10>] __pci_register_driver+0x60/0x70 [<ffffffffa01a905b>] i915_init+0x5b/0x62 [i915] [<ffffffff8100042d>] do_one_initcall+0x3d/0x150 [<ffffffff811a935b>] do_init_module+0x5f/0x1d9 [<ffffffff81124416>] load_module+0x20e6/0x27e0 [<ffffffff81124d63>] SYSC_finit_module+0xc3/0xf0 [<ffffffff81124dae>] SyS_finit_module+0xe/0x10 [<ffffffff819a83a9>] entry_SYSCALL_64_fastpath+0x1c/0xac -> #0 (&dev->mode_config.mutex){+.+.+.}: [<ffffffff810df0ac>] __lock_acquire+0x10fc/0x1260 [<ffffffff810df611>] lock_acquire+0xb1/0x200 [<ffffffff819a3097>] mutex_lock_nested+0x67/0x3c0 [<ffffffff815afde0>] drm_modeset_lock_all+0x40/0x120 [<ffffffff8158f79b>] drm_fb_helper_restore_fbdev_mode_unlocked+0x2b/0x80 [<ffffffff8158f81d>] drm_fb_helper_set_par+0x2d/0x50 [<ffffffffa0105f7a>] intel_fbdev_set_par+0x1a/0x60 [i915] [<ffffffff814c13c6>] fbcon_init+0x586/0x610 [<ffffffff8154d16a>] visual_init+0xca/0x130 [<ffffffff8154e611>] do_bind_con_driver+0x1c1/0x3a0 [<ffffffff8154eaf6>] do_take_over_console+0x116/0x180 [<ffffffff814bd3a7>] do_fbcon_takeover+0x57/0xb0 [<ffffffff814c1e48>] fbcon_event_notify+0x658/0x750 [<ffffffff810abcae>] notifier_call_chain+0x3e/0xb0 [<ffffffff810ac1ad>] __blocking_notifier_call_chain+0x4d/0x70 [<ffffffff810ac1e6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff814c748b>] fb_notifier_call_chain+0x1b/0x20 [<ffffffff814c86b1>] register_framebuffer+0x251/0x330 [<ffffffff8158fa9f>] drm_fb_helper_initial_config+0x25f/0x3f0 [<ffffffffa0106b48>] intel_fbdev_initial_config+0x18/0x30 [i915] [<ffffffff810adfd8>] async_run_entry_fn+0x48/0x150 [<ffffffff810a3947>] process_one_work+0x1e7/0x750 [<ffffffff810a3efb>] worker_thread+0x4b/0x4f0 [<ffffffff810aad4f>] kthread+0xef/0x110 [<ffffffff819a85ef>] ret_from_fork+0x1f/0x40 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((fb_notifier_list).rwsem); lock(&dev->mode_config.mutex); lock((fb_notifier_list).rwsem); lock(&dev->mode_config.mutex); *** DEADLOCK *** 6 locks held by kworker/u8:0/6: #0: ("events_unbound"){.+.+.+}, at: [<ffffffff810a38c9>] process_one_work+0x169/0x750 #1: ((&entry->work)){+.+.+.}, at: [<ffffffff810a38c9>] process_one_work+0x169/0x750 #2: (registration_lock){+.+.+.}, at: [<ffffffff814c8487>] register_framebuffer+0x27/0x330 #3: (console_lock){+.+.+.}, at: [<ffffffff814c86ce>] register_framebuffer+0x26e/0x330 #4: (&fb_info->lock){+.+.+.}, at: [<ffffffff814c78dd>] lock_fb_info+0x1d/0x40 #5: ((fb_notifier_list).rwsem){++++.+}, at: [<ffffffff810ac195>] __blocking_notifier_call_chain+0x35/0x70 stack backtrace: CPU: 2 PID: 6 Comm: kworker/u8:0 Tainted: G O 4.7.0-rc5+ #524 Hardware name: Intel Corp. Broxton P/NOTEBOOK, BIOS APLKRVPA.X64.0138.B33.1606250842 06/25/2016 Workqueue: events_unbound async_run_entry_fn 0000000000000000 ffff8800758577f0 ffffffff814507a5 ffffffff828b9900 ffffffff828b9900 ffff880075857830 ffffffff810dc6fa ffff880075857880 ffff88007584d688 0000000000000005 0000000000000006 ffff88007584d6b0 Call Trace: [<ffffffff814507a5>] dump_stack+0x67/0x92 [<ffffffff810dc6fa>] print_circular_bug+0x1aa/0x200 [<ffffffff810df0ac>] __lock_acquire+0x10fc/0x1260 [<ffffffff810df611>] lock_acquire+0xb1/0x200 [<ffffffff815afde0>] ? drm_modeset_lock_all+0x40/0x120 [<ffffffff815afde0>] ? drm_modeset_lock_all+0x40/0x120 [<ffffffff819a3097>] mutex_lock_nested+0x67/0x3c0 [<ffffffff815afde0>] ? drm_modeset_lock_all+0x40/0x120 [<ffffffff810fa85f>] ? rcu_read_lock_sched_held+0x7f/0x90 [<ffffffff81208218>] ? kmem_cache_alloc_trace+0x248/0x2b0 [<ffffffff815afdc5>] ? drm_modeset_lock_all+0x25/0x120 [<ffffffff815afde0>] drm_modeset_lock_all+0x40/0x120 [<ffffffff8158f79b>] drm_fb_helper_restore_fbdev_mode_unlocked+0x2b/0x80 [<ffffffff8158f81d>] drm_fb_helper_set_par+0x2d/0x50 [<ffffffffa0105f7a>] intel_fbdev_set_par+0x1a/0x60 [i915] [<ffffffff814c13c6>] fbcon_init+0x586/0x610 [<ffffffff8154d16a>] visual_init+0xca/0x130 [<ffffffff8154e611>] do_bind_con_driver+0x1c1/0x3a0 [<ffffffff8154eaf6>] do_take_over_console+0x116/0x180 [<ffffffff814bd3a7>] do_fbcon_takeover+0x57/0xb0 [<ffffffff814c1e48>] fbcon_event_notify+0x658/0x750 [<ffffffff810abcae>] notifier_call_chain+0x3e/0xb0 [<ffffffff810ac1ad>] __blocking_notifier_call_chain+0x4d/0x70 [<ffffffff810ac1e6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff814c748b>] fb_notifier_call_chain+0x1b/0x20 [<ffffffff814c86b1>] register_framebuffer+0x251/0x330 [<ffffffff815b7e8d>] ? vga_switcheroo_client_fb_set+0x5d/0x70 [<ffffffff8158fa9f>] drm_fb_helper_initial_config+0x25f/0x3f0 [<ffffffffa0106b48>] intel_fbdev_initial_config+0x18/0x30 [i915] [<ffffffff810adfd8>] async_run_entry_fn+0x48/0x150 [<ffffffff810a3947>] process_one_work+0x1e7/0x750 [<ffffffff810a38c9>] ? process_one_work+0x169/0x750 [<ffffffff810a3efb>] worker_thread+0x4b/0x4f0 [<ffffffff810a3eb0>] ? process_one_work+0x750/0x750 [<ffffffff810aad4f>] kthread+0xef/0x110 [<ffffffff819a85ef>] ret_from_fork+0x1f/0x40 [<ffffffff810aac60>] ? kthread_stop+0x2e0/0x2e0 v2: Rebase onto the right branch (hand-editing patches ftw) and add more reporters. Reported-by: Imre Deak <imre.deak@intel.com> Cc: Imre Deak <imre.deak@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Chris Wilson <chris@chris-wilson.co.uk> Reported-by: Jiri Kosina <jikos@kernel.org> Cc: Jiri Kosina <jikos@kernel.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-08-05 00:35:48 +08:00
/* FIXME: taking the mode config mutex ends up in a clash with
* fbcon/backlight registration */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
ret = drm_connector_register(connector);
if (ret)
goto err;
}
return 0;
err:
mutex_unlock(&dev->mode_config.mutex);
drm_connector_unregister_all(dev);
return ret;
}
static int drm_encoder_register_all(struct drm_device *dev)
{
struct drm_encoder *encoder;
int ret = 0;
drm_for_each_encoder(encoder, dev) {
if (encoder->funcs->late_register)
ret = encoder->funcs->late_register(encoder);
if (ret)
return ret;
}
return 0;
}
static void drm_encoder_unregister_all(struct drm_device *dev)
{
struct drm_encoder *encoder;
drm_for_each_encoder(encoder, dev) {
if (encoder->funcs->early_unregister)
encoder->funcs->early_unregister(encoder);
}
}
/**
* drm_encoder_init - Init a preallocated encoder
* @dev: drm device
* @encoder: the encoder to init
* @funcs: callbacks for this encoder
* @encoder_type: user visible type of the encoder
* @name: printf style format string for the encoder name, or NULL for default name
*
* Initialises a preallocated encoder. Encoder should be
* subclassed as part of driver encoder objects.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_encoder_init(struct drm_device *dev,
struct drm_encoder *encoder,
const struct drm_encoder_funcs *funcs,
int encoder_type, const char *name, ...)
{
int ret;
drm_modeset_lock_all(dev);
ret = drm_mode_object_get(dev, &encoder->base, DRM_MODE_OBJECT_ENCODER);
if (ret)
goto out_unlock;
encoder->dev = dev;
encoder->encoder_type = encoder_type;
encoder->funcs = funcs;
if (name) {
va_list ap;
va_start(ap, name);
encoder->name = kvasprintf(GFP_KERNEL, name, ap);
va_end(ap);
} else {
encoder->name = kasprintf(GFP_KERNEL, "%s-%d",
drm_encoder_enum_list[encoder_type].name,
encoder->base.id);
}
if (!encoder->name) {
ret = -ENOMEM;
goto out_put;
}
list_add_tail(&encoder->head, &dev->mode_config.encoder_list);
encoder->index = dev->mode_config.num_encoder++;
out_put:
if (ret)
drm_mode_object_unregister(dev, &encoder->base);
out_unlock:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_encoder_init);
/**
* drm_encoder_cleanup - cleans up an initialised encoder
* @encoder: encoder to cleanup
*
* Cleans up the encoder but doesn't free the object.
*/
void drm_encoder_cleanup(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
/* Note that the encoder_list is considered to be static; should we
* remove the drm_encoder at runtime we would have to decrement all
* the indices on the drm_encoder after us in the encoder_list.
*/
drm_modeset_lock_all(dev);
drm_mode_object_unregister(dev, &encoder->base);
kfree(encoder->name);
list_del(&encoder->head);
dev->mode_config.num_encoder--;
drm_modeset_unlock_all(dev);
memset(encoder, 0, sizeof(*encoder));
}
EXPORT_SYMBOL(drm_encoder_cleanup);
static unsigned int drm_num_planes(struct drm_device *dev)
{
unsigned int num = 0;
struct drm_plane *tmp;
drm_for_each_plane(tmp, dev) {
num++;
}
return num;
}
/**
* drm_universal_plane_init - Initialize a new universal plane object
* @dev: DRM device
* @plane: plane object to init
* @possible_crtcs: bitmask of possible CRTCs
* @funcs: callbacks for the new plane
* @formats: array of supported formats (%DRM_FORMAT_*)
* @format_count: number of elements in @formats
* @type: type of plane (overlay, primary, cursor)
drm: Pass 'name' to drm_universal_plane_init() Done with coccinelle for the most part. It choked on msm/mdp/mdp5/mdp5_plane.c like so: "BAD:!!!!! enum drm_plane_type type;" No idea how to deal with that, so I just fixed that up by hand. Also it thinks '...' is part of the semantic patch, so I put an 'int DOTDOTDOT' placeholder in its place and got rid of it with sed afterwards. I didn't convert drm_plane_init() since passing the varargs through would mean either cpp macros or va_list, and I figured we don't care about these legacy functions enough to warrant the extra pain. @@ typedef uint32_t; identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ) { ... } @@ identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ); @@ expression E1, E2, E3, E4, E5, E6, E7; @@ drm_universal_plane_init(E1, E2, E3, E4, E5, E6, E7 + ,NULL ) v2: Split crtc and plane changes apart Pass NUL for no-name instead of "" Leave drm_plane_init() alone v3: Add ', or NULL...' to @name kernel doc (Jani) Annotate the function with __printf() attribute (Jani) Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1449670795-2853-1-git-send-email-ville.syrjala@linux.intel.com
2015-12-09 22:19:55 +08:00
* @name: printf style format string for the plane name, or NULL for default name
*
* Initializes a plane object of type @type.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane,
unsigned long possible_crtcs,
const struct drm_plane_funcs *funcs,
const uint32_t *formats, unsigned int format_count,
drm: Pass 'name' to drm_universal_plane_init() Done with coccinelle for the most part. It choked on msm/mdp/mdp5/mdp5_plane.c like so: "BAD:!!!!! enum drm_plane_type type;" No idea how to deal with that, so I just fixed that up by hand. Also it thinks '...' is part of the semantic patch, so I put an 'int DOTDOTDOT' placeholder in its place and got rid of it with sed afterwards. I didn't convert drm_plane_init() since passing the varargs through would mean either cpp macros or va_list, and I figured we don't care about these legacy functions enough to warrant the extra pain. @@ typedef uint32_t; identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ) { ... } @@ identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ); @@ expression E1, E2, E3, E4, E5, E6, E7; @@ drm_universal_plane_init(E1, E2, E3, E4, E5, E6, E7 + ,NULL ) v2: Split crtc and plane changes apart Pass NUL for no-name instead of "" Leave drm_plane_init() alone v3: Add ', or NULL...' to @name kernel doc (Jani) Annotate the function with __printf() attribute (Jani) Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1449670795-2853-1-git-send-email-ville.syrjala@linux.intel.com
2015-12-09 22:19:55 +08:00
enum drm_plane_type type,
const char *name, ...)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
ret = drm_mode_object_get(dev, &plane->base, DRM_MODE_OBJECT_PLANE);
if (ret)
return ret;
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_init(&plane->mutex);
plane->base.properties = &plane->properties;
plane->dev = dev;
plane->funcs = funcs;
plane->format_types = kmalloc_array(format_count, sizeof(uint32_t),
GFP_KERNEL);
if (!plane->format_types) {
DRM_DEBUG_KMS("out of memory when allocating plane\n");
drm_mode_object_unregister(dev, &plane->base);
return -ENOMEM;
}
if (name) {
va_list ap;
va_start(ap, name);
plane->name = kvasprintf(GFP_KERNEL, name, ap);
va_end(ap);
} else {
plane->name = kasprintf(GFP_KERNEL, "plane-%d",
drm_num_planes(dev));
}
if (!plane->name) {
kfree(plane->format_types);
drm_mode_object_unregister(dev, &plane->base);
return -ENOMEM;
}
memcpy(plane->format_types, formats, format_count * sizeof(uint32_t));
plane->format_count = format_count;
plane->possible_crtcs = possible_crtcs;
plane->type = type;
list_add_tail(&plane->head, &config->plane_list);
plane->index = config->num_total_plane++;
if (plane->type == DRM_PLANE_TYPE_OVERLAY)
config->num_overlay_plane++;
drm_object_attach_property(&plane->base,
config->plane_type_property,
plane->type);
if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
drm_object_attach_property(&plane->base, config->prop_fb_id, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_id, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_x, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_y, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_w, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_h, 0);
drm_object_attach_property(&plane->base, config->prop_src_x, 0);
drm_object_attach_property(&plane->base, config->prop_src_y, 0);
drm_object_attach_property(&plane->base, config->prop_src_w, 0);
drm_object_attach_property(&plane->base, config->prop_src_h, 0);
}
return 0;
}
EXPORT_SYMBOL(drm_universal_plane_init);
static int drm_plane_register_all(struct drm_device *dev)
{
struct drm_plane *plane;
int ret = 0;
drm_for_each_plane(plane, dev) {
if (plane->funcs->late_register)
ret = plane->funcs->late_register(plane);
if (ret)
return ret;
}
return 0;
}
static void drm_plane_unregister_all(struct drm_device *dev)
{
struct drm_plane *plane;
drm_for_each_plane(plane, dev) {
if (plane->funcs->early_unregister)
plane->funcs->early_unregister(plane);
}
}
/**
* drm_plane_init - Initialize a legacy plane
* @dev: DRM device
* @plane: plane object to init
* @possible_crtcs: bitmask of possible CRTCs
* @funcs: callbacks for the new plane
* @formats: array of supported formats (%DRM_FORMAT_*)
* @format_count: number of elements in @formats
* @is_primary: plane type (primary vs overlay)
*
* Legacy API to initialize a DRM plane.
*
* New drivers should call drm_universal_plane_init() instead.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_plane_init(struct drm_device *dev, struct drm_plane *plane,
unsigned long possible_crtcs,
const struct drm_plane_funcs *funcs,
const uint32_t *formats, unsigned int format_count,
bool is_primary)
{
enum drm_plane_type type;
type = is_primary ? DRM_PLANE_TYPE_PRIMARY : DRM_PLANE_TYPE_OVERLAY;
return drm_universal_plane_init(dev, plane, possible_crtcs, funcs,
drm: Pass 'name' to drm_universal_plane_init() Done with coccinelle for the most part. It choked on msm/mdp/mdp5/mdp5_plane.c like so: "BAD:!!!!! enum drm_plane_type type;" No idea how to deal with that, so I just fixed that up by hand. Also it thinks '...' is part of the semantic patch, so I put an 'int DOTDOTDOT' placeholder in its place and got rid of it with sed afterwards. I didn't convert drm_plane_init() since passing the varargs through would mean either cpp macros or va_list, and I figured we don't care about these legacy functions enough to warrant the extra pain. @@ typedef uint32_t; identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ) { ... } @@ identifier dev, plane, possible_crtcs, funcs, formats, format_count, type; @@ int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane, unsigned long possible_crtcs, const struct drm_plane_funcs *funcs, const uint32_t *formats, unsigned int format_count, enum drm_plane_type type + ,const char *name, int DOTDOTDOT ); @@ expression E1, E2, E3, E4, E5, E6, E7; @@ drm_universal_plane_init(E1, E2, E3, E4, E5, E6, E7 + ,NULL ) v2: Split crtc and plane changes apart Pass NUL for no-name instead of "" Leave drm_plane_init() alone v3: Add ', or NULL...' to @name kernel doc (Jani) Annotate the function with __printf() attribute (Jani) Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1449670795-2853-1-git-send-email-ville.syrjala@linux.intel.com
2015-12-09 22:19:55 +08:00
formats, format_count, type, NULL);
}
EXPORT_SYMBOL(drm_plane_init);
/**
* drm_plane_cleanup - Clean up the core plane usage
* @plane: plane to cleanup
*
* This function cleans up @plane and removes it from the DRM mode setting
* core. Note that the function does *not* free the plane structure itself,
* this is the responsibility of the caller.
*/
void drm_plane_cleanup(struct drm_plane *plane)
{
struct drm_device *dev = plane->dev;
drm_modeset_lock_all(dev);
kfree(plane->format_types);
drm_mode_object_unregister(dev, &plane->base);
BUG_ON(list_empty(&plane->head));
/* Note that the plane_list is considered to be static; should we
* remove the drm_plane at runtime we would have to decrement all
* the indices on the drm_plane after us in the plane_list.
*/
list_del(&plane->head);
dev->mode_config.num_total_plane--;
if (plane->type == DRM_PLANE_TYPE_OVERLAY)
dev->mode_config.num_overlay_plane--;
drm_modeset_unlock_all(dev);
WARN_ON(plane->state && !plane->funcs->atomic_destroy_state);
if (plane->state && plane->funcs->atomic_destroy_state)
plane->funcs->atomic_destroy_state(plane, plane->state);
kfree(plane->name);
memset(plane, 0, sizeof(*plane));
}
EXPORT_SYMBOL(drm_plane_cleanup);
/**
* drm_plane_from_index - find the registered plane at an index
* @dev: DRM device
* @idx: index of registered plane to find for
*
* Given a plane index, return the registered plane from DRM device's
* list of planes with matching index.
