OpenCloudOS-Kernel/drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c

1860 lines
44 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Marvell. */
#include <linux/ctype.h>
#include <linux/firmware.h>
#include "otx2_cptpf_ucode.h"
#include "otx2_cpt_common.h"
#include "otx2_cptpf.h"
#include "otx2_cptlf.h"
#include "otx2_cpt_reqmgr.h"
#include "rvu_reg.h"
#define CSR_DELAY 30
#define LOADFVC_RLEN 8
#define LOADFVC_MAJOR_OP 0x01
#define LOADFVC_MINOR_OP 0x08
#define CTX_FLUSH_TIMER_CNT 0xFFFFFF
struct fw_info_t {
struct list_head ucodes;
};
static struct otx2_cpt_bitmap get_cores_bmap(struct device *dev,
struct otx2_cpt_eng_grp_info *eng_grp)
{
struct otx2_cpt_bitmap bmap = { {0} };
bool found = false;
int i;
if (eng_grp->g->engs_num < 0 ||
eng_grp->g->engs_num > OTX2_CPT_MAX_ENGINES) {
dev_err(dev, "unsupported number of engines %d on octeontx2\n",
eng_grp->g->engs_num);
return bmap;
}
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
if (eng_grp->engs[i].type) {
bitmap_or(bmap.bits, bmap.bits,
eng_grp->engs[i].bmap,
eng_grp->g->engs_num);
bmap.size = eng_grp->g->engs_num;
found = true;
}
}
if (!found)
dev_err(dev, "No engines reserved for engine group %d\n",
eng_grp->idx);
return bmap;
}
static int is_eng_type(int val, int eng_type)
{
return val & (1 << eng_type);
}
static int is_2nd_ucode_used(struct otx2_cpt_eng_grp_info *eng_grp)
{
if (eng_grp->ucode[1].type)
return true;
else
return false;
}
static void set_ucode_filename(struct otx2_cpt_ucode *ucode,
const char *filename)
{
strlcpy(ucode->filename, filename, OTX2_CPT_NAME_LENGTH);
}
static char *get_eng_type_str(int eng_type)
{
char *str = "unknown";
switch (eng_type) {
case OTX2_CPT_SE_TYPES:
str = "SE";
break;
case OTX2_CPT_IE_TYPES:
str = "IE";
break;
case OTX2_CPT_AE_TYPES:
str = "AE";
break;
}
return str;
}
static char *get_ucode_type_str(int ucode_type)
{
char *str = "unknown";
switch (ucode_type) {
case (1 << OTX2_CPT_SE_TYPES):
str = "SE";
break;
case (1 << OTX2_CPT_IE_TYPES):
str = "IE";
break;
case (1 << OTX2_CPT_AE_TYPES):
str = "AE";
break;
case (1 << OTX2_CPT_SE_TYPES | 1 << OTX2_CPT_IE_TYPES):
str = "SE+IPSEC";
break;
}
return str;
}
static int get_ucode_type(struct device *dev,
struct otx2_cpt_ucode_hdr *ucode_hdr,
int *ucode_type)
{
struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev);
char ver_str_prefix[OTX2_CPT_UCODE_VER_STR_SZ];
char tmp_ver_str[OTX2_CPT_UCODE_VER_STR_SZ];
struct pci_dev *pdev = cptpf->pdev;
int i, val = 0;
u8 nn;
strlcpy(tmp_ver_str, ucode_hdr->ver_str, OTX2_CPT_UCODE_VER_STR_SZ);
for (i = 0; i < strlen(tmp_ver_str); i++)
tmp_ver_str[i] = tolower(tmp_ver_str[i]);
sprintf(ver_str_prefix, "ocpt-%02d", pdev->revision);
if (!strnstr(tmp_ver_str, ver_str_prefix, OTX2_CPT_UCODE_VER_STR_SZ))
return -EINVAL;
nn = ucode_hdr->ver_num.nn;
if (strnstr(tmp_ver_str, "se-", OTX2_CPT_UCODE_VER_STR_SZ) &&
(nn == OTX2_CPT_SE_UC_TYPE1 || nn == OTX2_CPT_SE_UC_TYPE2 ||
nn == OTX2_CPT_SE_UC_TYPE3))
val |= 1 << OTX2_CPT_SE_TYPES;
if (strnstr(tmp_ver_str, "ie-", OTX2_CPT_UCODE_VER_STR_SZ) &&
(nn == OTX2_CPT_IE_UC_TYPE1 || nn == OTX2_CPT_IE_UC_TYPE2 ||
nn == OTX2_CPT_IE_UC_TYPE3))
val |= 1 << OTX2_CPT_IE_TYPES;
if (strnstr(tmp_ver_str, "ae", OTX2_CPT_UCODE_VER_STR_SZ) &&
nn == OTX2_CPT_AE_UC_TYPE)
val |= 1 << OTX2_CPT_AE_TYPES;
*ucode_type = val;
if (!val)
return -EINVAL;
return 0;
}
static int __write_ucode_base(struct otx2_cptpf_dev *cptpf, int eng,
dma_addr_t dma_addr, int blkaddr)
{
return otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_UCODE_BASE(eng),
(u64)dma_addr, blkaddr);
}
static int cptx_set_ucode_base(struct otx2_cpt_eng_grp_info *eng_grp,
struct otx2_cptpf_dev *cptpf, int blkaddr)
{
struct otx2_cpt_engs_rsvd *engs;
dma_addr_t dma_addr;
int i, bit, ret;
/* Set PF number for microcode fetches */
ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_PF_FUNC,
