OpenCloudOS-Kernel/drivers/ptp/ptp_idt82p33.c

1009 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Integrated Device Technology, Inc
//
#define pr_fmt(fmt) "IDT_82p33xxx: " fmt
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include <linux/bitops.h>
#include "ptp_private.h"
#include "ptp_idt82p33.h"
MODULE_DESCRIPTION("Driver for IDT 82p33xxx clock devices");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
/* Module Parameters */
static u32 sync_tod_timeout = SYNC_TOD_TIMEOUT_SEC;
module_param(sync_tod_timeout, uint, 0);
MODULE_PARM_DESC(sync_tod_timeout,
"duration in second to keep SYNC_TOD on (set to 0 to keep it always on)");
static u32 phase_snap_threshold = SNAP_THRESHOLD_NS;
module_param(phase_snap_threshold, uint, 0);
MODULE_PARM_DESC(phase_snap_threshold,
"threshold (150000ns by default) below which adjtime would ignore");
static void idt82p33_byte_array_to_timespec(struct timespec64 *ts,
u8 buf[TOD_BYTE_COUNT])
{
time64_t sec;
s32 nsec;
u8 i;
nsec = buf[3];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[2 - i];
}
sec = buf[9];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[8 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static void idt82p33_timespec_to_byte_array(struct timespec64 const *ts,
u8 buf[TOD_BYTE_COUNT])
{
time64_t sec;
s32 nsec;
u8 i;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
for (i = 0; i < 4; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 4; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
}
static int idt82p33_xfer(struct idt82p33 *idt82p33,
unsigned char regaddr,
unsigned char *buf,
unsigned int count,
int write)
{
struct i2c_client *client = idt82p33->client;
struct i2c_msg msg[2];
int cnt;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &regaddr;
msg[1].addr = client->addr;
msg[1].flags = write ? 0 : I2C_M_RD;
msg[1].len = count;
msg[1].buf = buf;
cnt = i2c_transfer(client->adapter, msg, 2);
if (cnt < 0) {
dev_err(&client->dev, "i2c_transfer returned %d\n", cnt);
return cnt;
} else if (cnt != 2) {
dev_err(&client->dev,
"i2c_transfer sent only %d of %d messages\n", cnt, 2);
return -EIO;
}
return 0;
}
static int idt82p33_page_offset(struct idt82p33 *idt82p33, unsigned char val)
{
int err;
if (idt82p33->page_offset == val)
return 0;
err = idt82p33_xfer(idt82p33, PAGE_ADDR, &val, sizeof(val), 1);
if (err)
dev_err(&idt82p33->client->dev,
"failed to set page offset %d\n", val);
else
idt82p33->page_offset = val;
return err;
}
static int idt82p33_rdwr(struct idt82p33 *idt82p33, unsigned int regaddr,
unsigned char *buf, unsigned int count, bool write)
{
u8 offset, page;
int err;
page = _PAGE(regaddr);
offset = _OFFSET(regaddr);
err = idt82p33_page_offset(idt82p33, page);
if (err)
goto out;
err = idt82p33_xfer(idt82p33, offset, buf, count, write);
out:
return err;
}
static int idt82p33_read(struct idt82p33 *idt82p33, unsigned int regaddr,
unsigned char *buf, unsigned int count)
{
return idt82p33_rdwr(idt82p33, regaddr, buf, count, false);
}
static int idt82p33_write(struct idt82p33 *idt82p33, unsigned int regaddr,
unsigned char *buf, unsigned int count)
{
return idt82p33_rdwr(idt82p33, regaddr, buf, count, true);
}