*/
struct drm_plane *
drm_plane_from_index(struct drm_device *dev, int idx)
{
struct drm_plane *plane;
drm_for_each_plane(plane, dev)
if (idx == plane->index)
return plane;
return NULL;
}
EXPORT_SYMBOL(drm_plane_from_index);
/**
* drm_plane_force_disable - Forcibly disable a plane
* @plane: plane to disable
*
* Forces the plane to be disabled.
*
* Used when the plane's current framebuffer is destroyed,
* and when restoring fbdev mode.
*/
void drm_plane_force_disable(struct drm_plane *plane)
{
int ret;
if (!plane->fb)
return;
plane->old_fb = plane->fb;
ret = plane->funcs->disable_plane(plane);
if (ret) {
DRM_ERROR("failed to disable plane with busy fb\n");
plane->old_fb = NULL;
return;
}
/* disconnect the plane from the fb and crtc: */
drm_framebuffer_unreference(plane->old_fb);
plane->old_fb = NULL;
plane->fb = NULL;
plane->crtc = NULL;
}
EXPORT_SYMBOL(drm_plane_force_disable);
int drm_modeset_register_all(struct drm_device *dev)
{
int ret;
ret = drm_plane_register_all(dev);
if (ret)
goto err_plane;
ret = drm_crtc_register_all(dev);
if (ret)
goto err_crtc;
ret = drm_encoder_register_all(dev);
if (ret)
goto err_encoder;
ret = drm_connector_register_all(dev);
if (ret)
goto err_connector;
return 0;
err_connector:
drm_encoder_unregister_all(dev);
err_encoder:
drm_crtc_unregister_all(dev);
err_crtc:
drm_plane_unregister_all(dev);
err_plane:
return ret;
}
void drm_modeset_unregister_all(struct drm_device *dev)
{
drm_connector_unregister_all(dev);
drm_encoder_unregister_all(dev);
drm_crtc_unregister_all(dev);
drm_plane_unregister_all(dev);
}
static int drm_mode_create_standard_properties(struct drm_device *dev)
{
struct drm_property *prop;
/*
* Standard properties (apply to all connectors)
*/
prop = drm_property_create(dev, DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"EDID", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.edid_property = prop;
prop = drm_property_create_enum(dev, 0,
"DPMS", drm_dpms_enum_list,
ARRAY_SIZE(drm_dpms_enum_list));
if (!prop)
return -ENOMEM;
dev->mode_config.dpms_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"PATH", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.path_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"TILE", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.tile_property = prop;
prop = drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"type", drm_plane_type_enum_list,
ARRAY_SIZE(drm_plane_type_enum_list));
if (!prop)
return -ENOMEM;
dev->mode_config.plane_type_property = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_X", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_x = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_Y", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_y = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_W", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_w = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_H", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_h = prop;
prop = drm_property_create_signed_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_X", INT_MIN, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_x = prop;
prop = drm_property_create_signed_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_Y", INT_MIN, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_y = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_W", 0, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_w = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_H", 0, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_h = prop;
prop = drm_property_create_object(dev, DRM_MODE_PROP_ATOMIC,
"FB_ID", DRM_MODE_OBJECT_FB);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_fb_id = prop;
prop = drm_property_create_object(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_ID", DRM_MODE_OBJECT_CRTC);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_id = prop;
drm/atomic: Add drm_crtc_state->active This is the infrastructure for DPMS ported to the atomic world. Fundamental changes compare to legacy DPMS are: - No more per-connector dpms state, instead there's just one per each display pipeline. So if you clone either you have to unclone first if you only want to switch off one screen, or you just switch of everything (like all desktops do). This massively reduces complexity for cloning since now there's no more half-enabled cloned configs to consider. - Only on/off, dpms standby/suspend are as dead as real CRTs. Again reduces complexity a lot. Now especially for backwards compat the really important part for dpms support is that dpms on always succeeds (except for hw death and unplugged cables ofc). Which means everything that could fail (like configuration checking, resources assignments and buffer management) must be done irrespective from ->active. ->active is really only a toggle to change the hardware state. More precisely: - Drivers MUST NOT look at ->active in their ->atomic_check callbacks. Changes to ->active MUST always suceed if nothing else changes. - Drivers using the atomic helpers MUST NOT look at ->active anywhere, period. The helpers will take care of calling the respective enable/modeset/disable hooks as necessary. As before the helpers will carefully keep track of the state and not call any hooks unecessarily, so still no double-disables or enables like with crtc helpers. - ->mode_set hooks are only called when the mode or output configuration changes, not for changes in ->active state. - Drivers which reconstruct the state objects in their ->reset hooks or through some other hw state readout infrastructure must ensure that ->active reflects actual hw state. This just implements the core bits and helper logic, a subsequent patch will implement the helper code to implement legacy dpms with this. v2: Rebase on top of the drm ioctl work: - Move crtc checks to the core check function. - Also check for ->active_changed when deciding whether a modeset might happen (for the ALLOW_MODESET mode). - Expose the ->active state with an atomic prop. v3: Review from Rob - Spelling fix in comment. - Extract needs_modeset helper to consolidate the ->mode_changed || ->active_changed checks. v4: Fixup fumble between crtc->state and crtc_state. Cc: Rob Clark <robdclark@gmail.com> Reviewed-by: Thierry Reding <treding@nvidia.com> Tested-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-01-22 23:36:21 +08:00
prop = drm_property_create_bool(dev, DRM_MODE_PROP_ATOMIC,
"ACTIVE");
if (!prop)
return -ENOMEM;
dev->mode_config.prop_active = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_ATOMIC | DRM_MODE_PROP_BLOB,
"MODE_ID", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_mode_id = prop;
drm: introduce pipe color correction properties Patch based on a previous series by Shashank Sharma. This introduces optional properties to enable color correction at the pipe level. It relies on 3 transformations applied to every pixels displayed. First a lookup into a degamma table, then a multiplication of the rgb components by a 3x3 matrix and finally another lookup into a gamma table. The following properties can be added to a pipe : - DEGAMMA_LUT : blob containing degamma LUT - DEGAMMA_LUT_SIZE : number of elements in DEGAMMA_LUT - CTM : transformation matrix applied after the degamma LUT - GAMMA_LUT : blob containing gamma LUT - GAMMA_LUT_SIZE : number of elements in GAMMA_LUT DEGAMMA_LUT_SIZE and GAMMA_LUT_SIZE are read only properties, set by the driver to tell userspace applications what sizes should be the lookup tables in DEGAMMA_LUT and GAMMA_LUT. A helper is also provided so legacy gamma correction is redirected through these new properties. v2: Register LUT size properties as range v3: Fix round in drm_color_lut_get_value() helper More docs on how degamma/gamma properties are used v4: Update contributors v5: Rename CTM_MATRIX property to CTM (Doh!) Add legacy gamma_set atomic helper Describe CTM/LUT acronyms in the kernel doc v6: Fix missing blob unref in drm_atomic_helper_crtc_reset Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Signed-off-by: Kumar, Kiran S <kiran.s.kumar@intel.com> Signed-off-by: Kausal Malladi <kausalmalladi@gmail.com> Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Acked-by: Rob Bradford <robert.bradford@intel.com> [danvet: CrOS maintainers are also happy with the userspacde side: https://codereview.chromium.org/1182063002/ ] Reviewed-by: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1456506302-640-4-git-send-email-lionel.g.landwerlin@intel.com
2016-02-27 01:05:00 +08:00
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB,
"DEGAMMA_LUT", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.degamma_lut_property = prop;
prop = drm_property_create_range(dev,
DRM_MODE_PROP_IMMUTABLE,
"DEGAMMA_LUT_SIZE", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.degamma_lut_size_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB,
"CTM", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.ctm_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB,
"GAMMA_LUT", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.gamma_lut_property = prop;
prop = drm_property_create_range(dev,
DRM_MODE_PROP_IMMUTABLE,
"GAMMA_LUT_SIZE", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.gamma_lut_size_property = prop;
return 0;
}
/**
* drm_mode_create_dvi_i_properties - create DVI-I specific connector properties
* @dev: DRM device
*
* Called by a driver the first time a DVI-I connector is made.
*/
int drm_mode_create_dvi_i_properties(struct drm_device *dev)
{
struct drm_property *dvi_i_selector;
struct drm_property *dvi_i_subconnector;
if (dev->mode_config.dvi_i_select_subconnector_property)
return 0;
dvi_i_selector =
drm_property_create_enum(dev, 0,
"select subconnector",
drm_dvi_i_select_enum_list,
ARRAY_SIZE(drm_dvi_i_select_enum_list));
dev->mode_config.dvi_i_select_subconnector_property = dvi_i_selector;
dvi_i_subconnector = drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"subconnector",
drm_dvi_i_subconnector_enum_list,
ARRAY_SIZE(drm_dvi_i_subconnector_enum_list));
dev->mode_config.dvi_i_subconnector_property = dvi_i_subconnector;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_dvi_i_properties);
/**
* drm_create_tv_properties - create TV specific connector properties
* @dev: DRM device
* @num_modes: number of different TV formats (modes) supported
* @modes: array of pointers to strings containing name of each format
*
* Called by a driver's TV initialization routine, this function creates
* the TV specific connector properties for a given device. Caller is
* responsible for allocating a list of format names and passing them to
* this routine.
*/
int drm_mode_create_tv_properties(struct drm_device *dev,
unsigned int num_modes,
const char * const modes[])
{
struct drm_property *tv_selector;
struct drm_property *tv_subconnector;
unsigned int i;
if (dev->mode_config.tv_select_subconnector_property)
return 0;
/*
* Basic connector properties
*/
tv_selector = drm_property_create_enum(dev, 0,
"select subconnector",
drm_tv_select_enum_list,
ARRAY_SIZE(drm_tv_select_enum_list));
if (!tv_selector)
goto nomem;
dev->mode_config.tv_select_subconnector_property = tv_selector;
tv_subconnector =
drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"subconnector",
drm_tv_subconnector_enum_list,
ARRAY_SIZE(drm_tv_subconnector_enum_list));
if (!tv_subconnector)
goto nomem;
dev->mode_config.tv_subconnector_property = tv_subconnector;
/*
* Other, TV specific properties: margins & TV modes.
*/
dev->mode_config.tv_left_margin_property =
drm_property_create_range(dev, 0, "left margin", 0, 100);
if (!dev->mode_config.tv_left_margin_property)
goto nomem;
dev->mode_config.tv_right_margin_property =
drm_property_create_range(dev, 0, "right margin", 0, 100);
if (!dev->mode_config.tv_right_margin_property)
goto nomem;
dev->mode_config.tv_top_margin_property =
drm_property_create_range(dev, 0, "top margin", 0, 100);
if (!dev->mode_config.tv_top_margin_property)
goto nomem;
dev->mode_config.tv_bottom_margin_property =
drm_property_create_range(dev, 0, "bottom margin", 0, 100);
if (!dev->mode_config.tv_bottom_margin_property)
goto nomem;
dev->mode_config.tv_mode_property =
drm_property_create(dev, DRM_MODE_PROP_ENUM,
"mode", num_modes);
if (!dev->mode_config.tv_mode_property)
goto nomem;
for (i = 0; i < num_modes; i++)
drm_property_add_enum(dev->mode_config.tv_mode_property, i,
i, modes[i]);
dev->mode_config.tv_brightness_property =
drm_property_create_range(dev, 0, "brightness", 0, 100);
if (!dev->mode_config.tv_brightness_property)
goto nomem;
dev->mode_config.tv_contrast_property =
drm_property_create_range(dev, 0, "contrast", 0, 100);
if (!dev->mode_config.tv_contrast_property)
goto nomem;
dev->mode_config.tv_flicker_reduction_property =
drm_property_create_range(dev, 0, "flicker reduction", 0, 100);
if (!dev->mode_config.tv_flicker_reduction_property)
goto nomem;
dev->mode_config.tv_overscan_property =
drm_property_create_range(dev, 0, "overscan", 0, 100);
if (!dev->mode_config.tv_overscan_property)
goto nomem;
dev->mode_config.tv_saturation_property =
drm_property_create_range(dev, 0, "saturation", 0, 100);
if (!dev->mode_config.tv_saturation_property)
goto nomem;
dev->mode_config.tv_hue_property =
drm_property_create_range(dev, 0, "hue", 0, 100);
if (!dev->mode_config.tv_hue_property)
goto nomem;
return 0;
nomem:
return -ENOMEM;
}
EXPORT_SYMBOL(drm_mode_create_tv_properties);
/**
* drm_mode_create_scaling_mode_property - create scaling mode property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*/
int drm_mode_create_scaling_mode_property(struct drm_device *dev)
{
struct drm_property *scaling_mode;
if (dev->mode_config.scaling_mode_property)
return 0;
scaling_mode =
drm_property_create_enum(dev, 0, "scaling mode",
drm_scaling_mode_enum_list,
ARRAY_SIZE(drm_scaling_mode_enum_list));
dev->mode_config.scaling_mode_property = scaling_mode;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_scaling_mode_property);
/**
* drm_mode_create_aspect_ratio_property - create aspect ratio property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_create_aspect_ratio_property(struct drm_device *dev)
{
if (dev->mode_config.aspect_ratio_property)
return 0;
dev->mode_config.aspect_ratio_property =
drm_property_create_enum(dev, 0, "aspect ratio",
drm_aspect_ratio_enum_list,
ARRAY_SIZE(drm_aspect_ratio_enum_list));
if (dev->mode_config.aspect_ratio_property == NULL)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_aspect_ratio_property);
/**
* drm_mode_create_dirty_property - create dirty property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*/
int drm_mode_create_dirty_info_property(struct drm_device *dev)
{
struct drm_property *dirty_info;
if (dev->mode_config.dirty_info_property)
return 0;
dirty_info =
drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"dirty",
drm_dirty_info_enum_list,
ARRAY_SIZE(drm_dirty_info_enum_list));
dev->mode_config.dirty_info_property = dirty_info;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_dirty_info_property);
/**
* drm_mode_create_suggested_offset_properties - create suggests offset properties
* @dev: DRM device
*
* Create the the suggested x/y offset property for connectors.
*/
int drm_mode_create_suggested_offset_properties(struct drm_device *dev)
{
if (dev->mode_config.suggested_x_property && dev->mode_config.suggested_y_property)
return 0;
dev->mode_config.suggested_x_property =
drm_property_create_range(dev, DRM_MODE_PROP_IMMUTABLE, "suggested X", 0, 0xffffffff);
dev->mode_config.suggested_y_property =
drm_property_create_range(dev, DRM_MODE_PROP_IMMUTABLE, "suggested Y", 0, 0xffffffff);
if (dev->mode_config.suggested_x_property == NULL ||
dev->mode_config.suggested_y_property == NULL)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_suggested_offset_properties);
/**
* drm_mode_getresources - get graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a set of configuration description structures and return
* them to the user, including CRTC, connector and framebuffer configuration.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getresources(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_card_res *card_res = data;
struct list_head *lh;
struct drm_framebuffer *fb;
struct drm_connector *connector;
struct drm_crtc *crtc;
struct drm_encoder *encoder;
int ret = 0;
int connector_count = 0;
int crtc_count = 0;
int fb_count = 0;
int encoder_count = 0;
int copied = 0;
uint32_t __user *fb_id;
uint32_t __user *crtc_id;
uint32_t __user *connector_id;
uint32_t __user *encoder_id;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&file_priv->fbs_lock);
/*
* For the non-control nodes we need to limit the list of resources
* by IDs in the group list for this node
*/
list_for_each(lh, &file_priv->fbs)
fb_count++;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
/* handle this in 4 parts */
/* FBs */
if (card_res->count_fbs >= fb_count) {
copied = 0;
fb_id = (uint32_t __user *)(unsigned long)card_res->fb_id_ptr;
list_for_each_entry(fb, &file_priv->fbs, filp_head) {
if (put_user(fb->base.id, fb_id + copied)) {
mutex_unlock(&file_priv->fbs_lock);
return -EFAULT;
}
copied++;
}
}
card_res->count_fbs = fb_count;
mutex_unlock(&file_priv->fbs_lock);
/* mode_config.mutex protects the connector list against e.g. DP MST
* connector hot-adding. CRTC/Plane lists are invariant. */
mutex_lock(&dev->mode_config.mutex);
drm_for_each_crtc(crtc, dev)
crtc_count++;
drm_for_each_connector(connector, dev)
connector_count++;
drm_for_each_encoder(encoder, dev)
encoder_count++;
card_res->max_height = dev->mode_config.max_height;
card_res->min_height = dev->mode_config.min_height;
card_res->max_width = dev->mode_config.max_width;
card_res->min_width = dev->mode_config.min_width;
/* CRTCs */
if (card_res->count_crtcs >= crtc_count) {
copied = 0;
crtc_id = (uint32_t __user *)(unsigned long)card_res->crtc_id_ptr;
drm_for_each_crtc(crtc, dev) {
if (put_user(crtc->base.id, crtc_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
card_res->count_crtcs = crtc_count;
/* Encoders */
if (card_res->count_encoders >= encoder_count) {
copied = 0;
encoder_id = (uint32_t __user *)(unsigned long)card_res->encoder_id_ptr;
drm_for_each_encoder(encoder, dev) {
if (put_user(encoder->base.id, encoder_id +
copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
card_res->count_encoders = encoder_count;
/* Connectors */
if (card_res->count_connectors >= connector_count) {
copied = 0;
connector_id = (uint32_t __user *)(unsigned long)card_res->connector_id_ptr;
drm_for_each_connector(connector, dev) {
if (put_user(connector->base.id,
connector_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
card_res->count_connectors = connector_count;
out:
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
/**
* drm_mode_getcrtc - get CRTC configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a CRTC configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getcrtc(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc *crtc_resp = data;
struct drm_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
crtc = drm_crtc_find(dev, crtc_resp->crtc_id);
if (!crtc)
return -ENOENT;
drm_modeset_lock_crtc(crtc, crtc->primary);
crtc_resp->gamma_size = crtc->gamma_size;
if (crtc->primary->fb)
crtc_resp->fb_id = crtc->primary->fb->base.id;
else
crtc_resp->fb_id = 0;
if (crtc->state) {
crtc_resp->x = crtc->primary->state->src_x >> 16;
crtc_resp->y = crtc->primary->state->src_y >> 16;
if (crtc->state->enable) {
drm_mode_convert_to_umode(&crtc_resp->mode, &crtc->state->mode);
crtc_resp->mode_valid = 1;
} else {
crtc_resp->mode_valid = 0;
}
} else {
crtc_resp->x = crtc->x;
crtc_resp->y = crtc->y;
if (crtc->enabled) {
drm_mode_convert_to_umode(&crtc_resp->mode, &crtc->mode);
crtc_resp->mode_valid = 1;
} else {
crtc_resp->mode_valid = 0;
}
}
drm_modeset_unlock_crtc(crtc);
return 0;
}
static bool drm_mode_expose_to_userspace(const struct drm_display_mode *mode,
const struct drm_file *file_priv)
{
/*
* If user-space hasn't configured the driver to expose the stereo 3D
* modes, don't expose them.