cptpf->pf_id << RVU_PFVF_PF_SHIFT, blkaddr);
if (ret)
return ret;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
engs = &eng_grp->engs[i];
if (!engs->type)
continue;
dma_addr = engs->ucode->dma;
/*
* Set UCODE_BASE only for the cores which are not used,
* other cores should have already valid UCODE_BASE set
*/
for_each_set_bit(bit, engs->bmap, eng_grp->g->engs_num)
if (!eng_grp->g->eng_ref_cnt[bit]) {
ret = __write_ucode_base(cptpf, bit, dma_addr,
blkaddr);
if (ret)
return ret;
}
}
return 0;
}
static int cpt_set_ucode_base(struct otx2_cpt_eng_grp_info *eng_grp, void *obj)
{
struct otx2_cptpf_dev *cptpf = obj;
int ret;
if (cptpf->has_cpt1) {
ret = cptx_set_ucode_base(eng_grp, cptpf, BLKADDR_CPT1);
if (ret)
return ret;
}
return cptx_set_ucode_base(eng_grp, cptpf, BLKADDR_CPT0);
}
static int cptx_detach_and_disable_cores(struct otx2_cpt_eng_grp_info *eng_grp,
struct otx2_cptpf_dev *cptpf,
struct otx2_cpt_bitmap bmap,
int blkaddr)
{
int i, timeout = 10;
int busy, ret;
u64 reg = 0;
/* Detach the cores from group */
for_each_set_bit(i, bmap.bits, bmap.size) {
ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_CTL2(i), &reg, blkaddr);
if (ret)
return ret;
if (reg & (1ull << eng_grp->idx)) {
eng_grp->g->eng_ref_cnt[i]--;
reg &= ~(1ull << eng_grp->idx);
ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox,
cptpf->pdev,
CPT_AF_EXEX_CTL2(i), reg,
blkaddr);
if (ret)
return ret;
}
}
/* Wait for cores to become idle */
do {
busy = 0;
usleep_range(10000, 20000);
if (timeout-- < 0)
return -EBUSY;
for_each_set_bit(i, bmap.bits, bmap.size) {
ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox,
cptpf->pdev,
CPT_AF_EXEX_STS(i), &reg,
blkaddr);
if (ret)
return ret;
if (reg & 0x1) {
busy = 1;
break;
}
}
} while (busy);
/* Disable the cores only if they are not used anymore */
for_each_set_bit(i, bmap.bits, bmap.size) {
if (!eng_grp->g->eng_ref_cnt[i]) {
ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox,
cptpf->pdev,
CPT_AF_EXEX_CTL(i), 0x0,
blkaddr);
if (ret)
return ret;
}
}
return 0;
}
static int cpt_detach_and_disable_cores(struct otx2_cpt_eng_grp_info *eng_grp,
void *obj)
{
struct otx2_cptpf_dev *cptpf = obj;
struct otx2_cpt_bitmap bmap;
int ret;
bmap = get_cores_bmap(&cptpf->pdev->dev, eng_grp);
if (!bmap.size)
return -EINVAL;
if (cptpf->has_cpt1) {
ret = cptx_detach_and_disable_cores(eng_grp, cptpf, bmap,
BLKADDR_CPT1);
if (ret)
return ret;
}
return cptx_detach_and_disable_cores(eng_grp, cptpf, bmap,
BLKADDR_CPT0);
}
static int cptx_attach_and_enable_cores(struct otx2_cpt_eng_grp_info *eng_grp,
struct otx2_cptpf_dev *cptpf,
struct otx2_cpt_bitmap bmap,
int blkaddr)
{
u64 reg = 0;
int i, ret;
/* Attach the cores to the group */
for_each_set_bit(i, bmap.bits, bmap.size) {
ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_CTL2(i), &reg, blkaddr);
if (ret)
return ret;
if (!(reg & (1ull << eng_grp->idx))) {
eng_grp->g->eng_ref_cnt[i]++;
reg |= 1ull << eng_grp->idx;
ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox,
cptpf->pdev,
CPT_AF_EXEX_CTL2(i), reg,
blkaddr);
if (ret)
return ret;
}
}
/* Enable the cores */
for_each_set_bit(i, bmap.bits, bmap.size) {
ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_CTL(i), 0x1,
blkaddr);
if (ret)
return ret;
}
return otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev);
}
static int cpt_attach_and_enable_cores(struct otx2_cpt_eng_grp_info *eng_grp,
void *obj)
{
struct otx2_cptpf_dev *cptpf = obj;
struct otx2_cpt_bitmap bmap;
int ret;
bmap = get_cores_bmap(&cptpf->pdev->dev, eng_grp);
if (!bmap.size)
return -EINVAL;
if (cptpf->has_cpt1) {
ret = cptx_attach_and_enable_cores(eng_grp, cptpf, bmap,
BLKADDR_CPT1);
if (ret)
return ret;
}
return cptx_attach_and_enable_cores(eng_grp, cptpf, bmap, BLKADDR_CPT0);
}
static int load_fw(struct device *dev, struct fw_info_t *fw_info,
char *filename)
{
struct otx2_cpt_ucode_hdr *ucode_hdr;