static int idt82p33_dpll_set_mode(struct idt82p33_channel *channel,
enum pll_mode mode)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 dpll_mode;
int err;
if (channel->pll_mode == mode)
return 0;
err = idt82p33_read(idt82p33, channel->dpll_mode_cnfg,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (mode << PLL_MODE_SHIFT);
err = idt82p33_write(idt82p33, channel->dpll_mode_cnfg,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
channel->pll_mode = dpll_mode;
return 0;
}
static int _idt82p33_gettime(struct idt82p33_channel *channel,
struct timespec64 *ts)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 buf[TOD_BYTE_COUNT];
u8 trigger;
int err;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
if (err)
return err;
if (idt82p33->calculate_overhead_flag)
idt82p33->start_time = ktime_get_raw();
err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf));
if (err)
return err;
idt82p33_byte_array_to_timespec(ts, buf);
return 0;
}
/*
* TOD Trigger:
* Bits[7:4] Write 0x9, MSB write
* Bits[3:0] Read 0x9, LSB read
*/
static int _idt82p33_settime(struct idt82p33_channel *channel,
struct timespec64 const *ts)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 local_ts = *ts;
char buf[TOD_BYTE_COUNT];
s64 dynamic_overhead_ns;
unsigned char trigger;
int err;
u8 i;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
if (err)
return err;
if (idt82p33->calculate_overhead_flag) {
dynamic_overhead_ns = ktime_to_ns(ktime_get_raw())
- ktime_to_ns(idt82p33->start_time);
timespec64_add_ns(&local_ts, dynamic_overhead_ns);
idt82p33->calculate_overhead_flag = 0;
}
idt82p33_timespec_to_byte_array(&local_ts, buf);
/*
* Store the new time value.
*/
for (i = 0; i < TOD_BYTE_COUNT; i++) {
err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i,
&buf[i], sizeof(buf[i]));
if (err)
return err;
}
return err;
}
static int _idt82p33_adjtime(struct idt82p33_channel *channel, s64 delta_ns)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 ts;
s64 now_ns;
int err;
idt82p33->calculate_overhead_flag = 1;
err = _idt82p33_gettime(channel, &ts);
if (err)
return err;
now_ns = timespec64_to_ns(&ts);
now_ns += delta_ns + idt82p33->tod_write_overhead_ns;
ts = ns_to_timespec64(now_ns);
err = _idt82p33_settime(channel, &ts);
return err;
}
static int _idt82p33_adjfine(struct idt82p33_channel *channel, long scaled_ppm)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
unsigned char buf[5] = {0};
int neg_adj = 0;
int err, i;
s64 fcw;
if (scaled_ppm == channel->current_freq_ppb)
return 0;
/*
* Frequency Control Word unit is: 1.68 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 168
*
* adjfine:
* scaled_ppm * 5^12
* FCW = -------------
* 168 * 2^4
*/
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
fcw = scaled_ppm * 244140625ULL;
fcw = div_u64(fcw, 2688);
if (neg_adj)
fcw = -fcw;
for (i = 0; i < 5; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO);
if (err)
return err;
err = idt82p33_write(idt82p33, channel->dpll_freq_cnfg,
buf, sizeof(buf));
if (err == 0)
channel->current_freq_ppb = scaled_ppm;
return err;
}
static int idt82p33_measure_one_byte_write_overhead(
struct idt82p33_channel *channel, s64 *overhead_ns)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