*/
if (!file_priv->stereo_allowed && drm_mode_is_stereo(mode))
return false;
return true;
}
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
static struct drm_encoder *drm_connector_get_encoder(struct drm_connector *connector)
{
/* For atomic drivers only state objects are synchronously updated and
* protected by modeset locks, so check those first. */
if (connector->state)
return connector->state->best_encoder;
return connector->encoder;
}
/* helper for getconnector and getproperties ioctls */
static int get_properties(struct drm_mode_object *obj, bool atomic,
uint32_t __user *prop_ptr, uint64_t __user *prop_values,
uint32_t *arg_count_props)
{
int props_count;
int i, ret, copied;
props_count = obj->properties->count;
if (!atomic)
props_count -= obj->properties->atomic_count;
if ((*arg_count_props >= props_count) && props_count) {
for (i = 0, copied = 0; copied < props_count; i++) {
struct drm_property *prop = obj->properties->properties[i];
uint64_t val;
if ((prop->flags & DRM_MODE_PROP_ATOMIC) && !atomic)
continue;
ret = drm_object_property_get_value(obj, prop, &val);
if (ret)
return ret;
if (put_user(prop->base.id, prop_ptr + copied))
return -EFAULT;
if (put_user(val, prop_values + copied))
return -EFAULT;
copied++;
}
}
*arg_count_props = props_count;
return 0;
}
/**
* drm_mode_getconnector - get connector configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a connector configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getconnector(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_connector *out_resp = data;
struct drm_connector *connector;
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
struct drm_encoder *encoder;
struct drm_display_mode *mode;
int mode_count = 0;
int encoders_count = 0;
int ret = 0;
int copied = 0;
int i;
struct drm_mode_modeinfo u_mode;
struct drm_mode_modeinfo __user *mode_ptr;
uint32_t __user *encoder_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
memset(&u_mode, 0, sizeof(struct drm_mode_modeinfo));
drm: don't hold crtc mutexes for connector ->detect callbacks The coup de grace of the entire journey. No more dropped frames every 10s on my testbox! I've tried to audit all ->detect and ->get_modes callbacks, but things became a bit fuzzy after trying to piece together the umpteenth implemenation. Afaict most drivers just have bog-standard output register frobbing with a notch of i2c edid reading, nothing which could potentially race with the newly concurrent pageflip/set_cursor code. The big exception is load-detection code which requires a running pipe, but radeon/nouveau seem to to this without touching any state which can be observed from page_flip (e.g. disabled crtcs temporarily getting enabled and so a pageflip succeeding). The only special case I could find is the i915 load detect code. That uses the normal modeset interface to enable the load-detect crtc, and so userspace could try to squeeze in a pageflip on the load-detect pipe. So we need to grab the relevant crtc mutex in there, to avoid the temporary crtc enabling to sneak out and be visible to userspace. Note that the sysfs files already stopped grabbing the per-crtc locks, since I didn't want to bother with doing a interruptible modeset_lock_all. But since there's very little in-between breakage (essentially just the ability for userspace to pageflip on load-detect crtcs when it shouldn't on the i915 driver) I figured I don't need to bother. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-12 07:35:33 +08:00
mutex_lock(&dev->mode_config.mutex);
connector = drm_connector_lookup(dev, out_resp->connector_id);
if (!connector) {
ret = -ENOENT;
goto out_unlock;
}
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++)
if (connector->encoder_ids[i] != 0)
encoders_count++;
if (out_resp->count_modes == 0) {
connector->funcs->fill_modes(connector,
dev->mode_config.max_width,
dev->mode_config.max_height);
}
/* delayed so we get modes regardless of pre-fill_modes state */
list_for_each_entry(mode, &connector->modes, head)
if (drm_mode_expose_to_userspace(mode, file_priv))
mode_count++;
out_resp->connector_id = connector->base.id;
out_resp->connector_type = connector->connector_type;
out_resp->connector_type_id = connector->connector_type_id;
out_resp->mm_width = connector->display_info.width_mm;
out_resp->mm_height = connector->display_info.height_mm;
out_resp->subpixel = connector->display_info.subpixel_order;
out_resp->connection = connector->status;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
encoder = drm_connector_get_encoder(connector);
if (encoder)
out_resp->encoder_id = encoder->base.id;
else
out_resp->encoder_id = 0;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if ((out_resp->count_modes >= mode_count) && mode_count) {
copied = 0;
mode_ptr = (struct drm_mode_modeinfo __user *)(unsigned long)out_resp->modes_ptr;
list_for_each_entry(mode, &connector->modes, head) {
if (!drm_mode_expose_to_userspace(mode, file_priv))
continue;
drm_mode_convert_to_umode(&u_mode, mode);
if (copy_to_user(mode_ptr + copied,
&u_mode, sizeof(u_mode))) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
out_resp->count_modes = mode_count;
ret = get_properties(&connector->base, file_priv->atomic,
(uint32_t __user *)(unsigned long)(out_resp->props_ptr),
(uint64_t __user *)(unsigned long)(out_resp->prop_values_ptr),
&out_resp->count_props);
if (ret)
goto out;
if ((out_resp->count_encoders >= encoders_count) && encoders_count) {
copied = 0;
encoder_ptr = (uint32_t __user *)(unsigned long)(out_resp->encoders_ptr);
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
if (connector->encoder_ids[i] != 0) {
if (put_user(connector->encoder_ids[i],
encoder_ptr + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
}
out_resp->count_encoders = encoders_count;
out:
drm_modeset_unlock(&dev->mode_config.connection_mutex);
drm_connector_unreference(connector);
out_unlock:
drm: don't hold crtc mutexes for connector ->detect callbacks The coup de grace of the entire journey. No more dropped frames every 10s on my testbox! I've tried to audit all ->detect and ->get_modes callbacks, but things became a bit fuzzy after trying to piece together the umpteenth implemenation. Afaict most drivers just have bog-standard output register frobbing with a notch of i2c edid reading, nothing which could potentially race with the newly concurrent pageflip/set_cursor code. The big exception is load-detection code which requires a running pipe, but radeon/nouveau seem to to this without touching any state which can be observed from page_flip (e.g. disabled crtcs temporarily getting enabled and so a pageflip succeeding). The only special case I could find is the i915 load detect code. That uses the normal modeset interface to enable the load-detect crtc, and so userspace could try to squeeze in a pageflip on the load-detect pipe. So we need to grab the relevant crtc mutex in there, to avoid the temporary crtc enabling to sneak out and be visible to userspace. Note that the sysfs files already stopped grabbing the per-crtc locks, since I didn't want to bother with doing a interruptible modeset_lock_all. But since there's very little in-between breakage (essentially just the ability for userspace to pageflip on load-detect crtcs when it shouldn't on the i915 driver) I figured I don't need to bother. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-12 07:35:33 +08:00
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
static struct drm_crtc *drm_encoder_get_crtc(struct drm_encoder *encoder)
{
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
bool uses_atomic = false;
/* For atomic drivers only state objects are synchronously updated and
* protected by modeset locks, so check those first. */
drm: Add modeset object iterators And roll them out across drm_* files. The point here isn't code prettification (it helps with that too) but that some of these lists aren't static any more. And having macros will gives us a convenient place to put locking checks into. I didn't add an iterator for props since that's only used by a list_for_each_entry_safe in the driver teardown code. Search&replace was done with the below cocci spatch. Note that there's a bunch more places that didn't match and which would need some manual changes, but I've intentially left these out for this mostly automated patch. iterator name drm_for_each_crtc; struct drm_crtc *crtc; struct drm_device *dev; expression head; @@ - list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { + drm_for_each_crtc (crtc, dev) { ... } @@ iterator name drm_for_each_encoder; struct drm_encoder *encoder; struct drm_device *dev; expression head; @@ - list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { + drm_for_each_encoder (encoder, dev) { ... } @@ iterator name drm_for_each_fb; struct drm_framebuffer *fb; struct drm_device *dev; expression head; @@ - list_for_each_entry(fb, &dev->mode_config.fb_list, head) { + drm_for_each_fb (fb, dev) { ... } @@ iterator name drm_for_each_connector; struct drm_connector *connector; struct drm_device *dev; expression head; @@ - list_for_each_entry(connector, &dev->mode_config.connector_list, head) { + drm_for_each_connector (connector, dev) { ... } Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-07-10 05:44:25 +08:00
drm_for_each_connector(connector, dev) {
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
if (!connector->state)
continue;
uses_atomic = true;
if (connector->state->best_encoder != encoder)
continue;
return connector->state->crtc;
}
/* Don't return stale data (e.g. pending async disable). */
if (uses_atomic)
return NULL;
return encoder->crtc;
}
/**
* drm_mode_getencoder - get encoder configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a encoder configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getencoder(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_encoder *enc_resp = data;
struct drm_encoder *encoder;
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
struct drm_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
encoder = drm_encoder_find(dev, enc_resp->encoder_id);
if (!encoder)
return -ENOENT;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
crtc = drm_encoder_get_crtc(encoder);
if (crtc)
enc_resp->crtc_id = crtc->base.id;
else
enc_resp->crtc_id = 0;
drm_modeset_unlock(&dev->mode_config.connection_mutex);
enc_resp->encoder_type = encoder->encoder_type;
enc_resp->encoder_id = encoder->base.id;
enc_resp->possible_crtcs = encoder->possible_crtcs;
enc_resp->possible_clones = encoder->possible_clones;
return 0;
}
/**
* drm_mode_getplane_res - enumerate all plane resources
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Construct a list of plane ids to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getplane_res(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_plane_res *plane_resp = data;
struct drm_mode_config *config;
struct drm_plane *plane;
uint32_t __user *plane_ptr;
int copied = 0;
unsigned num_planes;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
config = &dev->mode_config;
if (file_priv->universal_planes)
num_planes = config->num_total_plane;
else
num_planes = config->num_overlay_plane;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if (num_planes &&
(plane_resp->count_planes >= num_planes)) {
plane_ptr = (uint32_t __user *)(unsigned long)plane_resp->plane_id_ptr;
/* Plane lists are invariant, no locking needed. */
drm_for_each_plane(plane, dev) {
/*
* Unless userspace set the 'universal planes'
* capability bit, only advertise overlays.
*/
if (plane->type != DRM_PLANE_TYPE_OVERLAY &&
!file_priv->universal_planes)
continue;
if (put_user(plane->base.id, plane_ptr + copied))
return -EFAULT;
copied++;
}
}
plane_resp->count_planes = num_planes;
return 0;
}
/**
* drm_mode_getplane - get plane configuration
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Construct a plane configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getplane(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_plane *plane_resp = data;
struct drm_plane *plane;
uint32_t __user *format_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
plane = drm_plane_find(dev, plane_resp->plane_id);
if (!plane)
return -ENOENT;
drm_modeset_lock(&plane->mutex, NULL);
if (plane->crtc)
plane_resp->crtc_id = plane->crtc->base.id;
else
plane_resp->crtc_id = 0;
if (plane->fb)
plane_resp->fb_id = plane->fb->base.id;
else
plane_resp->fb_id = 0;
drm_modeset_unlock(&plane->mutex);
plane_resp->plane_id = plane->base.id;
plane_resp->possible_crtcs = plane->possible_crtcs;
plane_resp->gamma_size = 0;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if (plane->format_count &&
(plane_resp->count_format_types >= plane->format_count)) {
format_ptr = (uint32_t __user *)(unsigned long)plane_resp->format_type_ptr;
if (copy_to_user(format_ptr,
plane->format_types,
sizeof(uint32_t) * plane->format_count)) {
return -EFAULT;
}
}
plane_resp->count_format_types = plane->format_count;
return 0;
}
/**
* drm_plane_check_pixel_format - Check if the plane supports the pixel format
* @plane: plane to check for format support
* @format: the pixel format
*
* Returns:
* Zero of @plane has @format in its list of supported pixel formats, -EINVAL
* otherwise.
*/
int drm_plane_check_pixel_format(const struct drm_plane *plane, u32 format)
{
unsigned int i;
for (i = 0; i < plane->format_count; i++) {
if (format == plane->format_types[i])
return 0;
}
return -EINVAL;
}
static int check_src_coords(uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h,
const struct drm_framebuffer *fb)
{
unsigned int fb_width, fb_height;
fb_width = fb->width << 16;
fb_height = fb->height << 16;
/* Make sure source coordinates are inside the fb. */
if (src_w > fb_width ||
src_x > fb_width - src_w ||
src_h > fb_height ||
src_y > fb_height - src_h) {
DRM_DEBUG_KMS("Invalid source coordinates "
"%u.%06ux%u.%06u+%u.%06u+%u.%06u\n",
src_w >> 16, ((src_w & 0xffff) * 15625) >> 10,
src_h >> 16, ((src_h & 0xffff) * 15625) >> 10,
src_x >> 16, ((src_x & 0xffff) * 15625) >> 10,
src_y >> 16, ((src_y & 0xffff) * 15625) >> 10);
return -ENOSPC;
}
return 0;
}
/*
* setplane_internal - setplane handler for internal callers
*
* Note that we assume an extra reference has already been taken on fb. If the
* update fails, this reference will be dropped before return; if it succeeds,
* the previous framebuffer (if any) will be unreferenced instead.
*
* src_{x,y,w,h} are provided in 16.16 fixed point format
*/
static int __setplane_internal(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int32_t crtc_x, int32_t crtc_y,
uint32_t crtc_w, uint32_t crtc_h,
/* src_{x,y,w,h} values are 16.16 fixed point */
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
int ret = 0;
/* No fb means shut it down */
if (!fb) {
plane->old_fb = plane->fb;
ret = plane->funcs->disable_plane(plane);
if (!ret) {
plane->crtc = NULL;
plane->fb = NULL;
} else {
plane->old_fb = NULL;
}
goto out;
}
/* Check whether this plane is usable on this CRTC */
if (!(plane->possible_crtcs & drm_crtc_mask(crtc))) {
DRM_DEBUG_KMS("Invalid crtc for plane\n");
ret = -EINVAL;
goto out;
}
/* Check whether this plane supports the fb pixel format. */
ret = drm_plane_check_pixel_format(plane, fb->pixel_format);
if (ret) {
DRM_DEBUG_KMS("Invalid pixel format %s\n",
drm_get_format_name(fb->pixel_format));
goto out;
}
drm: Make integer overflow checking cover universal cursor updates (v2) Our legacy SetPlane updates perform integer overflow checking on a plane's destination rectangle in drm_mode_setplane(), and atomic updates handled as part of a drm_atomic_state transaction do the same checking in drm_atomic_plane_check(). However legacy cursor updates that get routed through universal plane interfaces may bypass this overflow checking if the driver's .update_plane is serviced by the transitional plane helpers rather than the full atomic plane helpers. Move the check for destination rectangle integer overflow from the drm_mode_setplane() to __setplane_internal() so that it also covers cursor operations. This fixes an issue first noticed with i915 commit: commit ff42e093e9c9c17a6e1d6aab24875a36795f926e Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Mar 2 16:35:20 2015 +0100 Revert "drm/i915: Switch planes from transitional helpers to full atomic helpers" The above revert switched us from full atomic helpers back to the transitional helpers, and in doing so we lost the overflow checking here for universal cursor updates. Even though such extreme cursor positions are unlikely to actually happen in the wild, we still don't want there to be a change of behavior when drivers switch from transitional helpers to full helpers. v2: Move check from setplane ioctl to setplane_internal rather than adding an additional copy of the checks to the transitional plane helpers. (Daniel) Cc: Daniel Vetter <daniel@ffwll.ch> Testcase: igt/kms_cursor_crc Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=84269 Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-14 02:06:13 +08:00
/* Give drivers some help against integer overflows */
if (crtc_w > INT_MAX ||
crtc_x > INT_MAX - (int32_t) crtc_w ||
crtc_h > INT_MAX ||
crtc_y > INT_MAX - (int32_t) crtc_h) {
DRM_DEBUG_KMS("Invalid CRTC coordinates %ux%u+%d+%d\n",
crtc_w, crtc_h, crtc_x, crtc_y);
ret = -ERANGE;
goto out;
drm: Make integer overflow checking cover universal cursor updates (v2) Our legacy SetPlane updates perform integer overflow checking on a plane's destination rectangle in drm_mode_setplane(), and atomic updates handled as part of a drm_atomic_state transaction do the same checking in drm_atomic_plane_check(). However legacy cursor updates that get routed through universal plane interfaces may bypass this overflow checking if the driver's .update_plane is serviced by the transitional plane helpers rather than the full atomic plane helpers. Move the check for destination rectangle integer overflow from the drm_mode_setplane() to __setplane_internal() so that it also covers cursor operations. This fixes an issue first noticed with i915 commit: commit ff42e093e9c9c17a6e1d6aab24875a36795f926e Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Mar 2 16:35:20 2015 +0100 Revert "drm/i915: Switch planes from transitional helpers to full atomic helpers" The above revert switched us from full atomic helpers back to the transitional helpers, and in doing so we lost the overflow checking here for universal cursor updates. Even though such extreme cursor positions are unlikely to actually happen in the wild, we still don't want there to be a change of behavior when drivers switch from transitional helpers to full helpers. v2: Move check from setplane ioctl to setplane_internal rather than adding an additional copy of the checks to the transitional plane helpers. (Daniel) Cc: Daniel Vetter <daniel@ffwll.ch> Testcase: igt/kms_cursor_crc Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=84269 Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-14 02:06:13 +08:00
}
ret = check_src_coords(src_x, src_y, src_w, src_h, fb);
if (ret)
goto out;
plane->old_fb = plane->fb;
ret = plane->funcs->update_plane(plane, crtc, fb,
crtc_x, crtc_y, crtc_w, crtc_h,
src_x, src_y, src_w, src_h);
if (!ret) {
plane->crtc = crtc;
plane->fb = fb;
fb = NULL;
drm: Simplify fb refcounting rules around ->update_plane The introduction of primary planes has apparently caused a bit of fb refcounting fun for people. That makes it a good time to clean up the arcane rules and slight differences between ->update_plane and ->set_config. The new rules are: - The core holds a reference for both the new and the old fb (if they're non-NULL of course) while calling into the driver through either ->update_plane or ->set_config. - Drivers may not clobber plane->fb if their callback fails. If they do that, they need to store a pointer to the old fb in it again. When calling into the driver plane->fb still points at the current (old) framebuffer. - The core will update the plane->fb pointer on success. Drivers can do that themselves too, but aren't required to any more for the primary plane. - The core will update fb refcounts for the plane->fb pointer, presuming the drivers hold up their end of the bargain. v2: Remove now unused tmpfb (Thierry) v3: Drop broken changes from drm_mode_setplane (Ville). Also polish the commit message a bit. v4: Also fix up the handling of ->disable_plane in drm_plane_force_disable. The issue was that we didn't save plane->fb over the ->disable_plane call. Just paranoia, nothing relies on this. v5: Keep still useful comments about directly calling ->set_config, which I should have done for v4 already. Requested by Matt. Cc: Thierry Reding <treding@nvidia.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-23 23:34:06 +08:00
} else {
plane->old_fb = NULL;
}
out:
if (fb)
drm_framebuffer_unreference(fb);
if (plane->old_fb)
drm_framebuffer_unreference(plane->old_fb);
plane->old_fb = NULL;
return ret;
}
static int setplane_internal(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int32_t crtc_x, int32_t crtc_y,
uint32_t crtc_w, uint32_t crtc_h,
/* src_{x,y,w,h} values are 16.16 fixed point */
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
int ret;
drm_modeset_lock_all(plane->dev);
ret = __setplane_internal(plane, crtc, fb,
crtc_x, crtc_y, crtc_w, crtc_h,
src_x, src_y, src_w, src_h);
drm_modeset_unlock_all(plane->dev);
return ret;
}
/**
* drm_mode_setplane - configure a plane's configuration
* @dev: DRM device
* @data: ioctl data*
* @file_priv: DRM file info
*
* Set plane configuration, including placement, fb, scaling, and other factors.
* Or pass a NULL fb to disable (planes may be disabled without providing a
* valid crtc).
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_setplane(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_set_plane *plane_req = data;
struct drm_plane *plane;
struct drm_crtc *crtc = NULL;
struct drm_framebuffer *fb = NULL;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
/*
* First, find the plane, crtc, and fb objects. If not available,
* we don't bother to call the driver.
*/
plane = drm_plane_find(dev, plane_req->plane_id);
if (!plane) {
DRM_DEBUG_KMS("Unknown plane ID %d\n",
plane_req->plane_id);
return -ENOENT;
}
if (plane_req->fb_id) {
fb = drm_framebuffer_lookup(dev, plane_req->fb_id);
if (!fb) {
DRM_DEBUG_KMS("Unknown framebuffer ID %d\n",
plane_req->fb_id);
return -ENOENT;
}
crtc = drm_crtc_find(dev, plane_req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown crtc ID %d\n",
plane_req->crtc_id);
return -ENOENT;
}
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* setplane_internal will take care of deref'ing either the old or new
* framebuffer depending on success.