struct otx2_cpt_uc_info_t *uc_info;
int ucode_type, ucode_size;
int ret;
uc_info = kzalloc(sizeof(*uc_info), GFP_KERNEL);
if (!uc_info)
return -ENOMEM;
ret = request_firmware(&uc_info->fw, filename, dev);
if (ret)
goto free_uc_info;
ucode_hdr = (struct otx2_cpt_ucode_hdr *)uc_info->fw->data;
ret = get_ucode_type(dev, ucode_hdr, &ucode_type);
if (ret)
goto release_fw;
ucode_size = ntohl(ucode_hdr->code_length) * 2;
if (!ucode_size) {
dev_err(dev, "Ucode %s invalid size\n", filename);
ret = -EINVAL;
goto release_fw;
}
set_ucode_filename(&uc_info->ucode, filename);
memcpy(uc_info->ucode.ver_str, ucode_hdr->ver_str,
OTX2_CPT_UCODE_VER_STR_SZ);
uc_info->ucode.ver_num = ucode_hdr->ver_num;
uc_info->ucode.type = ucode_type;
uc_info->ucode.size = ucode_size;
list_add_tail(&uc_info->list, &fw_info->ucodes);
return 0;
release_fw:
release_firmware(uc_info->fw);
free_uc_info:
kfree(uc_info);
return ret;
}
static void cpt_ucode_release_fw(struct fw_info_t *fw_info)
{
struct otx2_cpt_uc_info_t *curr, *temp;
if (!fw_info)
return;
list_for_each_entry_safe(curr, temp, &fw_info->ucodes, list) {
list_del(&curr->list);
release_firmware(curr->fw);
kfree(curr);
}
}
static struct otx2_cpt_uc_info_t *get_ucode(struct fw_info_t *fw_info,
int ucode_type)
{
struct otx2_cpt_uc_info_t *curr;
list_for_each_entry(curr, &fw_info->ucodes, list) {
if (!is_eng_type(curr->ucode.type, ucode_type))
continue;
return curr;
}
return NULL;
}
static void print_uc_info(struct fw_info_t *fw_info)
{
struct otx2_cpt_uc_info_t *curr;
list_for_each_entry(curr, &fw_info->ucodes, list) {
pr_debug("Ucode filename %s\n", curr->ucode.filename);
pr_debug("Ucode version string %s\n", curr->ucode.ver_str);
pr_debug("Ucode version %d.%d.%d.%d\n",
curr->ucode.ver_num.nn, curr->ucode.ver_num.xx,
curr->ucode.ver_num.yy, curr->ucode.ver_num.zz);
pr_debug("Ucode type (%d) %s\n", curr->ucode.type,
get_ucode_type_str(curr->ucode.type));
pr_debug("Ucode size %d\n", curr->ucode.size);
pr_debug("Ucode ptr %p\n", curr->fw->data);
}
}
static int cpt_ucode_load_fw(struct pci_dev *pdev, struct fw_info_t *fw_info)
{
char filename[OTX2_CPT_NAME_LENGTH];
char eng_type[8] = {0};
int ret, e, i;
INIT_LIST_HEAD(&fw_info->ucodes);
for (e = 1; e < OTX2_CPT_MAX_ENG_TYPES; e++) {
strcpy(eng_type, get_eng_type_str(e));
for (i = 0; i < strlen(eng_type); i++)
eng_type[i] = tolower(eng_type[i]);
snprintf(filename, sizeof(filename), "mrvl/cpt%02d/%s.out",
pdev->revision, eng_type);
/* Request firmware for each engine type */
ret = load_fw(&pdev->dev, fw_info, filename);
if (ret)
goto release_fw;
}
print_uc_info(fw_info);
return 0;
release_fw:
cpt_ucode_release_fw(fw_info);
return ret;
}
static struct otx2_cpt_engs_rsvd *find_engines_by_type(
struct otx2_cpt_eng_grp_info *eng_grp,
int eng_type)
{
int i;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
if (!eng_grp->engs[i].type)
continue;
if (eng_grp->engs[i].type == eng_type)
return &eng_grp->engs[i];
}
return NULL;
}
static int eng_grp_has_eng_type(struct otx2_cpt_eng_grp_info *eng_grp,
int eng_type)
{
struct otx2_cpt_engs_rsvd *engs;
engs = find_engines_by_type(eng_grp, eng_type);
return (engs != NULL ? 1 : 0);
}
static int update_engines_avail_count(struct device *dev,
struct otx2_cpt_engs_available *avail,
struct otx2_cpt_engs_rsvd *engs, int val)
{
switch (engs->type) {
case OTX2_CPT_SE_TYPES:
avail->se_cnt += val;
break;
case OTX2_CPT_IE_TYPES:
avail->ie_cnt += val;
break;
case OTX2_CPT_AE_TYPES:
avail->ae_cnt += val;
break;
default:
dev_err(dev, "Invalid engine type %d\n", engs->type);
return -EINVAL;
}
return 0;
}
static int update_engines_offset(struct device *dev,
struct otx2_cpt_engs_available *avail,
struct otx2_cpt_engs_rsvd *engs)
{
switch (engs->type) {
case OTX2_CPT_SE_TYPES:
engs->offset = 0;
break;
case OTX2_CPT_IE_TYPES:
engs->offset = avail->max_se_cnt;
break;