ktime_t start, stop;
s64 total_ns;
u8 trigger;
int err;
u8 i;
total_ns = 0;
*overhead_ns = 0;
trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG,
HW_TOD_RD_TRIG_SEL_LSB_TOD_STS);
for (i = 0; i < MAX_MEASURMENT_COUNT; i++) {
start = ktime_get_raw();
err = idt82p33_write(idt82p33, channel->dpll_tod_trigger,
&trigger, sizeof(trigger));
stop = ktime_get_raw();
if (err)
return err;
total_ns += ktime_to_ns(stop) - ktime_to_ns(start);
}
*overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT);
return err;
}
static int idt82p33_measure_tod_write_9_byte_overhead(
struct idt82p33_channel *channel)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 buf[TOD_BYTE_COUNT];
ktime_t start, stop;
s64 total_ns;
int err = 0;
u8 i, j;
total_ns = 0;
idt82p33->tod_write_overhead_ns = 0;
for (i = 0; i < MAX_MEASURMENT_COUNT; i++) {
start = ktime_get_raw();
/* Need one less byte for applicable overhead */
for (j = 0; j < (TOD_BYTE_COUNT - 1); j++) {
err = idt82p33_write(idt82p33,
channel->dpll_tod_cnfg + i,
&buf[i], sizeof(buf[i]));
if (err)
return err;
}
stop = ktime_get_raw();
total_ns += ktime_to_ns(stop) - ktime_to_ns(start);
}
idt82p33->tod_write_overhead_ns = div_s64(total_ns,
MAX_MEASURMENT_COUNT);
return err;
}
static int idt82p33_measure_settime_gettime_gap_overhead(
struct idt82p33_channel *channel, s64 *overhead_ns)
{
struct timespec64 ts1 = {0, 0};
struct timespec64 ts2;
int err;
*overhead_ns = 0;
err = _idt82p33_settime(channel, &ts1);
if (err)
return err;
err = _idt82p33_gettime(channel, &ts2);
if (!err)
*overhead_ns = timespec64_to_ns(&ts2) - timespec64_to_ns(&ts1);
return err;
}
static int idt82p33_measure_tod_write_overhead(struct idt82p33_channel *channel)
{
s64 trailing_overhead_ns, one_byte_write_ns, gap_ns;
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
idt82p33->tod_write_overhead_ns = 0;
err = idt82p33_measure_settime_gettime_gap_overhead(channel, &gap_ns);
if (err)
return err;
err = idt82p33_measure_one_byte_write_overhead(channel,
&one_byte_write_ns);
if (err)
return err;
err = idt82p33_measure_tod_write_9_byte_overhead(channel);
if (err)
return err;
trailing_overhead_ns = gap_ns - (2 * one_byte_write_ns);
idt82p33->tod_write_overhead_ns -= trailing_overhead_ns;
return err;
}
static int idt82p33_check_and_set_masks(struct idt82p33 *idt82p33,
u8 page,
u8 offset,
u8 val)
{
int err = 0;
if (page == PLLMASK_ADDR_HI && offset == PLLMASK_ADDR_LO) {
if ((val & 0xfc) || !(val & 0x3)) {
dev_err(&idt82p33->client->dev,
"Invalid PLL mask 0x%hhx\n", val);
err = -EINVAL;
} else {
idt82p33->pll_mask = val;
}
} else if (page == PLL0_OUTMASK_ADDR_HI &&
offset == PLL0_OUTMASK_ADDR_LO) {
idt82p33->channel[0].output_mask = val;
} else if (page == PLL1_OUTMASK_ADDR_HI &&
offset == PLL1_OUTMASK_ADDR_LO) {
idt82p33->channel[1].output_mask = val;
}
return err;
}
static void idt82p33_display_masks(struct idt82p33 *idt82p33)
{
u8 mask, i;
dev_info(&idt82p33->client->dev,
"pllmask = 0x%02x\n", idt82p33->pll_mask);
for (i = 0; i < MAX_PHC_PLL; i++) {
mask = 1 << i;
if (mask & idt82p33->pll_mask)
dev_info(&idt82p33->client->dev,
"PLL%d output_mask = 0x%04x\n",