*/
drm: Avoid NULL deference when disabling a plane from userspace To disable a plane, userspace passes in an framebuffer id of 0. This causes us to pass CRTC == NULL to setplane_internal, who promptly deferences it to grab the struct drm_device. Oops. [ 1296.467327] BUG: unable to handle kernel NULL pointer dereference at (null) [ 1296.467332] IP: [<c134dc51>] setplane_internal+0x11/0x280 [ 1296.467338] *pde = 00000000 [ 1296.467341] Oops: 0000 [#1] SMP [ 1296.467344] Modules linked in: ccm bnep bluetooth snd_hda_codec_hdmi snd_hda_codec_idt snd_hda_codec_generic snd_hda_intel arc4 iwldvm snd_hda_controller snd_hda_codec mac80211 snd_hwdep snd_seq snd_seq_device snd_pcm snd_timer iwlwifi sdhci_pci snd cfg80211 x86_pkg_temp_thermal hp_wmi sdhci sparse_keymap mmc_core crc32c_intel rfkill microcode hp_accel lpc_ich lis3lv02d wmi mfd_core serio_raw input_polldev soundcore e1000e ptp pps_core [ 1296.467367] CPU: 1 PID: 672 Comm: Xorg Tainted: G W 3.15.0-rc8+ #351 [ 1296.467369] Hardware name: Hewlett-Packard HP ProBook 6360b/1620, BIOS 68SCF Ver. B.42 12/29/2010 [ 1296.467371] task: f423b5c0 ti: c2332000 task.ti: c2332000 [ 1296.467374] EIP: 0060:[<c134dc51>] EFLAGS: 00013286 CPU: 1 [ 1296.467376] EIP is at setplane_internal+0x11/0x280 [ 1296.467378] EAX: 00000000 EBX: c2333e90 ECX: 00000000 EDX: f3165600 [ 1296.467380] ESI: f430f400 EDI: 00000000 EBP: c2333e14 ESP: c2333dd4 [ 1296.467382] DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 [ 1296.467384] CR0: 80050033 CR2: 00000000 CR3: 00159000 CR4: 000407d0 [ 1296.467385] Stack: [ 1296.467387] 000200da 00000002 c2333de8 c15dc4a0 f430f400 c2333e00 c134c54f eeeeeeee [ 1296.467391] f430f400 00000007 f416b480 c2333e14 00000000 c2333e90 f430f400 00000000 [ 1296.467396] c2333e4c c1350aed 00000000 00000000 00000000 00000000 00000000 00000000 [ 1296.467400] Call Trace: [ 1296.467406] [<c15dc4a0>] ? mutex_lock+0x10/0x28 [ 1296.467408] [<c134c54f>] ? _object_find+0x5f/0x90 [ 1296.467413] [<c1350aed>] drm_mode_setplane+0x10d/0x1f0 [ 1296.467416] [<c13509e0>] ? drm_mode_getplane+0x100/0x100 [ 1296.467420] [<c1342e4d>] drm_ioctl+0x1bd/0x4f0 [ 1296.467423] [<c13509e0>] ? drm_mode_getplane+0x100/0x100 [ 1296.467427] [<c111c023>] ? handle_mm_fault+0x5d3/0xb30 [ 1296.467431] [<c1118f31>] ? tlb_finish_mmu+0x11/0x40 [ 1296.467435] [<c1342c90>] ? drm_ioctl_flags+0x40/0x40 [ 1296.467438] [<c11593d2>] do_vfs_ioctl+0x2f2/0x4d0 [ 1296.467443] [<c1226512>] ? inode_has_perm.isra.32+0x32/0x40 [ 1296.467446] [<c122662f>] ? file_has_perm+0x7f/0x90 [ 1296.467449] [<c1226fec>] ? selinux_file_ioctl+0x4c/0xf0 [ 1296.467452] [<c1159610>] SyS_ioctl+0x60/0x90 [ 1296.467456] [<c15e578c>] sysenter_do_call+0x12/0x22 [ 1296.467457] Code: 3f cf ff eb dd ba 3f 00 00 00 b8 d9 c9 7f c1 e8 e6 3f cf ff eb d9 8d 74 26 00 55 89 e5 57 56 53 83 ec 34 66 66 66 66 90 89 45 f0 <8b> 00 85 c9 89 d6 89 cb 89 45 ec 0f 84 16 01 00 00 8b 45 f0 e8 [ 1296.467485] EIP: [<c134dc51>] setplane_internal+0x11/0x280 SS:ESP 0068:c2 Fixes regression from commit b02fd7fd8a541c3d590bfdda23365a927b507ceb Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) While at it move the plane parameter to the first position in setplane_internal since that's the main object we're manipulating. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Pallavi G<pallavi.g@intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> [danvet: Add note about parameter reordering.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-13 22:22:28 +08:00
return setplane_internal(plane, crtc, fb,
plane_req->crtc_x, plane_req->crtc_y,
plane_req->crtc_w, plane_req->crtc_h,
plane_req->src_x, plane_req->src_y,
plane_req->src_w, plane_req->src_h);
}
/**
* drm_mode_set_config_internal - helper to call ->set_config
* @set: modeset config to set
*
* This is a little helper to wrap internal calls to the ->set_config driver
* interface. The only thing it adds is correct refcounting dance.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_set_config_internal(struct drm_mode_set *set)
{
struct drm_crtc *crtc = set->crtc;
struct drm_framebuffer *fb;
struct drm_crtc *tmp;
int ret;
/*
* NOTE: ->set_config can also disable other crtcs (if we steal all
* connectors from it), hence we need to refcount the fbs across all
* crtcs. Atomic modeset will have saner semantics ...
*/
drm_for_each_crtc(tmp, crtc->dev)
tmp->primary->old_fb = tmp->primary->fb;
fb = set->fb;
ret = crtc->funcs->set_config(set);
if (ret == 0) {
crtc->primary->crtc = crtc;
drm: Simplify fb refcounting rules around ->update_plane The introduction of primary planes has apparently caused a bit of fb refcounting fun for people. That makes it a good time to clean up the arcane rules and slight differences between ->update_plane and ->set_config. The new rules are: - The core holds a reference for both the new and the old fb (if they're non-NULL of course) while calling into the driver through either ->update_plane or ->set_config. - Drivers may not clobber plane->fb if their callback fails. If they do that, they need to store a pointer to the old fb in it again. When calling into the driver plane->fb still points at the current (old) framebuffer. - The core will update the plane->fb pointer on success. Drivers can do that themselves too, but aren't required to any more for the primary plane. - The core will update fb refcounts for the plane->fb pointer, presuming the drivers hold up their end of the bargain. v2: Remove now unused tmpfb (Thierry) v3: Drop broken changes from drm_mode_setplane (Ville). Also polish the commit message a bit. v4: Also fix up the handling of ->disable_plane in drm_plane_force_disable. The issue was that we didn't save plane->fb over the ->disable_plane call. Just paranoia, nothing relies on this. v5: Keep still useful comments about directly calling ->set_config, which I should have done for v4 already. Requested by Matt. Cc: Thierry Reding <treding@nvidia.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-23 23:34:06 +08:00
crtc->primary->fb = fb;
}
drm_for_each_crtc(tmp, crtc->dev) {
if (tmp->primary->fb)
drm_framebuffer_reference(tmp->primary->fb);
if (tmp->primary->old_fb)
drm_framebuffer_unreference(tmp->primary->old_fb);
tmp->primary->old_fb = NULL;
}
return ret;
}
EXPORT_SYMBOL(drm_mode_set_config_internal);
/**
* drm_crtc_get_hv_timing - Fetches hdisplay/vdisplay for given mode
* @mode: mode to query
* @hdisplay: hdisplay value to fill in
* @vdisplay: vdisplay value to fill in
*
* The vdisplay value will be doubled if the specified mode is a stereo mode of
* the appropriate layout.
*/
void drm_crtc_get_hv_timing(const struct drm_display_mode *mode,
int *hdisplay, int *vdisplay)
{
struct drm_display_mode adjusted;
drm_mode_copy(&adjusted, mode);
drm_mode_set_crtcinfo(&adjusted, CRTC_STEREO_DOUBLE_ONLY);
*hdisplay = adjusted.crtc_hdisplay;
*vdisplay = adjusted.crtc_vdisplay;
}
EXPORT_SYMBOL(drm_crtc_get_hv_timing);
/**
* drm_crtc_check_viewport - Checks that a framebuffer is big enough for the
* CRTC viewport
* @crtc: CRTC that framebuffer will be displayed on
* @x: x panning
* @y: y panning
* @mode: mode that framebuffer will be displayed under
* @fb: framebuffer to check size of
*/
int drm_crtc_check_viewport(const struct drm_crtc *crtc,
int x, int y,
const struct drm_display_mode *mode,
const struct drm_framebuffer *fb)
{
int hdisplay, vdisplay;
drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
if (crtc->state &&
crtc->primary->state->rotation & (BIT(DRM_ROTATE_90) |
BIT(DRM_ROTATE_270)))
swap(hdisplay, vdisplay);
return check_src_coords(x << 16, y << 16,
hdisplay << 16, vdisplay << 16, fb);
}
EXPORT_SYMBOL(drm_crtc_check_viewport);
/**
* drm_mode_setcrtc - set CRTC configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Build a new CRTC configuration based on user request.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_setcrtc(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_config *config = &dev->mode_config;
struct drm_mode_crtc *crtc_req = data;
struct drm_crtc *crtc;
struct drm_connector **connector_set = NULL, *connector;
struct drm_framebuffer *fb = NULL;
struct drm_display_mode *mode = NULL;
struct drm_mode_set set;
uint32_t __user *set_connectors_ptr;
int ret;
int i;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
/*
* Universal plane src offsets are only 16.16, prevent havoc for
* drivers using universal plane code internally.
*/
if (crtc_req->x & 0xffff0000 || crtc_req->y & 0xffff0000)
return -ERANGE;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown CRTC ID %d\n", crtc_req->crtc_id);
ret = -ENOENT;
goto out;
}
DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
if (crtc_req->mode_valid) {
/* If we have a mode we need a framebuffer. */
/* If we pass -1, set the mode with the currently bound fb */
if (crtc_req->fb_id == -1) {
if (!crtc->primary->fb) {
DRM_DEBUG_KMS("CRTC doesn't have current FB\n");
ret = -EINVAL;
goto out;
}
fb = crtc->primary->fb;
/* Make refcounting symmetric with the lookup path. */
drm_framebuffer_reference(fb);
} else {
fb = drm_framebuffer_lookup(dev, crtc_req->fb_id);
if (!fb) {
DRM_DEBUG_KMS("Unknown FB ID%d\n",
crtc_req->fb_id);
ret = -ENOENT;
goto out;
}
}
mode = drm_mode_create(dev);
if (!mode) {
ret = -ENOMEM;
goto out;
}
ret = drm_mode_convert_umode(mode, &crtc_req->mode);
if (ret) {
DRM_DEBUG_KMS("Invalid mode\n");
goto out;
}
/*
* Check whether the primary plane supports the fb pixel format.
* Drivers not implementing the universal planes API use a
* default formats list provided by the DRM core which doesn't
* match real hardware capabilities. Skip the check in that
* case.
*/
if (!crtc->primary->format_default) {
ret = drm_plane_check_pixel_format(crtc->primary,
fb->pixel_format);
if (ret) {
DRM_DEBUG_KMS("Invalid pixel format %s\n",
drm_get_format_name(fb->pixel_format));
goto out;
}
}
ret = drm_crtc_check_viewport(crtc, crtc_req->x, crtc_req->y,
mode, fb);
if (ret)
goto out;
}
if (crtc_req->count_connectors == 0 && mode) {
DRM_DEBUG_KMS("Count connectors is 0 but mode set\n");
ret = -EINVAL;
goto out;
}
if (crtc_req->count_connectors > 0 && (!mode || !fb)) {
DRM_DEBUG_KMS("Count connectors is %d but no mode or fb set\n",
crtc_req->count_connectors);
ret = -EINVAL;
goto out;
}
if (crtc_req->count_connectors > 0) {
u32 out_id;
/* Avoid unbounded kernel memory allocation */
if (crtc_req->count_connectors > config->num_connector) {
ret = -EINVAL;
goto out;
}
connector_set = kmalloc_array(crtc_req->count_connectors,
sizeof(struct drm_connector *),
GFP_KERNEL);
if (!connector_set) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < crtc_req->count_connectors; i++) {
connector_set[i] = NULL;
set_connectors_ptr = (uint32_t __user *)(unsigned long)crtc_req->set_connectors_ptr;
if (get_user(out_id, &set_connectors_ptr[i])) {
ret = -EFAULT;
goto out;
}
connector = drm_connector_lookup(dev, out_id);
if (!connector) {
DRM_DEBUG_KMS("Connector id %d unknown\n",
out_id);
ret = -ENOENT;
goto out;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id,
connector->name);
connector_set[i] = connector;
}
}
set.crtc = crtc;
set.x = crtc_req->x;
set.y = crtc_req->y;
set.mode = mode;
set.connectors = connector_set;
set.num_connectors = crtc_req->count_connectors;
set.fb = fb;
ret = drm_mode_set_config_internal(&set);
out:
if (fb)
drm_framebuffer_unreference(fb);
if (connector_set) {
for (i = 0; i < crtc_req->count_connectors; i++) {
if (connector_set[i])
drm_connector_unreference(connector_set[i]);
}
}
kfree(connector_set);
drm_mode_destroy(dev, mode);
drm_modeset_unlock_all(dev);
return ret;
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/**
* drm_mode_cursor_universal - translate legacy cursor ioctl call into a
* universal plane handler call
* @crtc: crtc to update cursor for
* @req: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Legacy cursor ioctl's work directly with driver buffer handles. To
* translate legacy ioctl calls into universal plane handler calls, we need to
* wrap the native buffer handle in a drm_framebuffer.
*
* Note that we assume any handle passed to the legacy ioctls was a 32-bit ARGB
* buffer with a pitch of 4*width; the universal plane interface should be used
* directly in cases where the hardware can support other buffer settings and
* userspace wants to make use of these capabilities.
*
* Returns:
* Zero on success, negative errno on failure.
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
*/
static int drm_mode_cursor_universal(struct drm_crtc *crtc,
struct drm_mode_cursor2 *req,
struct drm_file *file_priv)
{
struct drm_device *dev = crtc->dev;
struct drm_framebuffer *fb = NULL;
struct drm_mode_fb_cmd2 fbreq = {
.width = req->width,
.height = req->height,
.pixel_format = DRM_FORMAT_ARGB8888,
.pitches = { req->width * 4 },
.handles = { req->handle },
};
int32_t crtc_x, crtc_y;
uint32_t crtc_w = 0, crtc_h = 0;
uint32_t src_w = 0, src_h = 0;
int ret = 0;
BUG_ON(!crtc->cursor);
WARN_ON(crtc->cursor->crtc != crtc && crtc->cursor->crtc != NULL);
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* Obtain fb we'll be using (either new or existing) and take an extra
* reference to it if fb != null. setplane will take care of dropping
* the reference if the plane update fails.
*/
if (req->flags & DRM_MODE_CURSOR_BO) {
if (req->handle) {
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
fb = internal_framebuffer_create(dev, &fbreq, file_priv);
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to wrap cursor buffer in drm framebuffer\n");
return PTR_ERR(fb);
}
fb->hot_x = req->hot_x;
fb->hot_y = req->hot_y;
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
} else {
fb = NULL;
}
} else {
fb = crtc->cursor->fb;
if (fb)
drm_framebuffer_reference(fb);
}
if (req->flags & DRM_MODE_CURSOR_MOVE) {
crtc_x = req->x;
crtc_y = req->y;
} else {
crtc_x = crtc->cursor_x;
crtc_y = crtc->cursor_y;
}
if (fb) {
crtc_w = fb->width;
crtc_h = fb->height;
src_w = fb->width << 16;
src_h = fb->height << 16;
}
/*
* setplane_internal will take care of deref'ing either the old or new
* framebuffer depending on success.
*/
ret = __setplane_internal(crtc->cursor, crtc, fb,
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
crtc_x, crtc_y, crtc_w, crtc_h,
0, 0, src_w, src_h);
/* Update successful; save new cursor position, if necessary */
if (ret == 0 && req->flags & DRM_MODE_CURSOR_MOVE) {
crtc->cursor_x = req->x;
crtc->cursor_y = req->y;
}
return ret;
}
static int drm_mode_cursor_common(struct drm_device *dev,
struct drm_mode_cursor2 *req,
struct drm_file *file_priv)
{
struct drm_crtc *crtc;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
if (!req->flags || (~DRM_MODE_CURSOR_FLAGS & req->flags))
return -EINVAL;
crtc = drm_crtc_find(dev, req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown CRTC ID %d\n", req->crtc_id);
return -ENOENT;
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* If this crtc has a universal cursor plane, call that plane's update
* handler rather than using legacy cursor handlers.
*/
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_crtc(crtc, crtc->cursor);
if (crtc->cursor) {
ret = drm_mode_cursor_universal(crtc, req, file_priv);
goto out;
}
if (req->flags & DRM_MODE_CURSOR_BO) {
if (!crtc->funcs->cursor_set && !crtc->funcs->cursor_set2) {
ret = -ENXIO;
goto out;
}
/* Turns off the cursor if handle is 0 */
if (crtc->funcs->cursor_set2)
ret = crtc->funcs->cursor_set2(crtc, file_priv, req->handle,
req->width, req->height, req->hot_x, req->hot_y);
else
ret = crtc->funcs->cursor_set(crtc, file_priv, req->handle,
req->width, req->height);
}
if (req->flags & DRM_MODE_CURSOR_MOVE) {
if (crtc->funcs->cursor_move) {
ret = crtc->funcs->cursor_move(crtc, req->x, req->y);
} else {
ret = -EFAULT;
goto out;
}
}
out:
drm_modeset_unlock_crtc(crtc);
return ret;
}
/**
* drm_mode_cursor_ioctl - set CRTC's cursor configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Set the cursor configuration based on user request.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_cursor_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_cursor *req = data;
struct drm_mode_cursor2 new_req;
memcpy(&new_req, req, sizeof(struct drm_mode_cursor));
new_req.hot_x = new_req.hot_y = 0;
return drm_mode_cursor_common(dev, &new_req, file_priv);
}
/**
* drm_mode_cursor2_ioctl - set CRTC's cursor configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Set the cursor configuration based on user request. This implements the 2nd
* version of the cursor ioctl, which allows userspace to additionally specify
* the hotspot of the pointer.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_cursor2_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_cursor2 *req = data;
return drm_mode_cursor_common(dev, req, file_priv);
}
/**
* drm_mode_legacy_fb_format - compute drm fourcc code from legacy description
* @bpp: bits per pixels
* @depth: bit depth per pixel
*
* Computes a drm fourcc pixel format code for the given @bpp/@depth values.
* Useful in fbdev emulation code, since that deals in those values.