case OTX2_CPT_AE_TYPES:
engs->offset = avail->max_se_cnt + avail->max_ie_cnt;
break;
default:
dev_err(dev, "Invalid engine type %d\n", engs->type);
return -EINVAL;
}
return 0;
}
static int release_engines(struct device *dev,
struct otx2_cpt_eng_grp_info *grp)
{
int i, ret = 0;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
if (!grp->engs[i].type)
continue;
if (grp->engs[i].count > 0) {
ret = update_engines_avail_count(dev, &grp->g->avail,
&grp->engs[i],
grp->engs[i].count);
if (ret)
return ret;
}
grp->engs[i].type = 0;
grp->engs[i].count = 0;
grp->engs[i].offset = 0;
grp->engs[i].ucode = NULL;
bitmap_zero(grp->engs[i].bmap, grp->g->engs_num);
}
return 0;
}
static int do_reserve_engines(struct device *dev,
struct otx2_cpt_eng_grp_info *grp,
struct otx2_cpt_engines *req_engs)
{
struct otx2_cpt_engs_rsvd *engs = NULL;
int i, ret;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
if (!grp->engs[i].type) {
engs = &grp->engs[i];
break;
}
}
if (!engs)
return -ENOMEM;
engs->type = req_engs->type;
engs->count = req_engs->count;
ret = update_engines_offset(dev, &grp->g->avail, engs);
if (ret)
return ret;
if (engs->count > 0) {
ret = update_engines_avail_count(dev, &grp->g->avail, engs,
-engs->count);
if (ret)
return ret;
}
return 0;
}
static int check_engines_availability(struct device *dev,
struct otx2_cpt_eng_grp_info *grp,
struct otx2_cpt_engines *req_eng)
{
int avail_cnt = 0;
switch (req_eng->type) {
case OTX2_CPT_SE_TYPES:
avail_cnt = grp->g->avail.se_cnt;
break;
case OTX2_CPT_IE_TYPES:
avail_cnt = grp->g->avail.ie_cnt;
break;
case OTX2_CPT_AE_TYPES:
avail_cnt = grp->g->avail.ae_cnt;
break;
default:
dev_err(dev, "Invalid engine type %d\n", req_eng->type);
return -EINVAL;
}
if (avail_cnt < req_eng->count) {
dev_err(dev,
"Error available %s engines %d < than requested %d\n",
get_eng_type_str(req_eng->type),
avail_cnt, req_eng->count);
return -EBUSY;
}
return 0;
}
static int reserve_engines(struct device *dev,
struct otx2_cpt_eng_grp_info *grp,
struct otx2_cpt_engines *req_engs, int ucodes_cnt)
{
int i, ret = 0;
/* Validate if a number of requested engines are available */
for (i = 0; i < ucodes_cnt; i++) {
ret = check_engines_availability(dev, grp, &req_engs[i]);
if (ret)
return ret;
}
/* Reserve requested engines for this engine group */
for (i = 0; i < ucodes_cnt; i++) {
ret = do_reserve_engines(dev, grp, &req_engs[i]);
if (ret)
return ret;
}
return 0;
}
static void ucode_unload(struct device *dev, struct otx2_cpt_ucode *ucode)
{
if (ucode->va) {
dma_free_coherent(dev, OTX2_CPT_UCODE_SZ, ucode->va,
ucode->dma);
ucode->va = NULL;
ucode->dma = 0;
ucode->size = 0;
}
memset(&ucode->ver_str, 0, OTX2_CPT_UCODE_VER_STR_SZ);
memset(&ucode->ver_num, 0, sizeof(struct otx2_cpt_ucode_ver_num));
set_ucode_filename(ucode, "");
ucode->type = 0;
}
static int copy_ucode_to_dma_mem(struct device *dev,
struct otx2_cpt_ucode *ucode,
const u8 *ucode_data)
{
u32 i;
/* Allocate DMAable space */
ucode->va = dma_alloc_coherent(dev, OTX2_CPT_UCODE_SZ, &ucode->dma,
GFP_KERNEL);
if (!ucode->va)
return -ENOMEM;
memcpy(ucode->va, ucode_data + sizeof(struct otx2_cpt_ucode_hdr),
ucode->size);
/* Byte swap 64-bit */
for (i = 0; i < (ucode->size / 8); i++)
cpu_to_be64s(&((u64 *)ucode->va)[i]);
/* Ucode needs 16-bit swap */
for (i = 0; i < (ucode->size / 2); i++)
cpu_to_be16s(&((u16 *)ucode->va)[i]);
return 0;
}
static int enable_eng_grp(struct otx2_cpt_eng_grp_info *eng_grp,
void *obj)
{
int ret;
/* Point microcode to each core of the group */
ret = cpt_set_ucode_base(eng_grp, obj);
if (ret)
return ret;
/* Attach the cores to the group and enable them */
ret = cpt_attach_and_enable_cores(eng_grp, obj);
return ret;
}
static int disable_eng_grp(struct device *dev,
struct otx2_cpt_eng_grp_info *eng_grp,
void *obj)
{
int i, ret;
/* Disable all engines used by this group */
ret = cpt_detach_and_disable_cores(eng_grp, obj);