i, idt82p33->channel[i].output_mask);
}
}
static int idt82p33_sync_tod(struct idt82p33_channel *channel, bool enable)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 sync_cnfg;
int err;
if (enable == channel->sync_tod_on) {
if (enable && sync_tod_timeout) {
mod_delayed_work(system_wq, &channel->sync_tod_work,
sync_tod_timeout * HZ);
}
return 0;
}
err = idt82p33_read(idt82p33, channel->dpll_sync_cnfg,
&sync_cnfg, sizeof(sync_cnfg));
if (err)
return err;
sync_cnfg &= ~SYNC_TOD;
if (enable)
sync_cnfg |= SYNC_TOD;
err = idt82p33_write(idt82p33, channel->dpll_sync_cnfg,
&sync_cnfg, sizeof(sync_cnfg));
if (err)
return err;
channel->sync_tod_on = enable;
if (enable && sync_tod_timeout) {
mod_delayed_work(system_wq, &channel->sync_tod_work,
sync_tod_timeout * HZ);
}
return 0;
}
static void idt82p33_sync_tod_work_handler(struct work_struct *work)
{
struct idt82p33_channel *channel =
container_of(work, struct idt82p33_channel, sync_tod_work.work);
struct idt82p33 *idt82p33 = channel->idt82p33;
mutex_lock(&idt82p33->reg_lock);
(void)idt82p33_sync_tod(channel, false);
mutex_unlock(&idt82p33->reg_lock);
}
static int idt82p33_pps_enable(struct idt82p33_channel *channel, bool enable)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
u8 mask, outn, val;
int err;
mask = channel->output_mask;
outn = 0;
while (mask) {
if (mask & 0x1) {
err = idt82p33_read(idt82p33, OUT_MUX_CNFG(outn),
&val, sizeof(val));
if (err)
return err;
if (enable)
val &= ~SQUELCH_ENABLE;
else
val |= SQUELCH_ENABLE;
err = idt82p33_write(idt82p33, OUT_MUX_CNFG(outn),
&val, sizeof(val));
if (err)
return err;
}
mask >>= 0x1;
outn++;
}
return 0;
}
static int idt82p33_enable_tod(struct idt82p33_channel *channel)
{
struct idt82p33 *idt82p33 = channel->idt82p33;
struct timespec64 ts = {0, 0};
int err;
u8 val;
val = 0;
err = idt82p33_write(idt82p33, channel->dpll_input_mode_cnfg,
&val, sizeof(val));
if (err)
return err;
err = idt82p33_pps_enable(channel, false);
if (err)
return err;
err = idt82p33_measure_tod_write_overhead(channel);
if (err)
return err;
err = _idt82p33_settime(channel, &ts);
if (err)
return err;
return idt82p33_sync_tod(channel, true);
}
static void idt82p33_ptp_clock_unregister_all(struct idt82p33 *idt82p33)
{
struct idt82p33_channel *channel;
u8 i;
for (i = 0; i < MAX_PHC_PLL; i++) {
channel = &idt82p33->channel[i];
if (channel->ptp_clock) {
ptp_clock_unregister(channel->ptp_clock);
cancel_delayed_work_sync(&channel->sync_tod_work);
}
}
}
static int idt82p33_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
err = -EOPNOTSUPP;
mutex_lock(&idt82p33->reg_lock);
if (rq->type == PTP_CLK_REQ_PEROUT) {
if (!on)
err = idt82p33_pps_enable(channel, false);
/* Only accept a 1-PPS aligned to the second. */
else if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec) {
err = -ERANGE;
} else
err = idt82p33_pps_enable(channel, true);
}
mutex_unlock(&idt82p33->reg_lock);
return err;
}
static int idt82p33_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(&idt82p33->reg_lock);
err = _idt82p33_adjfine(channel, scaled_ppm);
mutex_unlock(&idt82p33->reg_lock);
return err;
}
static int idt82p33_adjtime(struct ptp_clock_info *ptp, s64 delta_ns)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(&idt82p33->reg_lock);