*/
uint32_t drm_mode_legacy_fb_format(uint32_t bpp, uint32_t depth)
{
uint32_t fmt;
switch (bpp) {
case 8:
fmt = DRM_FORMAT_C8;
break;
case 16:
if (depth == 15)
fmt = DRM_FORMAT_XRGB1555;
else
fmt = DRM_FORMAT_RGB565;
break;
case 24:
fmt = DRM_FORMAT_RGB888;
break;
case 32:
if (depth == 24)
fmt = DRM_FORMAT_XRGB8888;
else if (depth == 30)
fmt = DRM_FORMAT_XRGB2101010;
else
fmt = DRM_FORMAT_ARGB8888;
break;
default:
DRM_ERROR("bad bpp, assuming x8r8g8b8 pixel format\n");
fmt = DRM_FORMAT_XRGB8888;
break;
}
return fmt;
}
EXPORT_SYMBOL(drm_mode_legacy_fb_format);
/**
* drm_mode_addfb - add an FB to the graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Add a new FB to the specified CRTC, given a user request. This is the
* original addfb ioctl which only supported RGB formats.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_addfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_fb_cmd *or = data;
struct drm_mode_fb_cmd2 r = {};
int ret;
/* convert to new format and call new ioctl */
r.fb_id = or->fb_id;
r.width = or->width;
r.height = or->height;
r.pitches[0] = or->pitch;
r.pixel_format = drm_mode_legacy_fb_format(or->bpp, or->depth);
r.handles[0] = or->handle;
ret = drm_mode_addfb2(dev, &r, file_priv);
if (ret)
return ret;
or->fb_id = r.fb_id;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
return 0;
}
static int format_check(const struct drm_mode_fb_cmd2 *r)
{
uint32_t format = r->pixel_format & ~DRM_FORMAT_BIG_ENDIAN;
switch (format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB332:
case DRM_FORMAT_BGR233:
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_XBGR4444:
case DRM_FORMAT_RGBX4444:
case DRM_FORMAT_BGRX4444:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_ABGR4444:
case DRM_FORMAT_RGBA4444:
case DRM_FORMAT_BGRA4444:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XBGR1555:
case DRM_FORMAT_RGBX5551:
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_ABGR1555:
case DRM_FORMAT_RGBA5551:
case DRM_FORMAT_BGRA5551:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGBX8888:
case DRM_FORMAT_BGRX8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_BGRA8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_RGBX1010102:
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_ABGR2101010:
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_BGRA1010102:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
case DRM_FORMAT_AYUV:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
case DRM_FORMAT_NV24:
case DRM_FORMAT_NV42:
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV444:
case DRM_FORMAT_YVU444:
return 0;
default:
DRM_DEBUG_KMS("invalid pixel format %s\n",
drm_get_format_name(r->pixel_format));
return -EINVAL;
}
}
static int framebuffer_check(const struct drm_mode_fb_cmd2 *r)
{
int ret, hsub, vsub, num_planes, i;
ret = format_check(r);
if (ret) {
DRM_DEBUG_KMS("bad framebuffer format %s\n",
drm_get_format_name(r->pixel_format));
return ret;
}
hsub = drm_format_horz_chroma_subsampling(r->pixel_format);
vsub = drm_format_vert_chroma_subsampling(r->pixel_format);
num_planes = drm_format_num_planes(r->pixel_format);
if (r->width == 0 || r->width % hsub) {
DRM_DEBUG_KMS("bad framebuffer width %u\n", r->width);
return -EINVAL;
}
if (r->height == 0 || r->height % vsub) {
DRM_DEBUG_KMS("bad framebuffer height %u\n", r->height);
return -EINVAL;
}
for (i = 0; i < num_planes; i++) {
unsigned int width = r->width / (i != 0 ? hsub : 1);
unsigned int height = r->height / (i != 0 ? vsub : 1);
unsigned int cpp = drm_format_plane_cpp(r->pixel_format, i);
if (!r->handles[i]) {
DRM_DEBUG_KMS("no buffer object handle for plane %d\n", i);
return -EINVAL;
}
if ((uint64_t) width * cpp > UINT_MAX)
return -ERANGE;
if ((uint64_t) height * r->pitches[i] + r->offsets[i] > UINT_MAX)
return -ERANGE;
if (r->pitches[i] < width * cpp) {
DRM_DEBUG_KMS("bad pitch %u for plane %d\n", r->pitches[i], i);
return -EINVAL;
}
drm: add support for tiled/compressed/etc modifier in addfb2 In DRM/KMS we are lacking a good way to deal with tiled/compressed formats. Especially in the case of dmabuf/prime buffer sharing, where we cannot always rely on under-the-hood flags passed to driver specific gem-create ioctl to pass around these extra flags. The proposal is to add a per-plane format modifier. This allows to, if necessary, use different tiling patters for sub-sampled planes, etc. The format modifiers are added at the end of the ioctl struct, so for legacy userspace it will be zero padded. v1: original v1.5: increase modifier to 64b v2: Incorporate review comments from the big thread, plus a few more. - Add a getcap so that userspace doesn't have to jump through hoops. - Allow modifiers only when a flag is set. That way drivers know when they're dealing with old userspace and need to fish out e.g. tiling from other information. - After rolling out checks for ->modifier to all drivers I've decided that this is way too fragile and needs an explicit opt-in flag. So do that instead. - Add a define (just for documentation really) for the "NONE" modifier. Imo we don't need to add mask #defines since drivers really should only do exact matches against values defined with fourcc_mod_code. - Drop the Samsung tiling modifier on Rob's request since he's not yet sure whether that one is accurate. v3: - Also add a new ->modifier[] array to struct drm_framebuffer and fill it in drm_helper_mode_fill_fb_struct. Requested by Tvrkto Uruslin. - Remove TODO in comment and add code comment that modifiers should be properly documented, requested by Rob. Cc: Rob Clark <robdclark@gmail.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Daniel Stone <daniel@fooishbar.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Michel Dänzer <michel@daenzer.net> Signed-off-by: Rob Clark <robdclark@gmail.com> (v1.5) Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Stone <daniels@collabora.com> Acked-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-02-05 22:41:52 +08:00
if (r->modifier[i] && !(r->flags & DRM_MODE_FB_MODIFIERS)) {
DRM_DEBUG_KMS("bad fb modifier %llu for plane %d\n",
r->modifier[i], i);
return -EINVAL;
}
/* modifier specific checks: */
switch (r->modifier[i]) {
case DRM_FORMAT_MOD_SAMSUNG_64_32_TILE:
/* NOTE: the pitch restriction may be lifted later if it turns
* out that no hw has this restriction:
*/
if (r->pixel_format != DRM_FORMAT_NV12 ||
width % 128 || height % 32 ||
r->pitches[i] % 128) {
DRM_DEBUG_KMS("bad modifier data for plane %d\n", i);
return -EINVAL;
}
break;
default:
break;
}
}
for (i = num_planes; i < 4; i++) {
if (r->modifier[i]) {
DRM_DEBUG_KMS("non-zero modifier for unused plane %d\n", i);
return -EINVAL;
}
/* Pre-FB_MODIFIERS userspace didn't clear the structs properly. */
if (!(r->flags & DRM_MODE_FB_MODIFIERS))
continue;
if (r->handles[i]) {
DRM_DEBUG_KMS("buffer object handle for unused plane %d\n", i);
return -EINVAL;
}
if (r->pitches[i]) {
DRM_DEBUG_KMS("non-zero pitch for unused plane %d\n", i);
return -EINVAL;
}
if (r->offsets[i]) {
DRM_DEBUG_KMS("non-zero offset for unused plane %d\n", i);
return -EINVAL;
}
}
return 0;
}
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
static struct drm_framebuffer *
internal_framebuffer_create(struct drm_device *dev,
const struct drm_mode_fb_cmd2 *r,
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
struct drm_file *file_priv)
{
struct drm_mode_config *config = &dev->mode_config;
struct drm_framebuffer *fb;
int ret;
drm: add support for tiled/compressed/etc modifier in addfb2 In DRM/KMS we are lacking a good way to deal with tiled/compressed formats. Especially in the case of dmabuf/prime buffer sharing, where we cannot always rely on under-the-hood flags passed to driver specific gem-create ioctl to pass around these extra flags. The proposal is to add a per-plane format modifier. This allows to, if necessary, use different tiling patters for sub-sampled planes, etc. The format modifiers are added at the end of the ioctl struct, so for legacy userspace it will be zero padded. v1: original v1.5: increase modifier to 64b v2: Incorporate review comments from the big thread, plus a few more. - Add a getcap so that userspace doesn't have to jump through hoops. - Allow modifiers only when a flag is set. That way drivers know when they're dealing with old userspace and need to fish out e.g. tiling from other information. - After rolling out checks for ->modifier to all drivers I've decided that this is way too fragile and needs an explicit opt-in flag. So do that instead. - Add a define (just for documentation really) for the "NONE" modifier. Imo we don't need to add mask #defines since drivers really should only do exact matches against values defined with fourcc_mod_code. - Drop the Samsung tiling modifier on Rob's request since he's not yet sure whether that one is accurate. v3: - Also add a new ->modifier[] array to struct drm_framebuffer and fill it in drm_helper_mode_fill_fb_struct. Requested by Tvrkto Uruslin. - Remove TODO in comment and add code comment that modifiers should be properly documented, requested by Rob. Cc: Rob Clark <robdclark@gmail.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Daniel Stone <daniel@fooishbar.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Michel Dänzer <michel@daenzer.net> Signed-off-by: Rob Clark <robdclark@gmail.com> (v1.5) Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Stone <daniels@collabora.com> Acked-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-02-05 22:41:52 +08:00
if (r->flags & ~(DRM_MODE_FB_INTERLACED | DRM_MODE_FB_MODIFIERS)) {
DRM_DEBUG_KMS("bad framebuffer flags 0x%08x\n", r->flags);
return ERR_PTR(-EINVAL);
}
if ((config->min_width > r->width) || (r->width > config->max_width)) {
DRM_DEBUG_KMS("bad framebuffer width %d, should be >= %d && <= %d\n",
r->width, config->min_width, config->max_width);
return ERR_PTR(-EINVAL);
}
if ((config->min_height > r->height) || (r->height > config->max_height)) {
DRM_DEBUG_KMS("bad framebuffer height %d, should be >= %d && <= %d\n",
r->height, config->min_height, config->max_height);
return ERR_PTR(-EINVAL);
}
drm: add support for tiled/compressed/etc modifier in addfb2 In DRM/KMS we are lacking a good way to deal with tiled/compressed formats. Especially in the case of dmabuf/prime buffer sharing, where we cannot always rely on under-the-hood flags passed to driver specific gem-create ioctl to pass around these extra flags. The proposal is to add a per-plane format modifier. This allows to, if necessary, use different tiling patters for sub-sampled planes, etc. The format modifiers are added at the end of the ioctl struct, so for legacy userspace it will be zero padded. v1: original v1.5: increase modifier to 64b v2: Incorporate review comments from the big thread, plus a few more. - Add a getcap so that userspace doesn't have to jump through hoops. - Allow modifiers only when a flag is set. That way drivers know when they're dealing with old userspace and need to fish out e.g. tiling from other information. - After rolling out checks for ->modifier to all drivers I've decided that this is way too fragile and needs an explicit opt-in flag. So do that instead. - Add a define (just for documentation really) for the "NONE" modifier. Imo we don't need to add mask #defines since drivers really should only do exact matches against values defined with fourcc_mod_code. - Drop the Samsung tiling modifier on Rob's request since he's not yet sure whether that one is accurate. v3: - Also add a new ->modifier[] array to struct drm_framebuffer and fill it in drm_helper_mode_fill_fb_struct. Requested by Tvrkto Uruslin. - Remove TODO in comment and add code comment that modifiers should be properly documented, requested by Rob. Cc: Rob Clark <robdclark@gmail.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Daniel Stone <daniel@fooishbar.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Michel Dänzer <michel@daenzer.net> Signed-off-by: Rob Clark <robdclark@gmail.com> (v1.5) Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Stone <daniels@collabora.com> Acked-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2015-02-05 22:41:52 +08:00
if (r->flags & DRM_MODE_FB_MODIFIERS &&
!dev->mode_config.allow_fb_modifiers) {
DRM_DEBUG_KMS("driver does not support fb modifiers\n");
return ERR_PTR(-EINVAL);
}
ret = framebuffer_check(r);
if (ret)
return ERR_PTR(ret);
fb = dev->mode_config.funcs->fb_create(dev, file_priv, r);
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("could not create framebuffer\n");
return fb;
}
return fb;
}
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
/**
* drm_mode_addfb2 - add an FB to the graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Add a new FB to the specified CRTC, given a user request with format. This is
* the 2nd version of the addfb ioctl, which supports multi-planar framebuffers
* and uses fourcc codes as pixel format specifiers.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_addfb2(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
struct drm_mode_fb_cmd2 *r = data;
struct drm_framebuffer *fb;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
fb = internal_framebuffer_create(dev, r, file_priv);
if (IS_ERR(fb))
return PTR_ERR(fb);
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
DRM_DEBUG_KMS("[FB:%d]\n", fb->base.id);
r->fb_id = fb->base.id;
/* Transfer ownership to the filp for reaping on close */
mutex_lock(&file_priv->fbs_lock);
drm: Don't assign fbs for universal cursor support to files The internal framebuffers we create to remap legacy cursor ioctls to plane operations for the universal plane support shouldn't be linke to the file like normal userspace framebuffers. This bug goes back to the original universal cursor plane support introduced in commit 161d0dc1dccb17ff7a38f462c7c0d4ef8bcc5662 Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) The isn't too disastrous since fbs are small, we only create one when the cursor bo gets changed and ultimately they'll be reaped when the window server restarts. Conceptually we'd want to just pass NULL for file_priv when creating it, but the driver needs the file to lookup the underlying buffer object for cursor id. Instead let's move the file_priv linking out of add_framebuffer_internal() into the addfb ioctl implementation, which is the only place it is needed. And also rename the function for a more accurate since it only creates the fb, but doesn't add it anywhere. Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> (fix & commit msg) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (provider of lipstick) Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Rob Clark <robdclark@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dave Airlie <airlied@redhat.com>
2015-02-25 21:45:26 +08:00
list_add(&fb->filp_head, &file_priv->fbs);
mutex_unlock(&file_priv->fbs_lock);
return 0;
}
struct drm_mode_rmfb_work {
struct work_struct work;
struct list_head fbs;
};
static void drm_mode_rmfb_work_fn(struct work_struct *w)
{
struct drm_mode_rmfb_work *arg = container_of(w, typeof(*arg), work);
while (!list_empty(&arg->fbs)) {
struct drm_framebuffer *fb =
list_first_entry(&arg->fbs, typeof(*fb), filp_head);
list_del_init(&fb->filp_head);
drm_framebuffer_remove(fb);
}
}
/**
* drm_mode_rmfb - remove an FB from the configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Remove the FB specified by the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_rmfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_framebuffer *fb = NULL;
struct drm_framebuffer *fbl = NULL;
uint32_t *id = data;
int found = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = drm_framebuffer_lookup(dev, *id);
if (!fb)
return -ENOENT;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&file_priv->fbs_lock);
list_for_each_entry(fbl, &file_priv->fbs, filp_head)
if (fb == fbl)
found = 1;
if (!found) {
mutex_unlock(&file_priv->fbs_lock);
goto fail_unref;
}
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
list_del_init(&fb->filp_head);
mutex_unlock(&file_priv->fbs_lock);
/* drop the reference we picked up in framebuffer lookup */
drm_framebuffer_unreference(fb);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
/*
* we now own the reference that was stored in the fbs list
*
* drm_framebuffer_remove may fail with -EINTR on pending signals,
* so run this in a separate stack as there's no way to correctly
* handle this after the fb is already removed from the lookup table.
*/
if (drm_framebuffer_read_refcount(fb) > 1) {
struct drm_mode_rmfb_work arg;
INIT_WORK_ONSTACK(&arg.work, drm_mode_rmfb_work_fn);
INIT_LIST_HEAD(&arg.fbs);
list_add_tail(&fb->filp_head, &arg.fbs);
schedule_work(&arg.work);
flush_work(&arg.work);
destroy_work_on_stack(&arg.work);
} else
drm_framebuffer_unreference(fb);
return 0;
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
fail_unref:
drm_framebuffer_unreference(fb);
return -ENOENT;
}
/**
* drm_mode_getfb - get FB info
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Lookup the FB given its ID and return info about it.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_fb_cmd *r = data;
struct drm_framebuffer *fb;
int ret;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = drm_framebuffer_lookup(dev, r->fb_id);
if (!fb)
return -ENOENT;
r->height = fb->height;
r->width = fb->width;
r->depth = fb->depth;
r->bpp = fb->bits_per_pixel;
r->pitch = fb->pitches[0];
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
if (fb->funcs->create_handle) {
if (drm_is_current_master(file_priv) || capable(CAP_SYS_ADMIN) ||
drm_is_control_client(file_priv)) {
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
ret = fb->funcs->create_handle(fb, file_priv,
&r->handle);
} else {
/* GET_FB() is an unprivileged ioctl so we must not
* return a buffer-handle to non-master processes! For
* backwards-compatibility reasons, we cannot make
* GET_FB() privileged, so just return an invalid handle
* for non-masters. */
r->handle = 0;
ret = 0;
}
} else {
ret = -ENODEV;
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
}
drm_framebuffer_unreference(fb);
return ret;
}
/**
* drm_mode_dirtyfb_ioctl - flush frontbuffer rendering on an FB
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Lookup the FB and flush out the damaged area supplied by userspace as a clip
* rectangle list. Generic userspace which does frontbuffer rendering must call
* this ioctl to flush out the changes on manual-update display outputs, e.g.
* usb display-link, mipi manual update panels or edp panel self refresh modes.
*
* Modesetting drivers which always update the frontbuffer do not need to
* implement the corresponding ->dirty framebuffer callback.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_dirtyfb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_clip_rect __user *clips_ptr;
struct drm_clip_rect *clips = NULL;
struct drm_mode_fb_dirty_cmd *r = data;
struct drm_framebuffer *fb;
unsigned flags;
int num_clips;
int ret;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = drm_framebuffer_lookup(dev, r->fb_id);
if (!fb)
return -ENOENT;
num_clips = r->num_clips;
clips_ptr = (struct drm_clip_rect __user *)(unsigned long)r->clips_ptr;
if (!num_clips != !clips_ptr) {
ret = -EINVAL;
goto out_err1;
}
flags = DRM_MODE_FB_DIRTY_FLAGS & r->flags;
/* If userspace annotates copy, clips must come in pairs */
if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY && (num_clips % 2)) {
ret = -EINVAL;
goto out_err1;
}
if (num_clips && clips_ptr) {
if (num_clips < 0 || num_clips > DRM_MODE_FB_DIRTY_MAX_CLIPS) {
ret = -EINVAL;
goto out_err1;
}
clips = kcalloc(num_clips, sizeof(*clips), GFP_KERNEL);
if (!clips) {
ret = -ENOMEM;
goto out_err1;
}
ret = copy_from_user(clips, clips_ptr,
num_clips * sizeof(*clips));
if (ret) {
ret = -EFAULT;
goto out_err2;
}
}
if (fb->funcs->dirty) {
ret = fb->funcs->dirty(fb, file_priv, flags, r->color,
clips, num_clips);
} else {
ret = -ENOSYS;
}
out_err2:
kfree(clips);
out_err1:
drm_framebuffer_unreference(fb);
return ret;
}
/**
* drm_fb_release - remove and free the FBs on this file
* @priv: drm file for the ioctl
*
* Destroy all the FBs associated with @filp.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
void drm_fb_release(struct drm_file *priv)
{
struct drm_framebuffer *fb, *tfb;
struct drm_mode_rmfb_work arg;
INIT_LIST_HEAD(&arg.fbs);
/*
* When the file gets released that means no one else can access the fb
* list any more, so no need to grab fpriv->fbs_lock. And we need to
* avoid upsetting lockdep since the universal cursor code adds a
* framebuffer while holding mutex locks.
*
* Note that a real deadlock between fpriv->fbs_lock and the modeset
* locks is impossible here since no one else but this function can get
* at it any more.