if (ret)
return ret;
/* Unload ucode used by this engine group */
ucode_unload(dev, &eng_grp->ucode[0]);
ucode_unload(dev, &eng_grp->ucode[1]);
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
if (!eng_grp->engs[i].type)
continue;
eng_grp->engs[i].ucode = &eng_grp->ucode[0];
}
/* Clear UCODE_BASE register for each engine used by this group */
ret = cpt_set_ucode_base(eng_grp, obj);
return ret;
}
static void setup_eng_grp_mirroring(struct otx2_cpt_eng_grp_info *dst_grp,
struct otx2_cpt_eng_grp_info *src_grp)
{
/* Setup fields for engine group which is mirrored */
src_grp->mirror.is_ena = false;
src_grp->mirror.idx = 0;
src_grp->mirror.ref_count++;
/* Setup fields for mirroring engine group */
dst_grp->mirror.is_ena = true;
dst_grp->mirror.idx = src_grp->idx;
dst_grp->mirror.ref_count = 0;
}
static void remove_eng_grp_mirroring(struct otx2_cpt_eng_grp_info *dst_grp)
{
struct otx2_cpt_eng_grp_info *src_grp;
if (!dst_grp->mirror.is_ena)
return;
src_grp = &dst_grp->g->grp[dst_grp->mirror.idx];
src_grp->mirror.ref_count--;
dst_grp->mirror.is_ena = false;
dst_grp->mirror.idx = 0;
dst_grp->mirror.ref_count = 0;
}
static void update_requested_engs(struct otx2_cpt_eng_grp_info *mirror_eng_grp,
struct otx2_cpt_engines *engs, int engs_cnt)
{
struct otx2_cpt_engs_rsvd *mirrored_engs;
int i;
for (i = 0; i < engs_cnt; i++) {
mirrored_engs = find_engines_by_type(mirror_eng_grp,
engs[i].type);
if (!mirrored_engs)
continue;
/*
* If mirrored group has this type of engines attached then
* there are 3 scenarios possible:
* 1) mirrored_engs.count == engs[i].count then all engines
* from mirrored engine group will be shared with this engine
* group
* 2) mirrored_engs.count > engs[i].count then only a subset of
* engines from mirrored engine group will be shared with this
* engine group
* 3) mirrored_engs.count < engs[i].count then all engines
* from mirrored engine group will be shared with this group
* and additional engines will be reserved for exclusively use
* by this engine group
*/
engs[i].count -= mirrored_engs->count;
}
}
static struct otx2_cpt_eng_grp_info *find_mirrored_eng_grp(
struct otx2_cpt_eng_grp_info *grp)
{
struct otx2_cpt_eng_grps *eng_grps = grp->g;
int i;
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
if (!eng_grps->grp[i].is_enabled)
continue;
if (eng_grps->grp[i].ucode[0].type &&
eng_grps->grp[i].ucode[1].type)
continue;
if (grp->idx == i)
continue;
if (!strncasecmp(eng_grps->grp[i].ucode[0].ver_str,
grp->ucode[0].ver_str,
OTX2_CPT_UCODE_VER_STR_SZ))
return &eng_grps->grp[i];
}
return NULL;
}
static struct otx2_cpt_eng_grp_info *find_unused_eng_grp(
struct otx2_cpt_eng_grps *eng_grps)
{
int i;
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
if (!eng_grps->grp[i].is_enabled)
return &eng_grps->grp[i];
}
return NULL;
}
static int eng_grp_update_masks(struct device *dev,
struct otx2_cpt_eng_grp_info *eng_grp)
{
struct otx2_cpt_engs_rsvd *engs, *mirrored_engs;
struct otx2_cpt_bitmap tmp_bmap = { {0} };
int i, j, cnt, max_cnt;
int bit;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
engs = &eng_grp->engs[i];
if (!engs->type)
continue;
if (engs->count <= 0)
continue;
switch (engs->type) {
case OTX2_CPT_SE_TYPES:
max_cnt = eng_grp->g->avail.max_se_cnt;
break;
case OTX2_CPT_IE_TYPES:
max_cnt = eng_grp->g->avail.max_ie_cnt;
break;
case OTX2_CPT_AE_TYPES:
max_cnt = eng_grp->g->avail.max_ae_cnt;
break;
default:
dev_err(dev, "Invalid engine type %d\n", engs->type);
return -EINVAL;
}
cnt = engs->count;
WARN_ON(engs->offset + max_cnt > OTX2_CPT_MAX_ENGINES);
bitmap_zero(tmp_bmap.bits, eng_grp->g->engs_num);
for (j = engs->offset; j < engs->offset + max_cnt; j++) {
if (!eng_grp->g->eng_ref_cnt[j]) {
bitmap_set(tmp_bmap.bits, j, 1);
cnt--;
if (!cnt)
break;
}
}
if (cnt)
return -ENOSPC;
bitmap_copy(engs->bmap, tmp_bmap.bits, eng_grp->g->engs_num);
