OpenCloudOS-Kernel/drivers/net/ethernet/freescale/fs_enet/mac-fec.c

502 lines
12 KiB
C
Raw Normal View History

/*
* Freescale Ethernet controllers
*
* Copyright (c) 2005 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/cpm1.h>
#endif
#include "fs_enet.h"
#include "fec.h"
/*************************************************/
#if defined(CONFIG_CPM1)
/* for a CPM1 __raw_xxx's are sufficient */
#define __fs_out32(addr, x) __raw_writel(x, addr)
#define __fs_out16(addr, x) __raw_writew(x, addr)
#define __fs_in32(addr) __raw_readl(addr)
#define __fs_in16(addr) __raw_readw(addr)
#else
/* for others play it safe */
#define __fs_out32(addr, x) out_be32(addr, x)
#define __fs_out16(addr, x) out_be16(addr, x)
#define __fs_in32(addr) in_be32(addr)
#define __fs_in16(addr) in_be16(addr)
#endif
/* write */
#define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
/* read */
#define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
/* set bits */
#define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
/* clear bits */
#define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
/*
* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
static int whack_reset(struct fec __iomem *fecp)
{
int i;
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
for (i = 0; i < FEC_RESET_DELAY; i++) {
if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
return 0; /* OK */
udelay(1);
}
return -1;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct platform_device *ofdev = to_platform_device(fep->dev);
fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
if (fep->interrupt == NO_IRQ)
return -EINVAL;
fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
if (!fep->fcc.fccp)
return -EINVAL;
return 0;
}
#define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB)
#define FEC_RX_EVENT (FEC_ENET_RXF)
#define FEC_TX_EVENT (FEC_ENET_TXF)
#define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
FEC_ENET_BABT | FEC_ENET_EBERR)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->fec.hthi = 0;
fep->fec.htlo = 0;
fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FEC_RX_EVENT;
fep->ev_tx = FEC_TX_EVENT;
fep->ev_err = FEC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if(fep->ring_base)
dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
* sizeof(cbd_t),
(void __force *)fep->ring_base,
fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->fec.hthi = 0;
fep->fec.htlo = 0;
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
int temp, hash_index, i, j;
u32 crc, csrVal;
u8 byte, msb;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
byte = mac[i];
for (j = 0; j < 8; j++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (byte & 0x1))
crc ^= FEC_CRC_POLY;
byte >>= 1;
}
}
temp = (crc & 0x3f) >> 1;
hash_index = ((temp & 0x01) << 4) |
((temp & 0x02) << 2) |
((temp & 0x04)) |
((temp & 0x08) >> 2) |
((temp & 0x10) >> 4);
csrVal = 1 << hash_index;
if (crc & 1)
fep->fec.hthi |= csrVal;
else
fep->fec.htlo |= csrVal;
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
fep->fec.hthi = 0xffffffffU;
fep->fec.htlo = 0xffffffffU;
}
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
FW(fecp, grp_hash_table_high, fep->fec.hthi);
FW(fecp, grp_hash_table_low, fep->fec.htlo);
}
static void set_multicast_list(struct net_device *dev)
{
struct netdev_hw_addr *ha;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
netdev_for_each_mc_addr(ha, dev)
set_multicast_one(dev, ha->addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
const struct fs_platform_info *fpi = fep->fpi;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
int r;
u32 addrhi, addrlo;
struct mii_bus* mii = fep->phydev->bus;
struct fec_info* fec_inf = mii->priv;
r = whack_reset(fep->fec.fecp);
if (r != 0)
dev_err(fep->dev, "FEC Reset FAILED!\n");
/*
* Set station address.
*/
addrhi = ((u32) dev->dev_addr[0] << 24) |
((u32) dev->dev_addr[1] << 16) |
((u32) dev->dev_addr[2] << 8) |
(u32) dev->dev_addr[3];
addrlo = ((u32) dev->dev_addr[4] << 24) |
((u32) dev->dev_addr[5] << 16);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
/*
* Reset all multicast.
*/
FW(fecp, grp_hash_table_high, fep->fec.hthi);
FW(fecp, grp_hash_table_low, fep->fec.htlo);
/*
* Set maximum receive buffer size.
*/
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
#ifdef CONFIG_FS_ENET_MPC5121_FEC
FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
#else
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
#endif
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/*
* Set receive and transmit descriptor base.
*/
FW(fecp, r_des_start, rx_bd_base_phys);
FW(fecp, x_des_start, tx_bd_base_phys);
fs_init_bds(dev);
/*
* Enable big endian and don't care about SDMA FC.
*/
#ifdef CONFIG_FS_ENET_MPC5121_FEC
FS(fecp, dma_control, 0xC0000000);
#else
FW(fecp, fun_code, 0x78000000);
#endif
/*
* Set MII speed.
*/
FW(fecp, mii_speed, fec_inf->mii_speed);
/*
* Clear any outstanding interrupt.
*/
FW(fecp, ievent, 0xffc0);
#ifndef CONFIG_FS_ENET_MPC5121_FEC
FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
#else
/*
* Only set MII/RMII mode - do not touch maximum frame length
* configured before.
*/
FS(fecp, r_cntrl, fpi->use_rmii ?
FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
#endif
/*
* adjust to duplex mode
*/
if (fep->phydev->duplex) {
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
} else {
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
}
/*
* Enable interrupts we wish to service.
*/
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB);
/*
* And last, enable the transmit and receive processing.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, r_des_active, 0x01000000);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
struct fec __iomem *fecp = fep->fec.fecp;
struct fec_info* feci= fep->phydev->bus->priv;
int i;
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
i < FEC_RESET_DELAY; i++)
udelay(1);
if (i == FEC_RESET_DELAY)
dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
/*
* Disable FEC. Let only MII interrupts.
*/
FW(fecp, imask, 0);
FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
fs_cleanup_bds(dev);
/* shut down FEC1? that's where the mii bus is */
if (fpi->has_phy) {
FS(fecp, r_cntrl, fpi->use_rmii ?
FEC_RCNTRL_RMII_MODE :
FEC_RCNTRL_MII_MODE); /* MII/RMII enable */
FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, ievent, FEC_ENET_MII);
FW(fecp, mii_speed, feci->mii_speed);
}
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FW(fecp, r_des_active, 0x01000000);
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FW(fecp, x_des_active, 0x01000000);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
return FR(fecp, ievent) & FR(fecp, imask);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct fec __iomem *fecp = fep->fec.fecp;
FW(fecp, ievent, int_events);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(struct fec))
return -EINVAL;
memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(struct fec);
}
static void tx_restart(struct net_device *dev)
{
/* nothing */
}
/*************************************************************************/
const struct fs_ops fs_fec_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};