*/
list_for_each_entry_safe(fb, tfb, &priv->fbs, filp_head) {
if (drm_framebuffer_read_refcount(fb) > 1) {
list_move_tail(&fb->filp_head, &arg.fbs);
} else {
list_del_init(&fb->filp_head);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
/* This drops the fpriv->fbs reference. */
drm_framebuffer_unreference(fb);
}
}
if (!list_empty(&arg.fbs)) {
INIT_WORK_ONSTACK(&arg.work, drm_mode_rmfb_work_fn);
schedule_work(&arg.work);
flush_work(&arg.work);
destroy_work_on_stack(&arg.work);
}
}
static bool drm_property_type_valid(struct drm_property *property)
{
if (property->flags & DRM_MODE_PROP_EXTENDED_TYPE)
return !(property->flags & DRM_MODE_PROP_LEGACY_TYPE);
return !!(property->flags & DRM_MODE_PROP_LEGACY_TYPE);
}
/**
* drm_property_create - create a new property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @num_values: number of pre-defined values
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Note that the DRM core keeps a per-device list of properties and that, if
* drm_mode_config_cleanup() is called, it will destroy all properties created
* by the driver.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create(struct drm_device *dev, int flags,
const char *name, int num_values)
{
struct drm_property *property = NULL;
int ret;
property = kzalloc(sizeof(struct drm_property), GFP_KERNEL);
if (!property)
return NULL;
property->dev = dev;
if (num_values) {
property->values = kcalloc(num_values, sizeof(uint64_t),
GFP_KERNEL);
if (!property->values)
goto fail;
}
ret = drm_mode_object_get(dev, &property->base, DRM_MODE_OBJECT_PROPERTY);
if (ret)
goto fail;
property->flags = flags;
property->num_values = num_values;
INIT_LIST_HEAD(&property->enum_list);
if (name) {
strncpy(property->name, name, DRM_PROP_NAME_LEN);
property->name[DRM_PROP_NAME_LEN-1] = '\0';
}
list_add_tail(&property->head, &dev->mode_config.property_list);
WARN_ON(!drm_property_type_valid(property));
return property;
fail:
kfree(property->values);
kfree(property);
return NULL;
}
EXPORT_SYMBOL(drm_property_create);
/**
* drm_property_create_enum - create a new enumeration property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @props: enumeration lists with property values
* @num_values: number of pre-defined values
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is only allowed to set one of the predefined values for enumeration
* properties.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
const char *name,
const struct drm_prop_enum_list *props,
int num_values)
{
struct drm_property *property;
int i, ret;
flags |= DRM_MODE_PROP_ENUM;
property = drm_property_create(dev, flags, name, num_values);
if (!property)
return NULL;
for (i = 0; i < num_values; i++) {
ret = drm_property_add_enum(property, i,
props[i].type,
props[i].name);
if (ret) {
drm_property_destroy(dev, property);
return NULL;
}
}
return property;
}
EXPORT_SYMBOL(drm_property_create_enum);
/**
* drm_property_create_bitmask - create a new bitmask property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @props: enumeration lists with property bitflags
* @num_props: size of the @props array
* @supported_bits: bitmask of all supported enumeration values
*
* This creates a new bitmask drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Compared to plain enumeration properties userspace is allowed to set any
* or'ed together combination of the predefined property bitflag values
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
int flags, const char *name,
const struct drm_prop_enum_list *props,
int num_props,
uint64_t supported_bits)
{
struct drm_property *property;
int i, ret, index = 0;
int num_values = hweight64(supported_bits);
flags |= DRM_MODE_PROP_BITMASK;
property = drm_property_create(dev, flags, name, num_values);
if (!property)
return NULL;
for (i = 0; i < num_props; i++) {
if (!(supported_bits & (1ULL << props[i].type)))
continue;
if (WARN_ON(index >= num_values)) {
drm_property_destroy(dev, property);
return NULL;
}
ret = drm_property_add_enum(property, index++,
props[i].type,
props[i].name);
if (ret) {
drm_property_destroy(dev, property);
return NULL;
}
}
return property;
}
EXPORT_SYMBOL(drm_property_create_bitmask);
static struct drm_property *property_create_range(struct drm_device *dev,
int flags, const char *name,
uint64_t min, uint64_t max)
{
struct drm_property *property;
property = drm_property_create(dev, flags, name, 2);
if (!property)
return NULL;
property->values[0] = min;
property->values[1] = max;
return property;
}
/**
* drm_property_create_range - create a new unsigned ranged property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @min: minimum value of the property
* @max: maximum value of the property
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is allowed to set any unsigned integer value in the (min, max)
* range inclusive.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
const char *name,
uint64_t min, uint64_t max)
{
return property_create_range(dev, DRM_MODE_PROP_RANGE | flags,
name, min, max);
}
EXPORT_SYMBOL(drm_property_create_range);
/**
* drm_property_create_signed_range - create a new signed ranged property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @min: minimum value of the property
* @max: maximum value of the property
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is allowed to set any signed integer value in the (min, max)
* range inclusive.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_signed_range(struct drm_device *dev,
int flags, const char *name,
int64_t min, int64_t max)
{
return property_create_range(dev, DRM_MODE_PROP_SIGNED_RANGE | flags,
name, I642U64(min), I642U64(max));
}
EXPORT_SYMBOL(drm_property_create_signed_range);
/**
* drm_property_create_object - create a new object property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @type: object type from DRM_MODE_OBJECT_* defines
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is only allowed to set this to any property value of the given
* @type. Only useful for atomic properties, which is enforced.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_object(struct drm_device *dev,
int flags, const char *name, uint32_t type)
{
struct drm_property *property;
flags |= DRM_MODE_PROP_OBJECT;
if (WARN_ON(!(flags & DRM_MODE_PROP_ATOMIC)))
return NULL;
property = drm_property_create(dev, flags, name, 1);
if (!property)
return NULL;
property->values[0] = type;
return property;
}
EXPORT_SYMBOL(drm_property_create_object);
/**
* drm_property_create_bool - create a new boolean property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* This is implemented as a ranged property with only {0, 1} as valid values.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_bool(struct drm_device *dev, int flags,
const char *name)
{
return drm_property_create_range(dev, flags, name, 0, 1);
}
EXPORT_SYMBOL(drm_property_create_bool);
/**
* drm_property_add_enum - add a possible value to an enumeration property
* @property: enumeration property to change
* @index: index of the new enumeration
* @value: value of the new enumeration
* @name: symbolic name of the new enumeration
*
* This functions adds enumerations to a property.
*
* It's use is deprecated, drivers should use one of the more specific helpers
* to directly create the property with all enumerations already attached.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_property_add_enum(struct drm_property *property, int index,
uint64_t value, const char *name)
{
struct drm_property_enum *prop_enum;
if (!(drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)))
return -EINVAL;
/*
* Bitmask enum properties have the additional constraint of values
* from 0 to 63
*/
if (drm_property_type_is(property, DRM_MODE_PROP_BITMASK) &&
(value > 63))
return -EINVAL;
if (!list_empty(&property->enum_list)) {
list_for_each_entry(prop_enum, &property->enum_list, head) {
if (prop_enum->value == value) {
strncpy(prop_enum->name, name, DRM_PROP_NAME_LEN);
prop_enum->name[DRM_PROP_NAME_LEN-1] = '\0';
return 0;
}
}
}
prop_enum = kzalloc(sizeof(struct drm_property_enum), GFP_KERNEL);
if (!prop_enum)
return -ENOMEM;
strncpy(prop_enum->name, name, DRM_PROP_NAME_LEN);
prop_enum->name[DRM_PROP_NAME_LEN-1] = '\0';
prop_enum->value = value;
property->values[index] = value;
list_add_tail(&prop_enum->head, &property->enum_list);
return 0;
}
EXPORT_SYMBOL(drm_property_add_enum);
/**
* drm_property_destroy - destroy a drm property
* @dev: drm device
* @property: property to destry
*
* This function frees a property including any attached resources like
* enumeration values.
*/
void drm_property_destroy(struct drm_device *dev, struct drm_property *property)
{
struct drm_property_enum *prop_enum, *pt;
list_for_each_entry_safe(prop_enum, pt, &property->enum_list, head) {
list_del(&prop_enum->head);
kfree(prop_enum);
}
if (property->num_values)
kfree(property->values);
drm_mode_object_unregister(dev, &property->base);
list_del(&property->head);
kfree(property);
}
EXPORT_SYMBOL(drm_property_destroy);
/**
* drm_object_attach_property - attach a property to a modeset object
* @obj: drm modeset object
* @property: property to attach
* @init_val: initial value of the property
*
* This attaches the given property to the modeset object with the given initial
* value. Currently this function cannot fail since the properties are stored in
* a statically sized array.
*/
void drm_object_attach_property(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t init_val)
{
int count = obj->properties->count;
if (count == DRM_OBJECT_MAX_PROPERTY) {
WARN(1, "Failed to attach object property (type: 0x%x). Please "
"increase DRM_OBJECT_MAX_PROPERTY by 1 for each time "
"you see this message on the same object type.\n",
obj->type);
return;
}
obj->properties->properties[count] = property;
obj->properties->values[count] = init_val;
obj->properties->count++;
if (property->flags & DRM_MODE_PROP_ATOMIC)
obj->properties->atomic_count++;
}
EXPORT_SYMBOL(drm_object_attach_property);
/**
* drm_object_property_set_value - set the value of a property
* @obj: drm mode object to set property value for
* @property: property to set
* @val: value the property should be set to
*
* This functions sets a given property on a given object. This function only
* changes the software state of the property, it does not call into the
* driver's ->set_property callback.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_object_property_set_value(struct drm_mode_object *obj,
struct drm_property *property, uint64_t val)
{
int i;
for (i = 0; i < obj->properties->count; i++) {
if (obj->properties->properties[i] == property) {
obj->properties->values[i] = val;
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL(drm_object_property_set_value);
/**
* drm_object_property_get_value - retrieve the value of a property
* @obj: drm mode object to get property value from
* @property: property to retrieve
* @val: storage for the property value
*
* This function retrieves the softare state of the given property for the given
* property. Since there is no driver callback to retrieve the current property
* value this might be out of sync with the hardware, depending upon the driver
* and property.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_object_property_get_value(struct drm_mode_object *obj,
struct drm_property *property, uint64_t *val)
{
int i;
/* read-only properties bypass atomic mechanism and still store
* their value in obj->properties->values[].. mostly to avoid
* having to deal w/ EDID and similar props in atomic paths:
*/
if (drm_core_check_feature(property->dev, DRIVER_ATOMIC) &&
!(property->flags & DRM_MODE_PROP_IMMUTABLE))
return drm_atomic_get_property(obj, property, val);
for (i = 0; i < obj->properties->count; i++) {
if (obj->properties->properties[i] == property) {
*val = obj->properties->values[i];
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL(drm_object_property_get_value);
/**
* drm_mode_getproperty_ioctl - get the property metadata
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the metadata for a given property, like the different
* possible values for an enum property or the limits for a range property.
*
* Blob properties are special
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getproperty_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_get_property *out_resp = data;
struct drm_property *property;
int enum_count = 0;
int value_count = 0;
int ret = 0, i;
int copied;
struct drm_property_enum *prop_enum;
struct drm_mode_property_enum __user *enum_ptr;
uint64_t __user *values_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
property = drm_property_find(dev, out_resp->prop_id);
if (!property) {
ret = -ENOENT;
goto done;
}
if (drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
list_for_each_entry(prop_enum, &property->enum_list, head)
enum_count++;
}
value_count = property->num_values;
strncpy(out_resp->name, property->name, DRM_PROP_NAME_LEN);
out_resp->name[DRM_PROP_NAME_LEN-1] = 0;
out_resp->flags = property->flags;
if ((out_resp->count_values >= value_count) && value_count) {
values_ptr = (uint64_t __user *)(unsigned long)out_resp->values_ptr;
for (i = 0; i < value_count; i++) {
if (copy_to_user(values_ptr + i, &property->values[i], sizeof(uint64_t))) {
ret = -EFAULT;
goto done;
}
}
}
out_resp->count_values = value_count;
if (drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
if ((out_resp->count_enum_blobs >= enum_count) && enum_count) {
copied = 0;
enum_ptr = (struct drm_mode_property_enum __user *)(unsigned long)out_resp->enum_blob_ptr;
list_for_each_entry(prop_enum, &property->enum_list, head) {
if (copy_to_user(&enum_ptr[copied].value, &prop_enum->value, sizeof(uint64_t))) {
ret = -EFAULT;
goto done;
}
if (copy_to_user(&enum_ptr[copied].name,
&prop_enum->name, DRM_PROP_NAME_LEN)) {
ret = -EFAULT;
goto done;
}
copied++;
}
}
out_resp->count_enum_blobs = enum_count;
}
/*
* NOTE: The idea seems to have been to use this to read all the blob
* property values. But nothing ever added them to the corresponding
* list, userspace always used the special-purpose get_blob ioctl to
* read the value for a blob property. It also doesn't make a lot of
* sense to return values here when everything else is just metadata for
* the property itself.
*/
if (drm_property_type_is(property, DRM_MODE_PROP_BLOB))
out_resp->count_enum_blobs = 0;
done:
drm_modeset_unlock_all(dev);
return ret;
}
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
static void drm_property_free_blob(struct kref *kref)
{
struct drm_property_blob *blob =
container_of(kref, struct drm_property_blob, base.refcount);
mutex_lock(&blob->dev->mode_config.blob_lock);
list_del(&blob->head_global);
mutex_unlock(&blob->dev->mode_config.blob_lock);
drm_mode_object_unregister(blob->dev, &blob->base);
kfree(blob);
}
/**
* drm_property_create_blob - Create new blob property
*
* Creates a new blob property for a specified DRM device, optionally
* copying data.
*
* @dev: DRM device to create property for
* @length: Length to allocate for blob data
* @data: If specified, copies data into blob
*
* Returns:
* New blob property with a single reference on success, or an ERR_PTR
* value on failure.
*/
struct drm_property_blob *
drm_property_create_blob(struct drm_device *dev, size_t length,
const void *data)
{
struct drm_property_blob *blob;
int ret;
if (!length || length > ULONG_MAX - sizeof(struct drm_property_blob))
return ERR_PTR(-EINVAL);
blob = kzalloc(sizeof(struct drm_property_blob)+length, GFP_KERNEL);
if (!blob)
return ERR_PTR(-ENOMEM);
/* This must be explicitly initialised, so we can safely call list_del
* on it in the removal handler, even if it isn't in a file list. */
INIT_LIST_HEAD(&blob->head_file);
blob->length = length;
blob->dev = dev;
if (data)
memcpy(blob->data, data, length);
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
ret = drm_mode_object_get_reg(dev, &blob->base, DRM_MODE_OBJECT_BLOB,
true, drm_property_free_blob);
if (ret) {
kfree(blob);
return ERR_PTR(-EINVAL);
}
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
mutex_lock(&dev->mode_config.blob_lock);
list_add_tail(&blob->head_global,
&dev->mode_config.property_blob_list);
mutex_unlock(&dev->mode_config.blob_lock);
return blob;
}
EXPORT_SYMBOL(drm_property_create_blob);
/**
* drm_property_unreference_blob - Unreference a blob property
*
* Drop a reference on a blob property. May free the object.
*
* @blob: Pointer to blob property
*/
void drm_property_unreference_blob(struct drm_property_blob *blob)
{
if (!blob)
return;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
drm_mode_object_unreference(&blob->base);
}
EXPORT_SYMBOL(drm_property_unreference_blob);
/**
* drm_property_destroy_user_blobs - destroy all blobs created by this client
* @dev: DRM device
* @file_priv: destroy all blobs owned by this file handle
*/
void drm_property_destroy_user_blobs(struct drm_device *dev,
struct drm_file *file_priv)
{
struct drm_property_blob *blob, *bt;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
/*
* When the file gets released that means no one else can access the
* blob list any more, so no need to grab dev->blob_lock.
*/
list_for_each_entry_safe(blob, bt, &file_priv->blobs, head_file) {
list_del_init(&blob->head_file);
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
drm_property_unreference_blob(blob);
}
}
/**
* drm_property_reference_blob - Take a reference on an existing property
*
* Take a new reference on an existing blob property.
*
* @blob: Pointer to blob property
*/
struct drm_property_blob *drm_property_reference_blob(struct drm_property_blob *blob)
{
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
drm_mode_object_reference(&blob->base);
return blob;
}
EXPORT_SYMBOL(drm_property_reference_blob);
/**
* drm_property_lookup_blob - look up a blob property and take a reference
* @dev: drm device
* @id: id of the blob property
*
* If successful, this takes an additional reference to the blob property.
* callers need to make sure to eventually unreference the returned property
* again, using @drm_property_unreference_blob.
*/
struct drm_property_blob *drm_property_lookup_blob(struct drm_device *dev,
uint32_t id)
{
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
struct drm_mode_object *obj;
struct drm_property_blob *blob = NULL;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
obj = _object_find(dev, id, DRM_MODE_OBJECT_BLOB);
if (obj)
blob = obj_to_blob(obj);
return blob;
}
EXPORT_SYMBOL(drm_property_lookup_blob);
/**
* drm_property_replace_global_blob - atomically replace existing blob property
* @dev: drm device
* @replace: location of blob property pointer to be replaced
* @length: length of data for new blob, or 0 for no data
* @data: content for new blob, or NULL for no data
* @obj_holds_id: optional object for property holding blob ID
* @prop_holds_id: optional property holding blob ID
* @return 0 on success or error on failure
*
* This function will atomically replace a global property in the blob list,
* optionally updating a property which holds the ID of that property. It is
* guaranteed to be atomic: no caller will be allowed to see intermediate
* results, and either the entire operation will succeed and clean up the
* previous property, or it will fail and the state will be unchanged.
*
* If length is 0 or data is NULL, no new blob will be created, and the holding
* property, if specified, will be set to 0.
*
* Access to the replace pointer is assumed to be protected by the caller, e.g.
* by holding the relevant modesetting object lock for its parent.
*
* For example, a drm_connector has a 'PATH' property, which contains the ID
* of a blob property with the value of the MST path information. Calling this
* function with replace pointing to the connector's path_blob_ptr, length and
* data set for the new path information, obj_holds_id set to the connector's
* base object, and prop_holds_id set to the path property name, will perform
* a completely atomic update. The access to path_blob_ptr is protected by the
* caller holding a lock on the connector.
*/
static int drm_property_replace_global_blob(struct drm_device *dev,
struct drm_property_blob **replace,
size_t length,
const void *data,
struct drm_mode_object *obj_holds_id,
struct drm_property *prop_holds_id)
{
struct drm_property_blob *new_blob = NULL;
struct drm_property_blob *old_blob = NULL;
int ret;
WARN_ON(replace == NULL);
old_blob = *replace;
if (length && data) {
new_blob = drm_property_create_blob(dev, length, data);
if (IS_ERR(new_blob))
return PTR_ERR(new_blob);
}
/* This does not need to be synchronised with blob_lock, as the
* get_properties ioctl locks all modesetting objects, and
* obj_holds_id must be locked before calling here, so we cannot
* have its value out of sync with the list membership modified
* below under blob_lock. */
if (obj_holds_id) {
ret = drm_object_property_set_value(obj_holds_id,
prop_holds_id,
new_blob ?
new_blob->base.id : 0);
if (ret != 0)
goto err_created;
}
drm_property_unreference_blob(old_blob);
*replace = new_blob;
return 0;
err_created:
drm_property_unreference_blob(new_blob);
return ret;
}
/**
* drm_mode_getblob_ioctl - get the contents of a blob property value
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the contents of a blob property. The value stored in
* an object's blob property is just a normal modeset object id.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getblob_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_get_blob *out_resp = data;
struct drm_property_blob *blob;
int ret = 0;
void __user *blob_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
blob = drm_property_lookup_blob(dev, out_resp->blob_id);
if (!blob)
return -ENOENT;
if (out_resp->length == blob->length) {
blob_ptr = (void __user *)(unsigned long)out_resp->data;
if (copy_to_user(blob_ptr, blob->data, blob->length)) {
ret = -EFAULT;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
goto unref;
}
}
out_resp->length = blob->length;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
unref:
drm_property_unreference_blob(blob);
return ret;
}
/**
* drm_mode_createblob_ioctl - create a new blob property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function creates a new blob property with user-defined values. In order
* to give us sensible validation and checking when creating, rather than at
* every potential use, we also require a type to be provided upfront.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_createblob_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_create_blob *out_resp = data;
struct drm_property_blob *blob;
void __user *blob_ptr;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
blob = drm_property_create_blob(dev, out_resp->length, NULL);
if (IS_ERR(blob))
return PTR_ERR(blob);
blob_ptr = (void __user *)(unsigned long)out_resp->data;
if (copy_from_user(blob->data, blob_ptr, out_resp->length)) {
ret = -EFAULT;
goto out_blob;
}
/* Dropping the lock between create_blob and our access here is safe
* as only the same file_priv can remove the blob; at this point, it is
* not associated with any file_priv. */
mutex_lock(&dev->mode_config.blob_lock);
out_resp->blob_id = blob->base.id;
list_add_tail(&blob->head_file, &file_priv->blobs);
mutex_unlock(&dev->mode_config.blob_lock);
return 0;
out_blob:
drm_property_unreference_blob(blob);
return ret;
}
/**
* drm_mode_destroyblob_ioctl - destroy a user blob property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Destroy an existing user-defined blob property.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_destroyblob_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_destroy_blob *out_resp = data;
struct drm_property_blob *blob = NULL, *bt;
bool found = false;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
blob = drm_property_lookup_blob(dev, out_resp->blob_id);
if (!blob)
return -ENOENT;
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
mutex_lock(&dev->mode_config.blob_lock);
/* Ensure the property was actually created by this user. */
list_for_each_entry(bt, &file_priv->blobs, head_file) {
if (bt == blob) {
found = true;
break;
}
}
if (!found) {
ret = -EPERM;
goto err;
}
/* We must drop head_file here, because we may not be the last
* reference on the blob. */
list_del_init(&blob->head_file);
mutex_unlock(&dev->mode_config.blob_lock);
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
/* One reference from lookup, and one from the filp. */
drm_property_unreference_blob(blob);
drm_property_unreference_blob(blob);
return 0;
err:
mutex_unlock(&dev->mode_config.blob_lock);
drm: Switch blobs to the new generic modeset obj refcounting Need to move the free function around a bit, but otherwise mostly just removing code. Specifically we can nuke all the _locked variants since the weak idr reference is now protected by the idr_mutex, which we never hold anywhere expect in the lookup/reg/unreg functions. And those never call anything else. Another benefit of this is that this patch switches the weak reference logic from kref_put_mutex to kref_get_unless_zero. And the later is in general more flexible wrt accomodating multiple weak references protected by different locks, which might or might not come handy eventually. But one consequence of that switch is that we need to acquire the blob_lock from the free function for the list_del calls. That's a bit tricky to pull off, but works well if we pick the exact same scheme as is already used for framebuffers. Most important changes: - filp list is maintainer by create/destroy_blob ioctls directly (already the case, so we can just remove the redundant list_del from the free function). - filp close handler walks the filp-private list lockless - works because we know no one else can access it. I copied the same comment from the fb code over to explain this. - Otherwise we need to sufficiently restrict blob_lock critical sections to avoid all the unreference calls. Easy to do once the blob_lock only protects the list, and no longer the weak reference. Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Stone <daniels@collabora.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-04-23 04:10:30 +08:00
drm_property_unreference_blob(blob);
return ret;
}
/**
* drm_mode_connector_set_path_property - set tile property on connector
* @connector: connector to set property on.