}
if (!eng_grp->mirror.is_ena)
return 0;
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
engs = &eng_grp->engs[i];
if (!engs->type)
continue;
mirrored_engs = find_engines_by_type(
&eng_grp->g->grp[eng_grp->mirror.idx],
engs->type);
WARN_ON(!mirrored_engs && engs->count <= 0);
if (!mirrored_engs)
continue;
bitmap_copy(tmp_bmap.bits, mirrored_engs->bmap,
eng_grp->g->engs_num);
if (engs->count < 0) {
bit = find_first_bit(mirrored_engs->bmap,
eng_grp->g->engs_num);
bitmap_clear(tmp_bmap.bits, bit, -engs->count);
}
bitmap_or(engs->bmap, engs->bmap, tmp_bmap.bits,
eng_grp->g->engs_num);
}
return 0;
}
static int delete_engine_group(struct device *dev,
struct otx2_cpt_eng_grp_info *eng_grp)
{
int ret;
if (!eng_grp->is_enabled)
return 0;
if (eng_grp->mirror.ref_count)
return -EINVAL;
/* Removing engine group mirroring if enabled */
remove_eng_grp_mirroring(eng_grp);
/* Disable engine group */
ret = disable_eng_grp(dev, eng_grp, eng_grp->g->obj);
if (ret)
return ret;
/* Release all engines held by this engine group */
ret = release_engines(dev, eng_grp);
if (ret)
return ret;
eng_grp->is_enabled = false;
return 0;
}
static void update_ucode_ptrs(struct otx2_cpt_eng_grp_info *eng_grp)
{
struct otx2_cpt_ucode *ucode;
if (eng_grp->mirror.is_ena)
ucode = &eng_grp->g->grp[eng_grp->mirror.idx].ucode[0];
else
ucode = &eng_grp->ucode[0];
WARN_ON(!eng_grp->engs[0].type);
eng_grp->engs[0].ucode = ucode;
if (eng_grp->engs[1].type) {
if (is_2nd_ucode_used(eng_grp))
eng_grp->engs[1].ucode = &eng_grp->ucode[1];
else
eng_grp->engs[1].ucode = ucode;
}
}
static int create_engine_group(struct device *dev,
struct otx2_cpt_eng_grps *eng_grps,
struct otx2_cpt_engines *engs, int ucodes_cnt,
void *ucode_data[], int is_print)
{
struct otx2_cpt_eng_grp_info *mirrored_eng_grp;
struct otx2_cpt_eng_grp_info *eng_grp;
struct otx2_cpt_uc_info_t *uc_info;
int i, ret = 0;
/* Find engine group which is not used */
eng_grp = find_unused_eng_grp(eng_grps);
if (!eng_grp) {
dev_err(dev, "Error all engine groups are being used\n");
return -ENOSPC;
}
/* Load ucode */
for (i = 0; i < ucodes_cnt; i++) {
uc_info = (struct otx2_cpt_uc_info_t *) ucode_data[i];
eng_grp->ucode[i] = uc_info->ucode;
ret = copy_ucode_to_dma_mem(dev, &eng_grp->ucode[i],
uc_info->fw->data);
if (ret)
goto unload_ucode;
}
/* Check if this group mirrors another existing engine group */
mirrored_eng_grp = find_mirrored_eng_grp(eng_grp);
if (mirrored_eng_grp) {
/* Setup mirroring */
setup_eng_grp_mirroring(eng_grp, mirrored_eng_grp);
/*
* Update count of requested engines because some
* of them might be shared with mirrored group
*/
update_requested_engs(mirrored_eng_grp, engs, ucodes_cnt);
}
ret = reserve_engines(dev, eng_grp, engs, ucodes_cnt);
if (ret)
goto unload_ucode;
/* Update ucode pointers used by engines */
update_ucode_ptrs(eng_grp);
/* Update engine masks used by this group */
ret = eng_grp_update_masks(dev, eng_grp);
if (ret)
goto release_engs;
/* Enable engine group */
ret = enable_eng_grp(eng_grp, eng_grps->obj);
if (ret)
goto release_engs;
/*
* If this engine group mirrors another engine group
* then we need to unload ucode as we will use ucode
* from mirrored engine group
*/
if (eng_grp->mirror.is_ena)
ucode_unload(dev, &eng_grp->ucode[0]);
eng_grp->is_enabled = true;
if (!is_print)
return 0;
if (mirrored_eng_grp)
dev_info(dev,
"Engine_group%d: reuse microcode %s from group %d\n",
eng_grp->idx, mirrored_eng_grp->ucode[0].ver_str,
mirrored_eng_grp->idx);
else
dev_info(dev, "Engine_group%d: microcode loaded %s\n",
eng_grp->idx, eng_grp->ucode[0].ver_str);
if (is_2nd_ucode_used(eng_grp))
dev_info(dev, "Engine_group%d: microcode loaded %s\n",
eng_grp->idx, eng_grp->ucode[1].ver_str);
return 0;
release_engs:
release_engines(dev, eng_grp);
unload_ucode:
ucode_unload(dev, &eng_grp->ucode[0]);
ucode_unload(dev, &eng_grp->ucode[1]);