if (abs(delta_ns) < phase_snap_threshold) {
mutex_unlock(&idt82p33->reg_lock);
return 0;
}
err = _idt82p33_adjtime(channel, delta_ns);
if (err) {
mutex_unlock(&idt82p33->reg_lock);
return err;
}
err = idt82p33_sync_tod(channel, true);
mutex_unlock(&idt82p33->reg_lock);
return err;
}
static int idt82p33_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(&idt82p33->reg_lock);
err = _idt82p33_gettime(channel, ts);
mutex_unlock(&idt82p33->reg_lock);
return err;
}
static int idt82p33_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idt82p33_channel *channel =
container_of(ptp, struct idt82p33_channel, caps);
struct idt82p33 *idt82p33 = channel->idt82p33;
int err;
mutex_lock(&idt82p33->reg_lock);
err = _idt82p33_settime(channel, ts);
mutex_unlock(&idt82p33->reg_lock);
return err;
}
static int idt82p33_channel_init(struct idt82p33_channel *channel, int index)
{
switch (index) {
case 0:
channel->dpll_tod_cnfg = DPLL1_TOD_CNFG;
channel->dpll_tod_trigger = DPLL1_TOD_TRIGGER;
channel->dpll_tod_sts = DPLL1_TOD_STS;
channel->dpll_mode_cnfg = DPLL1_OPERATING_MODE_CNFG;
channel->dpll_freq_cnfg = DPLL1_HOLDOVER_FREQ_CNFG;
channel->dpll_phase_cnfg = DPLL1_PHASE_OFFSET_CNFG;
channel->dpll_sync_cnfg = DPLL1_SYNC_EDGE_CNFG;
channel->dpll_input_mode_cnfg = DPLL1_INPUT_MODE_CNFG;
break;
case 1:
channel->dpll_tod_cnfg = DPLL2_TOD_CNFG;
channel->dpll_tod_trigger = DPLL2_TOD_TRIGGER;
channel->dpll_tod_sts = DPLL2_TOD_STS;
channel->dpll_mode_cnfg = DPLL2_OPERATING_MODE_CNFG;
channel->dpll_freq_cnfg = DPLL2_HOLDOVER_FREQ_CNFG;
channel->dpll_phase_cnfg = DPLL2_PHASE_OFFSET_CNFG;
channel->dpll_sync_cnfg = DPLL2_SYNC_EDGE_CNFG;
channel->dpll_input_mode_cnfg = DPLL2_INPUT_MODE_CNFG;
break;
default:
return -EINVAL;
}
INIT_DELAYED_WORK(&channel->sync_tod_work,
idt82p33_sync_tod_work_handler);
channel->sync_tod_on = false;
channel->current_freq_ppb = 0;
return 0;
}
static void idt82p33_caps_init(struct ptp_clock_info *caps)
{
caps->owner = THIS_MODULE;
caps->max_adj = 92000;
caps->adjfine = idt82p33_adjfine;
caps->adjtime = idt82p33_adjtime;
caps->gettime64 = idt82p33_gettime;
caps->settime64 = idt82p33_settime;
caps->enable = idt82p33_enable;
}
static int idt82p33_enable_channel(struct idt82p33 *idt82p33, u32 index)
{
struct idt82p33_channel *channel;
int err;
if (!(index < MAX_PHC_PLL))
return -EINVAL;
channel = &idt82p33->channel[index];
err = idt82p33_channel_init(channel, index);
if (err)
return err;
channel->idt82p33 = idt82p33;
idt82p33_caps_init(&channel->caps);
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT 82P33 PLL%u", index);
channel->caps.n_per_out = hweight8(channel->output_mask);
err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO);
if (err)
return err;
err = idt82p33_enable_tod(channel);
if (err)
return err;
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
dev_info(&idt82p33->client->dev, "PLL%d registered as ptp%d\n",
index, channel->ptp_clock->index);
return 0;
}
static int idt82p33_load_firmware(struct idt82p33 *idt82p33)
{
const struct firmware *fw;
struct idt82p33_fwrc *rec;
u8 loaddr, page, val;
int err;
s32 len;