* @path: path to use for property; must not be NULL.
*
* This creates a property to expose to userspace to specify a
* connector path. This is mainly used for DisplayPort MST where
* connectors have a topology and we want to allow userspace to give
* them more meaningful names.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_set_path_property(struct drm_connector *connector,
const char *path)
{
struct drm_device *dev = connector->dev;
int ret;
ret = drm_property_replace_global_blob(dev,
&connector->path_blob_ptr,
strlen(path) + 1,
path,
&connector->base,
dev->mode_config.path_property);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_set_path_property);
/**
* drm_mode_connector_set_tile_property - set tile property on connector
* @connector: connector to set property on.
*
* This looks up the tile information for a connector, and creates a
* property for userspace to parse if it exists. The property is of
* the form of 8 integers using ':' as a separator.
*
* Returns:
* Zero on success, errno on failure.
*/
int drm_mode_connector_set_tile_property(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
char tile[256];
int ret;
if (!connector->has_tile) {
ret = drm_property_replace_global_blob(dev,
&connector->tile_blob_ptr,
0,
NULL,
&connector->base,
dev->mode_config.tile_property);
return ret;
}
snprintf(tile, 256, "%d:%d:%d:%d:%d:%d:%d:%d",
connector->tile_group->id, connector->tile_is_single_monitor,
connector->num_h_tile, connector->num_v_tile,
connector->tile_h_loc, connector->tile_v_loc,
connector->tile_h_size, connector->tile_v_size);
ret = drm_property_replace_global_blob(dev,
&connector->tile_blob_ptr,
strlen(tile) + 1,
tile,
&connector->base,
dev->mode_config.tile_property);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_set_tile_property);
/**
* drm_mode_connector_update_edid_property - update the edid property of a connector
* @connector: drm connector
* @edid: new value of the edid property
*
* This function creates a new blob modeset object and assigns its id to the
* connector's edid property.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_update_edid_property(struct drm_connector *connector,
const struct edid *edid)
{
struct drm_device *dev = connector->dev;
size_t size = 0;
int ret;
/* ignore requests to set edid when overridden */
if (connector->override_edid)
return 0;
if (edid)
size = EDID_LENGTH * (1 + edid->extensions);
ret = drm_property_replace_global_blob(dev,
&connector->edid_blob_ptr,
size,
edid,
&connector->base,
dev->mode_config.edid_property);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_update_edid_property);
/* Some properties could refer to dynamic refcnt'd objects, or things that
* need special locking to handle lifetime issues (ie. to ensure the prop
* value doesn't become invalid part way through the property update due to
* race). The value returned by reference via 'obj' should be passed back
* to drm_property_change_valid_put() after the property is set (and the
* object to which the property is attached has a chance to take it's own
* reference).
*/
bool drm_property_change_valid_get(struct drm_property *property,
uint64_t value, struct drm_mode_object **ref)
{
int i;
if (property->flags & DRM_MODE_PROP_IMMUTABLE)
return false;
*ref = NULL;
if (drm_property_type_is(property, DRM_MODE_PROP_RANGE)) {
if (value < property->values[0] || value > property->values[1])
return false;
return true;
} else if (drm_property_type_is(property, DRM_MODE_PROP_SIGNED_RANGE)) {
int64_t svalue = U642I64(value);
if (svalue < U642I64(property->values[0]) ||
svalue > U642I64(property->values[1]))
return false;
return true;
} else if (drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
uint64_t valid_mask = 0;
for (i = 0; i < property->num_values; i++)
valid_mask |= (1ULL << property->values[i]);
return !(value & ~valid_mask);
} else if (drm_property_type_is(property, DRM_MODE_PROP_BLOB)) {
struct drm_property_blob *blob;
if (value == 0)
return true;
blob = drm_property_lookup_blob(property->dev, value);
if (blob) {
*ref = &blob->base;
return true;
} else {
return false;
}
} else if (drm_property_type_is(property, DRM_MODE_PROP_OBJECT)) {
/* a zero value for an object property translates to null: */
if (value == 0)
return true;
*ref = _object_find(property->dev, value, property->values[0]);
return *ref != NULL;
}
for (i = 0; i < property->num_values; i++)
if (property->values[i] == value)
return true;
return false;
}
void drm_property_change_valid_put(struct drm_property *property,
struct drm_mode_object *ref)
{
if (!ref)
return;
if (drm_property_type_is(property, DRM_MODE_PROP_OBJECT)) {
drm_mode_object_unreference(ref);
} else if (drm_property_type_is(property, DRM_MODE_PROP_BLOB))
drm_property_unreference_blob(obj_to_blob(ref));
}
/**
* drm_mode_connector_property_set_ioctl - set the current value of a connector property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function sets the current value for a connectors's property. It also
* calls into a driver's ->set_property callback to update the hardware state
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_property_set_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_connector_set_property *conn_set_prop = data;
struct drm_mode_obj_set_property obj_set_prop = {
.value = conn_set_prop->value,
.prop_id = conn_set_prop->prop_id,
.obj_id = conn_set_prop->connector_id,
.obj_type = DRM_MODE_OBJECT_CONNECTOR
};
/* It does all the locking and checking we need */
return drm_mode_obj_set_property_ioctl(dev, &obj_set_prop, file_priv);
}
static int drm_mode_connector_set_obj_prop(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_connector *connector = obj_to_connector(obj);
/* Do DPMS ourselves */
if (property == connector->dev->mode_config.dpms_property) {
ret = (*connector->funcs->dpms)(connector, (int)value);
} else if (connector->funcs->set_property)
ret = connector->funcs->set_property(connector, property, value);
/* store the property value if successful */
if (!ret)
drm_object_property_set_value(&connector->base, property, value);
return ret;
}
static int drm_mode_crtc_set_obj_prop(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_crtc *crtc = obj_to_crtc(obj);
if (crtc->funcs->set_property)
ret = crtc->funcs->set_property(crtc, property, value);
if (!ret)
drm_object_property_set_value(obj, property, value);
return ret;
}
/**
* drm_mode_plane_set_obj_prop - set the value of a property
* @plane: drm plane object to set property value for
* @property: property to set
* @value: value the property should be set to
*
* This functions sets a given property on a given plane object. This function
* calls the driver's ->set_property callback and changes the software state of
* the property if the callback succeeds.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_mode_plane_set_obj_prop(struct drm_plane *plane,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_mode_object *obj = &plane->base;
if (plane->funcs->set_property)
ret = plane->funcs->set_property(plane, property, value);
if (!ret)
drm_object_property_set_value(obj, property, value);
return ret;
}
EXPORT_SYMBOL(drm_mode_plane_set_obj_prop);
/**
* drm_mode_obj_get_properties_ioctl - get the current value of a object's property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the current value for an object's property. Compared
* to the connector specific ioctl this one is extended to also work on crtc and
* plane objects.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_obj_get_properties_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_obj_get_properties *arg = data;
struct drm_mode_object *obj;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
obj = drm_mode_object_find(dev, arg->obj_id, arg->obj_type);
if (!obj) {
ret = -ENOENT;
goto out;
}
if (!obj->properties) {
ret = -EINVAL;
goto out_unref;
}
ret = get_properties(obj, file_priv->atomic,
(uint32_t __user *)(unsigned long)(arg->props_ptr),
(uint64_t __user *)(unsigned long)(arg->prop_values_ptr),
&arg->count_props);
out_unref:
drm_mode_object_unreference(obj);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_obj_set_property_ioctl - set the current value of an object's property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function sets the current value for an object's property. It also calls
* into a driver's ->set_property callback to update the hardware state.
* Compared to the connector specific ioctl this one is extended to also work on
* crtc and plane objects.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_obj_set_property_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_obj_set_property *arg = data;
struct drm_mode_object *arg_obj;
struct drm_mode_object *prop_obj;
struct drm_property *property;
int i, ret = -EINVAL;
struct drm_mode_object *ref;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
arg_obj = drm_mode_object_find(dev, arg->obj_id, arg->obj_type);
if (!arg_obj) {
ret = -ENOENT;
goto out;
}
if (!arg_obj->properties)
goto out_unref;
for (i = 0; i < arg_obj->properties->count; i++)
if (arg_obj->properties->properties[i]->base.id == arg->prop_id)
break;
if (i == arg_obj->properties->count)
goto out_unref;
prop_obj = drm_mode_object_find(dev, arg->prop_id,
DRM_MODE_OBJECT_PROPERTY);
if (!prop_obj) {
ret = -ENOENT;
goto out_unref;
}
property = obj_to_property(prop_obj);
if (!drm_property_change_valid_get(property, arg->value, &ref))
goto out_unref;
switch (arg_obj->type) {
case DRM_MODE_OBJECT_CONNECTOR:
ret = drm_mode_connector_set_obj_prop(arg_obj, property,
arg->value);
break;
case DRM_MODE_OBJECT_CRTC:
ret = drm_mode_crtc_set_obj_prop(arg_obj, property, arg->value);
break;
case DRM_MODE_OBJECT_PLANE:
ret = drm_mode_plane_set_obj_prop(obj_to_plane(arg_obj),
property, arg->value);
break;
}
drm_property_change_valid_put(property, ref);
out_unref:
drm_mode_object_unreference(arg_obj);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_connector_attach_encoder - attach a connector to an encoder
* @connector: connector to attach
* @encoder: encoder to attach @connector to
*
* This function links up a connector to an encoder. Note that the routing
* restrictions between encoders and crtcs are exposed to userspace through the
* possible_clones and possible_crtcs bitmasks.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_attach_encoder(struct drm_connector *connector,
struct drm_encoder *encoder)
{
int i;
/*
* In the past, drivers have attempted to model the static association
* of connector to encoder in simple connector/encoder devices using a
* direct assignment of connector->encoder = encoder. This connection
* is a logical one and the responsibility of the core, so drivers are
* expected not to mess with this.
*
* Note that the error return should've been enough here, but a large
* majority of drivers ignores the return value, so add in a big WARN
* to get people's attention.
*/
if (WARN_ON(connector->encoder))
return -EINVAL;
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
if (connector->encoder_ids[i] == 0) {
connector->encoder_ids[i] = encoder->base.id;
return 0;
}
}
return -ENOMEM;
}
EXPORT_SYMBOL(drm_mode_connector_attach_encoder);
/**
* drm_mode_crtc_set_gamma_size - set the gamma table size
* @crtc: CRTC to set the gamma table size for
* @gamma_size: size of the gamma table
*
* Drivers which support gamma tables should set this to the supported gamma
* table size when initializing the CRTC. Currently the drm core only supports a
* fixed gamma table size.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_crtc_set_gamma_size(struct drm_crtc *crtc,
int gamma_size)
{
uint16_t *r_base, *g_base, *b_base;
int i;
crtc->gamma_size = gamma_size;
crtc->gamma_store = kcalloc(gamma_size, sizeof(uint16_t) * 3,
GFP_KERNEL);
if (!crtc->gamma_store) {
crtc->gamma_size = 0;
return -ENOMEM;
}
r_base = crtc->gamma_store;
g_base = r_base + gamma_size;
b_base = g_base + gamma_size;
for (i = 0; i < gamma_size; i++) {
r_base[i] = i << 8;
g_base[i] = i << 8;
b_base[i] = i << 8;
}
return 0;
}
EXPORT_SYMBOL(drm_mode_crtc_set_gamma_size);
/**
* drm_mode_gamma_set_ioctl - set the gamma table
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Set the gamma table of a CRTC to the one passed in by the user. Userspace can
* inquire the required gamma table size through drm_mode_gamma_get_ioctl.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_gamma_set_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_lut *crtc_lut = data;
struct drm_crtc *crtc;
void *r_base, *g_base, *b_base;
int size;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_lut->crtc_id);
if (!crtc) {
ret = -ENOENT;
goto out;
}
if (crtc->funcs->gamma_set == NULL) {
ret = -ENOSYS;
goto out;
}
/* memcpy into gamma store */
if (crtc_lut->gamma_size != crtc->gamma_size) {
ret = -EINVAL;
goto out;
}
size = crtc_lut->gamma_size * (sizeof(uint16_t));
r_base = crtc->gamma_store;
if (copy_from_user(r_base, (void __user *)(unsigned long)crtc_lut->red, size)) {
ret = -EFAULT;
goto out;
}
g_base = r_base + size;
if (copy_from_user(g_base, (void __user *)(unsigned long)crtc_lut->green, size)) {
ret = -EFAULT;
goto out;
}
b_base = g_base + size;
if (copy_from_user(b_base, (void __user *)(unsigned long)crtc_lut->blue, size)) {
ret = -EFAULT;
goto out;
}
ret = crtc->funcs->gamma_set(crtc, r_base, g_base, b_base, crtc->gamma_size);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_gamma_get_ioctl - get the gamma table
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Copy the current gamma table into the storage provided. This also provides
* the gamma table size the driver expects, which can be used to size the
* allocated storage.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_gamma_get_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_lut *crtc_lut = data;
struct drm_crtc *crtc;
void *r_base, *g_base, *b_base;
int size;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_lut->crtc_id);
if (!crtc) {
ret = -ENOENT;
goto out;
}
/* memcpy into gamma store */
if (crtc_lut->gamma_size != crtc->gamma_size) {
ret = -EINVAL;
goto out;
}
size = crtc_lut->gamma_size * (sizeof(uint16_t));
r_base = crtc->gamma_store;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->red, r_base, size)) {
ret = -EFAULT;
goto out;
}
g_base = r_base + size;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->green, g_base, size)) {
ret = -EFAULT;
goto out;
}
b_base = g_base + size;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->blue, b_base, size)) {
ret = -EFAULT;
goto out;
}
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_page_flip_ioctl - schedule an asynchronous fb update
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This schedules an asynchronous update on a given CRTC, called page flip.
* Optionally a drm event is generated to signal the completion of the event.
* Generic drivers cannot assume that a pageflip with changed framebuffer
* properties (including driver specific metadata like tiling layout) will work,
* but some drivers support e.g. pixel format changes through the pageflip
* ioctl.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_page_flip_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_page_flip_target *page_flip = data;
struct drm_crtc *crtc;
struct drm_framebuffer *fb = NULL;
struct drm_pending_vblank_event *e = NULL;
u32 target_vblank = page_flip->sequence;
int ret = -EINVAL;
if (page_flip->flags & ~DRM_MODE_PAGE_FLIP_FLAGS)
return -EINVAL;
if (page_flip->sequence != 0 && !(page_flip->flags & DRM_MODE_PAGE_FLIP_TARGET))
return -EINVAL;
/* Only one of the DRM_MODE_PAGE_FLIP_TARGET_ABSOLUTE/RELATIVE flags
* can be specified
*/
if ((page_flip->flags & DRM_MODE_PAGE_FLIP_TARGET) == DRM_MODE_PAGE_FLIP_TARGET)
return -EINVAL;
if ((page_flip->flags & DRM_MODE_PAGE_FLIP_ASYNC) && !dev->mode_config.async_page_flip)
return -EINVAL;
crtc = drm_crtc_find(dev, page_flip->crtc_id);
if (!crtc)
return -ENOENT;
if (crtc->funcs->page_flip_target) {
u32 current_vblank;
int r;
r = drm_crtc_vblank_get(crtc);
if (r)
return r;
current_vblank = drm_crtc_vblank_count(crtc);
switch (page_flip->flags & DRM_MODE_PAGE_FLIP_TARGET) {
case DRM_MODE_PAGE_FLIP_TARGET_ABSOLUTE:
if ((int)(target_vblank - current_vblank) > 1) {
DRM_DEBUG("Invalid absolute flip target %u, "
"must be <= %u\n", target_vblank,
current_vblank + 1);
drm_crtc_vblank_put(crtc);
return -EINVAL;
}
break;
case DRM_MODE_PAGE_FLIP_TARGET_RELATIVE:
if (target_vblank != 0 && target_vblank != 1) {
DRM_DEBUG("Invalid relative flip target %u, "
"must be 0 or 1\n", target_vblank);
drm_crtc_vblank_put(crtc);
return -EINVAL;
}
target_vblank += current_vblank;
break;
default:
target_vblank = current_vblank +
!(page_flip->flags & DRM_MODE_PAGE_FLIP_ASYNC);
break;
}
} else if (crtc->funcs->page_flip == NULL ||
(page_flip->flags & DRM_MODE_PAGE_FLIP_TARGET)) {
return -EINVAL;
}
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_crtc(crtc, crtc->primary);
if (crtc->primary->fb == NULL) {
drm: Return EBUSY if the framebuffer is unbound when flipping. It looks like there is a race condition between unbinding a framebuffer on a hotplug event and user space trying to flip: BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] PGD 114724067 PUD 1145bd067 PMD 0 Oops: 0000 [#1] SMP Pid: 10954, comm: X Not tainted 2.6.35-rc5_stable_20100714+ #1 P5Q-EM/P5Q-EM RIP: 0010:[<ffffffffa008c7d3>] [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] RSP: 0018:ffff880114927cc8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff88012df48320 RCX: ffff88010c945600 RDX: ffff880001a109c8 RSI: ffff88010c945840 RDI: ffff88012df48320 RBP: ffff880114927d18 R08: ffff88012df48280 R09: ffff88012df48320 R10: 0000000003c2e0b0 R11: 0000000000003246 R12: ffff88010c945840 R13: ffff88012df48000 R14: 0000000000000060 R15: ffff88012dbb8000 FS: 00007f9e6078e830(0000) GS:ffff880001a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000058 CR3: 00000001177a8000 CR4: 00000000000406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process X (pid: 10954, threadinfo ffff880114926000, task ffff88012a4a1690) Stack: ffff88010c945600 ffff880115b176c0 ffff88012db10000 0000000000000246 <0> fffffff40006101c ffff88010c945600 00000000ffffffea ffff88010c945600 <0> ffff88012df48320 ffff88011b4b6780 ffff880114927d78 ffffffffa003bd0e Call Trace: [<ffffffffa003bd0e>] drm_mode_page_flip_ioctl+0x1bc/0x214 [drm] [<ffffffffa00311fc>] drm_ioctl+0x25e/0x35e [drm] [<ffffffffa003bb52>] ? drm_mode_page_flip_ioctl+0x0/0x214 [drm] [<ffffffff810f1c3c>] vfs_ioctl+0x2a/0x9e [<ffffffff810f227e>] do_vfs_ioctl+0x531/0x565 [<ffffffff810f2307>] sys_ioctl+0x55/0x77 [<ffffffff810e56d6>] ? sys_read+0x47/0x6f [<ffffffff81002a2b>] system_call_fastpath+0x16/0x1b Code: 45 d4 f4 ff ff ff 0f 84 e0 02 00 00 48 8b 4d b0 49 8d 9d 20 03 00 00 48 89 df 49 89 4c 24 38 49 8b 07 49 89 44 24 20 49 8b 47 20 <48> 8b 40 58 49 c7 04 24 00 00 00 00 49 c7 44 24 18 a9 a5 08 a0 RIP [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] RSP <ffff880114927cc8> CR2: 0000000000000058 References: Bug 28811 - [page-flipping] GPU hang when modeset after unplugging another monitor (under compiz) https://bugs.freedesktop.org/show_bug.cgi?id=28811 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-07-18 03:23:26 +08:00
/* The framebuffer is currently unbound, presumably
* due to a hotplug event, that userspace has not
* yet discovered.