return ret;
}
static void delete_engine_grps(struct pci_dev *pdev,
struct otx2_cpt_eng_grps *eng_grps)
{
int i;
/* First delete all mirroring engine groups */
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++)
if (eng_grps->grp[i].mirror.is_ena)
delete_engine_group(&pdev->dev, &eng_grps->grp[i]);
/* Delete remaining engine groups */
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++)
delete_engine_group(&pdev->dev, &eng_grps->grp[i]);
}
#define PCI_DEVID_CN10K_RNM 0xA098
#define RNM_ENTROPY_STATUS 0x8
static void rnm_to_cpt_errata_fixup(struct device *dev)
{
struct pci_dev *pdev;
void __iomem *base;
int timeout = 5000;
pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_RNM, NULL);
if (!pdev)
return;
base = pci_ioremap_bar(pdev, 0);
if (!base)
goto put_pdev;
while ((readq(base + RNM_ENTROPY_STATUS) & 0x7F) != 0x40) {
cpu_relax();
udelay(1);
timeout--;
if (!timeout) {
dev_warn(dev, "RNM is not producing entropy\n");
break;
}
}
iounmap(base);
put_pdev:
pci_dev_put(pdev);
}
int otx2_cpt_get_eng_grp(struct otx2_cpt_eng_grps *eng_grps, int eng_type)
{
int eng_grp_num = OTX2_CPT_INVALID_CRYPTO_ENG_GRP;
struct otx2_cpt_eng_grp_info *grp;
int i;
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
grp = &eng_grps->grp[i];
if (!grp->is_enabled)
continue;
if (eng_type == OTX2_CPT_SE_TYPES) {
if (eng_grp_has_eng_type(grp, eng_type) &&
!eng_grp_has_eng_type(grp, OTX2_CPT_IE_TYPES)) {
eng_grp_num = i;
break;
}
} else {
if (eng_grp_has_eng_type(grp, eng_type)) {
eng_grp_num = i;
break;
}
}
}
return eng_grp_num;
}
int otx2_cpt_create_eng_grps(struct otx2_cptpf_dev *cptpf,
struct otx2_cpt_eng_grps *eng_grps)
{
struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = { };
struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { {0} };
struct pci_dev *pdev = cptpf->pdev;
struct fw_info_t fw_info;
u64 reg_val;
int ret = 0;
mutex_lock(&eng_grps->lock);
/*
* We don't create engine groups if it was already
* made (when user enabled VFs for the first time)
*/
if (eng_grps->is_grps_created)
goto unlock;
ret = cpt_ucode_load_fw(pdev, &fw_info);
if (ret)
goto unlock;
/*
* Create engine group with SE engines for kernel
* crypto functionality (symmetric crypto)
*/
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES);
if (uc_info[0] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for SE\n");
ret = -EINVAL;
goto release_fw;
}
engs[0].type = OTX2_CPT_SE_TYPES;
engs[0].count = eng_grps->avail.max_se_cnt;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 1,
(void **) uc_info, 1);
if (ret)
goto release_fw;
/*
* Create engine group with SE+IE engines for IPSec.
* All SE engines will be shared with engine group 0.
*/
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES);
uc_info[1] = get_ucode(&fw_info, OTX2_CPT_IE_TYPES);
if (uc_info[1] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for IE");
ret = -EINVAL;
goto delete_eng_grp;
}
engs[0].type = OTX2_CPT_SE_TYPES;
engs[0].count = eng_grps->avail.max_se_cnt;
engs[1].type = OTX2_CPT_IE_TYPES;
engs[1].count = eng_grps->avail.max_ie_cnt;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 2,
(void **) uc_info, 1);
if (ret)
goto delete_eng_grp;
/*
* Create engine group with AE engines for asymmetric
* crypto functionality.
*/
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_AE_TYPES);
if (uc_info[0] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for AE");
ret = -EINVAL;
goto delete_eng_grp;
}
engs[0].type = OTX2_CPT_AE_TYPES;
engs[0].count = eng_grps->avail.max_ae_cnt;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 1,
(void **) uc_info, 1);
if (ret)
goto delete_eng_grp;
eng_grps->is_grps_created = true;
cpt_ucode_release_fw(&fw_info);
if (is_dev_otx2(pdev))
goto unlock;
/*
* Ensure RNM_ENTROPY_STATUS[NORMAL_CNT] = 0x40 before writing
* CPT_AF_CTL[RNM_REQ_EN] = 1 as a workaround for HW errata.