dev_dbg(&idt82p33->client->dev,
"requesting firmware '%s'\n", FW_FILENAME);
err = request_firmware(&fw, FW_FILENAME, &idt82p33->client->dev);
if (err)
return err;
dev_dbg(&idt82p33->client->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idt82p33_fwrc *) fw->data;
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(&idt82p33->client->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
val = rec->value;
loaddr = rec->loaddr;
page = rec->hiaddr;
rec++;
err = idt82p33_check_and_set_masks(idt82p33, page,
loaddr, val);
}
if (err == 0) {
/* maximum 8 pages */
if (page >= PAGE_NUM)
continue;
/* Page size 128, last 4 bytes of page skipped */
if (((loaddr > 0x7b) && (loaddr <= 0x7f))
|| ((loaddr > 0xfb) && (loaddr <= 0xff)))
continue;
err = idt82p33_write(idt82p33, _ADDR(page, loaddr),
&val, sizeof(val));
}
if (err)
goto out;
}
idt82p33_display_masks(idt82p33);
out:
release_firmware(fw);
return err;
}
static int idt82p33_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct idt82p33 *idt82p33;
int err;
u8 i;
(void)id;
idt82p33 = devm_kzalloc(&client->dev,
sizeof(struct idt82p33), GFP_KERNEL);
if (!idt82p33)
return -ENOMEM;
mutex_init(&idt82p33->reg_lock);
idt82p33->client = client;
idt82p33->page_offset = 0xff;
idt82p33->tod_write_overhead_ns = 0;
idt82p33->calculate_overhead_flag = 0;
idt82p33->pll_mask = DEFAULT_PLL_MASK;
idt82p33->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idt82p33->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
mutex_lock(&idt82p33->reg_lock);
err = idt82p33_load_firmware(idt82p33);
if (err)
dev_warn(&idt82p33->client->dev,
"loading firmware failed with %d\n", err);
if (idt82p33->pll_mask) {
for (i = 0; i < MAX_PHC_PLL; i++) {
if (idt82p33->pll_mask & (1 << i)) {
err = idt82p33_enable_channel(idt82p33, i);
if (err)
break;
}
}
} else {
dev_err(&idt82p33->client->dev,
"no PLLs flagged as PHCs, nothing to do\n");
err = -ENODEV;
}
mutex_unlock(&idt82p33->reg_lock);
if (err) {
idt82p33_ptp_clock_unregister_all(idt82p33);
return err;
}
i2c_set_clientdata(client, idt82p33);
return 0;
}
static int idt82p33_remove(struct i2c_client *client)
{
struct idt82p33 *idt82p33 = i2c_get_clientdata(client);
idt82p33_ptp_clock_unregister_all(idt82p33);
mutex_destroy(&idt82p33->reg_lock);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id idt82p33_dt_id[] = {
{ .compatible = "idt,82p33810" },
{ .compatible = "idt,82p33813" },
{ .compatible = "idt,82p33814" },
{ .compatible = "idt,82p33831" },
{ .compatible = "idt,82p33910" },
{ .compatible = "idt,82p33913" },
{ .compatible = "idt,82p33914" },
{ .compatible = "idt,82p33931" },
{},
};
MODULE_DEVICE_TABLE(of, idt82p33_dt_id);
#endif
static const struct i2c_device_id idt82p33_i2c_id[] = {
{ "idt82p33810", },
{ "idt82p33813", },
{ "idt82p33814", },
{ "idt82p33831", },
{ "idt82p33910", },
{ "idt82p33913", },
{ "idt82p33914", },
{ "idt82p33931", },
{},
};
MODULE_DEVICE_TABLE(i2c, idt82p33_i2c_id);
static struct i2c_driver idt82p33_driver = {
.driver = {
.of_match_table = of_match_ptr(idt82p33_dt_id),
.name = "idt82p33",
},
.probe = idt82p33_probe,
.remove = idt82p33_remove,
.id_table = idt82p33_i2c_id,
};
module_i2c_driver(idt82p33_driver);