*/
ret = -EBUSY;
goto out;
}
fb = drm_framebuffer_lookup(dev, page_flip->fb_id);
if (!fb) {
ret = -ENOENT;
goto out;
}
if (crtc->state) {
const struct drm_plane_state *state = crtc->primary->state;
ret = check_src_coords(state->src_x, state->src_y,
state->src_w, state->src_h, fb);
} else {
ret = drm_crtc_check_viewport(crtc, crtc->x, crtc->y, &crtc->mode, fb);
}
if (ret)
goto out;
if (crtc->primary->fb->pixel_format != fb->pixel_format) {
DRM_DEBUG_KMS("Page flip is not allowed to change frame buffer format.\n");
ret = -EINVAL;
goto out;
}
if (page_flip->flags & DRM_MODE_PAGE_FLIP_EVENT) {
e = kzalloc(sizeof *e, GFP_KERNEL);
if (!e) {
ret = -ENOMEM;
goto out;
}
e->event.base.type = DRM_EVENT_FLIP_COMPLETE;
e->event.base.length = sizeof(e->event);
e->event.user_data = page_flip->user_data;
ret = drm_event_reserve_init(dev, file_priv, &e->base, &e->event.base);
if (ret) {
kfree(e);
goto out;
}
}
crtc->primary->old_fb = crtc->primary->fb;
if (crtc->funcs->page_flip_target)
ret = crtc->funcs->page_flip_target(crtc, fb, e,
page_flip->flags,
target_vblank);
else
ret = crtc->funcs->page_flip(crtc, fb, e, page_flip->flags);
if (ret) {
if (page_flip->flags & DRM_MODE_PAGE_FLIP_EVENT)
drm_event_cancel_free(dev, &e->base);
/* Keep the old fb, don't unref it. */
crtc->primary->old_fb = NULL;
} else {
crtc->primary->fb = fb;
/* Unref only the old framebuffer. */
fb = NULL;
}
out:
if (ret)
drm_crtc_vblank_put(crtc);
if (fb)
drm_framebuffer_unreference(fb);
if (crtc->primary->old_fb)
drm_framebuffer_unreference(crtc->primary->old_fb);
crtc->primary->old_fb = NULL;
drm_modeset_unlock_crtc(crtc);
drm: only grab the crtc lock for pageflips The pagelip ioctl itself is rather simply, so the hard work for this patch is auditing all the drivers: - exynos: Pageflip is protect with dev->struct_mutex and ... synchronous. But nothing fancy going on, besides a check whether the crtc is enabled, which should probably be somewhere in the drm core so that we have unified behaviour across all drivers. - i915: hw-state is protected with dev->struct_mutex, the delayed unpin work together with the other stuff the pageflip complete irq handler needs is protected by the event_lock spinlock. - nouveau: With the pin/unpin functions fixed, everything looks safe: A bit of ttm wrestling and refcounting, and a few channel accesses. The later are either already proteced sufficiently, or are now safe with the channel locking introduced to make cursor updates safe. - radeon: The irq_get/put functions look a bit race, since the atomic_inc/dec isn't protect with locks. Otoh they're all per-crtc, so we should be safe with per-crtc locking from the drm core. Then there's tons of per-crtc register access, which could potentially go through the indirect reg acces. But that's fixed to make cursor updates concurrent. Bookeeping for the drm even is also protected with the even_lock, which also protects against the pageflip irq handler since radeon hw seems to have no way to queue these up asynchronously. Otherwise just a bit of ttm-based buffer handling and fencing, which is now safe with the previous patch to hold bdev->fence_lock while grabbing the ttm fence. - shmob: Only one crtc. That's an easy one ... - vmwgfx: As usual a bit special with tons different things: - Flippable check using is_implicit and num_implicit. Changes to those seem to be nicely covered with the global modeset lock, so we should be fine. - Some dirty cliprect handling stuff, or at least that is my guess. Looks like it's fine since either it's per-crtc, invariant or (like the execbuf stuff launched) protected otherwise. - Adding the actual flip to the fence_event list. On a quick look this seems to have solid locking in place, too. ... but generally this is all way over my head. - imx: Impressive display of races between the page_flip implementation and the irq handler. Also, ipu_drm_set_base which gets eventually called from the irq handler to update the display base isn't really protected against concurrent set_config calls from process context. In any case, going for per-crtc locking won't make this worse, so nothing to do. - omap: The new async callback code merged into 3.8 seems to have solid locking in place, and there doesn't seem to be any shared state at risk. Especially since the callbacks still use modeset_lock_all and are so not converted. v2: Update omapdrm analysis to 3.8 code per the discussion with Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 23:59:31 +08:00
return ret;
}
/**
* drm_mode_config_reset - call ->reset callbacks
* @dev: drm device
*
* This functions calls all the crtc's, encoder's and connector's ->reset
* callback. Drivers can use this in e.g. their driver load or resume code to
* reset hardware and software state.
*/
void drm_mode_config_reset(struct drm_device *dev)
{
struct drm_crtc *crtc;
struct drm_plane *plane;
struct drm_encoder *encoder;
struct drm_connector *connector;
drm_for_each_plane(plane, dev)
if (plane->funcs->reset)
plane->funcs->reset(plane);
drm_for_each_crtc(crtc, dev)
if (crtc->funcs->reset)
crtc->funcs->reset(crtc);
drm_for_each_encoder(encoder, dev)
if (encoder->funcs->reset)
encoder->funcs->reset(encoder);
mutex_lock(&dev->mode_config.mutex);
drm_for_each_connector(connector, dev)
if (connector->funcs->reset)
connector->funcs->reset(connector);
mutex_unlock(&dev->mode_config.mutex);
}
EXPORT_SYMBOL(drm_mode_config_reset);
/**
* drm_mode_create_dumb_ioctl - create a dumb backing storage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This creates a new dumb buffer in the driver's backing storage manager (GEM,
* TTM or something else entirely) and returns the resulting buffer handle. This
* handle can then be wrapped up into a framebuffer modeset object.
*
* Note that userspace is not allowed to use such objects for render
* acceleration - drivers must create their own private ioctls for such a use
* case.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_create_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_create_dumb *args = data;
u32 cpp, stride, size;
if (!dev->driver->dumb_create)
return -ENOSYS;
if (!args->width || !args->height || !args->bpp)
return -EINVAL;
/* overflow checks for 32bit size calculations */
/* NOTE: DIV_ROUND_UP() can overflow */
cpp = DIV_ROUND_UP(args->bpp, 8);
if (!cpp || cpp > 0xffffffffU / args->width)
return -EINVAL;
stride = cpp * args->width;
if (args->height > 0xffffffffU / stride)
return -EINVAL;
/* test for wrap-around */
size = args->height * stride;
if (PAGE_ALIGN(size) == 0)
return -EINVAL;
/*
* handle, pitch and size are output parameters. Zero them out to
* prevent drivers from accidentally using uninitialized data. Since
* not all existing userspace is clearing these fields properly we
* cannot reject IOCTL with garbage in them.
*/
args->handle = 0;
args->pitch = 0;
args->size = 0;
return dev->driver->dumb_create(file_priv, dev, args);
}
/**
* drm_mode_mmap_dumb_ioctl - create an mmap offset for a dumb backing storage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Allocate an offset in the drm device node's address space to be able to
* memory map a dumb buffer.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_mmap_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_map_dumb *args = data;
/* call driver ioctl to get mmap offset */
if (!dev->driver->dumb_map_offset)
return -ENOSYS;
return dev->driver->dumb_map_offset(file_priv, dev, args->handle, &args->offset);
}
/**
* drm_mode_destroy_dumb_ioctl - destroy a dumb backing strage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This destroys the userspace handle for the given dumb backing storage buffer.
* Since buffer objects must be reference counted in the kernel a buffer object
* won't be immediately freed if a framebuffer modeset object still uses it.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_destroy_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_destroy_dumb *args = data;
if (!dev->driver->dumb_destroy)
return -ENOSYS;
return dev->driver->dumb_destroy(file_priv, dev, args->handle);
}
/**
* drm_rotation_simplify() - Try to simplify the rotation
* @rotation: Rotation to be simplified
* @supported_rotations: Supported rotations
*
* Attempt to simplify the rotation to a form that is supported.
* Eg. if the hardware supports everything except DRM_REFLECT_X
* one could call this function like this:
*
* drm_rotation_simplify(rotation, BIT(DRM_ROTATE_0) |
* BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_180) |
* BIT(DRM_ROTATE_270) | BIT(DRM_REFLECT_Y));
*
* to eliminate the DRM_ROTATE_X flag. Depending on what kind of
* transforms the hardware supports, this function may not
* be able to produce a supported transform, so the caller should
* check the result afterwards.
*/
unsigned int drm_rotation_simplify(unsigned int rotation,
unsigned int supported_rotations)
{
if (rotation & ~supported_rotations) {
rotation ^= BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y);
rotation = (rotation & DRM_REFLECT_MASK) |
BIT((ffs(rotation & DRM_ROTATE_MASK) + 1) % 4);
}
return rotation;
}
EXPORT_SYMBOL(drm_rotation_simplify);
/**
* drm_mode_config_init - initialize DRM mode_configuration structure
* @dev: DRM device
*
* Initialize @dev's mode_config structure, used for tracking the graphics
* configuration of @dev.
*
* Since this initializes the modeset locks, no locking is possible. Which is no
* problem, since this should happen single threaded at init time. It is the
* driver's problem to ensure this guarantee.
*
*/
void drm_mode_config_init(struct drm_device *dev)
{
mutex_init(&dev->mode_config.mutex);
drm_modeset_lock_init(&dev->mode_config.connection_mutex);
mutex_init(&dev->mode_config.idr_mutex);
mutex_init(&dev->mode_config.fb_lock);
mutex_init(&dev->mode_config.blob_lock);
INIT_LIST_HEAD(&dev->mode_config.fb_list);
INIT_LIST_HEAD(&dev->mode_config.crtc_list);
INIT_LIST_HEAD(&dev->mode_config.connector_list);
INIT_LIST_HEAD(&dev->mode_config.encoder_list);
INIT_LIST_HEAD(&dev->mode_config.property_list);
INIT_LIST_HEAD(&dev->mode_config.property_blob_list);
INIT_LIST_HEAD(&dev->mode_config.plane_list);
idr_init(&dev->mode_config.crtc_idr);
idr_init(&dev->mode_config.tile_idr);
ida_init(&dev->mode_config.connector_ida);
drm_modeset_lock_all(dev);
drm_mode_create_standard_properties(dev);
drm_modeset_unlock_all(dev);
/* Just to be sure */
dev->mode_config.num_fb = 0;
dev->mode_config.num_connector = 0;
dev->mode_config.num_crtc = 0;
dev->mode_config.num_encoder = 0;
dev->mode_config.num_overlay_plane = 0;
dev->mode_config.num_total_plane = 0;
}
EXPORT_SYMBOL(drm_mode_config_init);
/**
* drm_mode_config_cleanup - free up DRM mode_config info
* @dev: DRM device
*
* Free up all the connectors and CRTCs associated with this DRM device, then
* free up the framebuffers and associated buffer objects.
*
* Note that since this /should/ happen single-threaded at driver/device
* teardown time, no locking is required. It's the driver's job to ensure that
* this guarantee actually holds true.
*
* FIXME: cleanup any dangling user buffer objects too
*/
void drm_mode_config_cleanup(struct drm_device *dev)
{
struct drm_connector *connector, *ot;
struct drm_crtc *crtc, *ct;
struct drm_encoder *encoder, *enct;
struct drm_framebuffer *fb, *fbt;
struct drm_property *property, *pt;
struct drm_property_blob *blob, *bt;
struct drm_plane *plane, *plt;
list_for_each_entry_safe(encoder, enct, &dev->mode_config.encoder_list,
head) {
encoder->funcs->destroy(encoder);
}
list_for_each_entry_safe(connector, ot,
&dev->mode_config.connector_list, head) {
connector->funcs->destroy(connector);
}
list_for_each_entry_safe(property, pt, &dev->mode_config.property_list,
head) {
drm_property_destroy(dev, property);
}
list_for_each_entry_safe(plane, plt, &dev->mode_config.plane_list,
head) {
plane->funcs->destroy(plane);
}
list_for_each_entry_safe(crtc, ct, &dev->mode_config.crtc_list, head) {
crtc->funcs->destroy(crtc);
}
list_for_each_entry_safe(blob, bt, &dev->mode_config.property_blob_list,
head_global) {
drm_property_unreference_blob(blob);
}
/*
* Single-threaded teardown context, so it's not required to grab the
* fb_lock to protect against concurrent fb_list access. Contrary, it
* would actually deadlock with the drm_framebuffer_cleanup function.
*
* Also, if there are any framebuffers left, that's a driver leak now,
* so politely WARN about this.
*/
WARN_ON(!list_empty(&dev->mode_config.fb_list));
list_for_each_entry_safe(fb, fbt, &dev->mode_config.fb_list, head) {
drm_framebuffer_free(&fb->base.refcount);
}
ida_destroy(&dev->mode_config.connector_ida);
idr_destroy(&dev->mode_config.tile_idr);
idr_destroy(&dev->mode_config.crtc_idr);
drm_modeset_lock_fini(&dev->mode_config.connection_mutex);
}
EXPORT_SYMBOL(drm_mode_config_cleanup);
struct drm_property *drm_mode_create_rotation_property(struct drm_device *dev,
unsigned int supported_rotations)
{
static const struct drm_prop_enum_list props[] = {
{ DRM_ROTATE_0, "rotate-0" },
{ DRM_ROTATE_90, "rotate-90" },
{ DRM_ROTATE_180, "rotate-180" },
{ DRM_ROTATE_270, "rotate-270" },
{ DRM_REFLECT_X, "reflect-x" },
{ DRM_REFLECT_Y, "reflect-y" },
};
return drm_property_create_bitmask(dev, 0, "rotation",
props, ARRAY_SIZE(props),
supported_rotations);
}
EXPORT_SYMBOL(drm_mode_create_rotation_property);
/**
* DOC: Tile group
*
* Tile groups are used to represent tiled monitors with a unique
* integer identifier. Tiled monitors using DisplayID v1.3 have
* a unique 8-byte handle, we store this in a tile group, so we
* have a common identifier for all tiles in a monitor group.
*/
static void drm_tile_group_free(struct kref *kref)
{
struct drm_tile_group *tg = container_of(kref, struct drm_tile_group, refcount);
struct drm_device *dev = tg->dev;
mutex_lock(&dev->mode_config.idr_mutex);
idr_remove(&dev->mode_config.tile_idr, tg->id);
mutex_unlock(&dev->mode_config.idr_mutex);
kfree(tg);
}
/**
* drm_mode_put_tile_group - drop a reference to a tile group.
* @dev: DRM device
* @tg: tile group to drop reference to.
*
* drop reference to tile group and free if 0.
*/
void drm_mode_put_tile_group(struct drm_device *dev,
struct drm_tile_group *tg)
{
kref_put(&tg->refcount, drm_tile_group_free);
}
/**
* drm_mode_get_tile_group - get a reference to an existing tile group
* @dev: DRM device
* @topology: 8-bytes unique per monitor.
*
* Use the unique bytes to get a reference to an existing tile group.
*
* RETURNS:
* tile group or NULL if not found.
*/
struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev,
char topology[8])
{
struct drm_tile_group *tg;
int id;
mutex_lock(&dev->mode_config.idr_mutex);
idr_for_each_entry(&dev->mode_config.tile_idr, tg, id) {
if (!memcmp(tg->group_data, topology, 8)) {
if (!kref_get_unless_zero(&tg->refcount))
tg = NULL;
mutex_unlock(&dev->mode_config.idr_mutex);
return tg;
}
}
mutex_unlock(&dev->mode_config.idr_mutex);
return NULL;
}
EXPORT_SYMBOL(drm_mode_get_tile_group);
/**
* drm_mode_create_tile_group - create a tile group from a displayid description
* @dev: DRM device
* @topology: 8-bytes unique per monitor.
*
* Create a tile group for the unique monitor, and get a unique
* identifier for the tile group.
*
* RETURNS:
* new tile group or error.
*/
struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev,
char topology[8])
{
struct drm_tile_group *tg;
int ret;
tg = kzalloc(sizeof(*tg), GFP_KERNEL);
if (!tg)
return ERR_PTR(-ENOMEM);
kref_init(&tg->refcount);
memcpy(tg->group_data, topology, 8);
tg->dev = dev;
mutex_lock(&dev->mode_config.idr_mutex);
ret = idr_alloc(&dev->mode_config.tile_idr, tg, 1, 0, GFP_KERNEL);
if (ret >= 0) {
tg->id = ret;
} else {
kfree(tg);
tg = ERR_PTR(ret);
}
mutex_unlock(&dev->mode_config.idr_mutex);
return tg;
}
EXPORT_SYMBOL(drm_mode_create_tile_group);
/**
* drm_crtc_enable_color_mgmt - enable color management properties
* @crtc: DRM CRTC
* @degamma_lut_size: the size of the degamma lut (before CSC)
* @has_ctm: whether to attach ctm_property for CSC matrix
* @gamma_lut_size: the size of the gamma lut (after CSC)
*
* This function lets the driver enable the color correction
* properties on a CRTC. This includes 3 degamma, csc and gamma
* properties that userspace can set and 2 size properties to inform
* the userspace of the lut sizes. Each of the properties are
* optional. The gamma and degamma properties are only attached if
* their size is not 0 and ctm_property is only attached if has_ctm is
* true.
*/
void drm_crtc_enable_color_mgmt(struct drm_crtc *crtc,
uint degamma_lut_size,
bool has_ctm,
uint gamma_lut_size)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *config = &dev->mode_config;
if (degamma_lut_size) {
drm_object_attach_property(&crtc->base,
config->degamma_lut_property, 0);
drm_object_attach_property(&crtc->base,
config->degamma_lut_size_property,
degamma_lut_size);
}
if (has_ctm)
drm_object_attach_property(&crtc->base,
config->ctm_property, 0);
if (gamma_lut_size) {
drm_object_attach_property(&crtc->base,
config->gamma_lut_property, 0);
drm_object_attach_property(&crtc->base,
config->gamma_lut_size_property,
gamma_lut_size);
}
}
EXPORT_SYMBOL(drm_crtc_enable_color_mgmt);