*/
rnm_to_cpt_errata_fixup(&pdev->dev);
/*
* Configure engine group mask to allow context prefetching
* for the groups and enable random number request, to enable
* CPT to request random numbers from RNM.
*/
otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_CTL,
OTX2_CPT_ALL_ENG_GRPS_MASK << 3 | BIT_ULL(16),
BLKADDR_CPT0);
/*
* Set interval to periodically flush dirty data for the next
* CTX cache entry. Set the interval count to maximum supported
* value.
*/
otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_CTX_FLUSH_TIMER,
CTX_FLUSH_TIMER_CNT, BLKADDR_CPT0);
/*
* Set CPT_AF_DIAG[FLT_DIS], as a workaround for HW errata, when
* CPT_AF_DIAG[FLT_DIS] = 0 and a CPT engine access to LLC/DRAM
* encounters a fault/poison, a rare case may result in
* unpredictable data being delivered to a CPT engine.
*/
otx2_cpt_read_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_DIAG, &reg_val,
BLKADDR_CPT0);
otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_DIAG,
reg_val | BIT_ULL(24), BLKADDR_CPT0);
mutex_unlock(&eng_grps->lock);
return 0;
delete_eng_grp:
delete_engine_grps(pdev, eng_grps);
release_fw:
cpt_ucode_release_fw(&fw_info);
unlock:
mutex_unlock(&eng_grps->lock);
return ret;
}
static int cptx_disable_all_cores(struct otx2_cptpf_dev *cptpf, int total_cores,
int blkaddr)
{
int timeout = 10, ret;
int i, busy;
u64 reg;
/* Disengage the cores from groups */
for (i = 0; i < total_cores; i++) {
ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_CTL2(i), 0x0,
blkaddr);
if (ret)
return ret;
cptpf->eng_grps.eng_ref_cnt[i] = 0;
}
ret = otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev);
if (ret)
return ret;
/* Wait for cores to become idle */
do {
busy = 0;
usleep_range(10000, 20000);
if (timeout-- < 0)
return -EBUSY;
for (i = 0; i < total_cores; i++) {
ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox,
cptpf->pdev,
CPT_AF_EXEX_STS(i), &reg,
blkaddr);
if (ret)
return ret;
if (reg & 0x1) {
busy = 1;
break;
}
}
} while (busy);
/* Disable the cores */
for (i = 0; i < total_cores; i++) {
ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev,
CPT_AF_EXEX_CTL(i), 0x0,
blkaddr);
if (ret)
return ret;
}
return otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev);
}
int otx2_cpt_disable_all_cores(struct otx2_cptpf_dev *cptpf)
{
int total_cores, ret;
total_cores = cptpf->eng_grps.avail.max_se_cnt +
cptpf->eng_grps.avail.max_ie_cnt +
cptpf->eng_grps.avail.max_ae_cnt;
if (cptpf->has_cpt1) {
ret = cptx_disable_all_cores(cptpf, total_cores, BLKADDR_CPT1);
if (ret)
return ret;
}
return cptx_disable_all_cores(cptpf, total_cores, BLKADDR_CPT0);
}
void otx2_cpt_cleanup_eng_grps(struct pci_dev *pdev,
struct otx2_cpt_eng_grps *eng_grps)
{
struct otx2_cpt_eng_grp_info *grp;
int i, j;
mutex_lock(&eng_grps->lock);
delete_engine_grps(pdev, eng_grps);
/* Release memory */
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
grp = &eng_grps->grp[i];
for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) {
kfree(grp->engs[j].bmap);
grp->engs[j].bmap = NULL;
}
}
mutex_unlock(&eng_grps->lock);
}
int otx2_cpt_init_eng_grps(struct pci_dev *pdev,
struct otx2_cpt_eng_grps *eng_grps)
{
struct otx2_cpt_eng_grp_info *grp;
int i, j, ret;
mutex_init(&eng_grps->lock);
eng_grps->obj = pci_get_drvdata(pdev);
eng_grps->avail.se_cnt = eng_grps->avail.max_se_cnt;
eng_grps->avail.ie_cnt = eng_grps->avail.max_ie_cnt;
eng_grps->avail.ae_cnt = eng_grps->avail.max_ae_cnt;
eng_grps->engs_num = eng_grps->avail.max_se_cnt +
eng_grps->avail.max_ie_cnt +
eng_grps->avail.max_ae_cnt;
if (eng_grps->engs_num > OTX2_CPT_MAX_ENGINES) {
dev_err(&pdev->dev,
"Number of engines %d > than max supported %d\n",
eng_grps->engs_num, OTX2_CPT_MAX_ENGINES);
ret = -EINVAL;
goto cleanup_eng_grps;
}
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
grp = &eng_grps->grp[i];
grp->g = eng_grps;
grp->idx = i;
for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) {
grp->engs[j].bmap =
kcalloc(BITS_TO_LONGS(eng_grps->engs_num),
sizeof(long), GFP_KERNEL);
if (!grp->engs[j].bmap) {
ret = -ENOMEM;
goto cleanup_eng_grps;
}
}
}
return 0;
cleanup_eng_grps:
otx2_cpt_cleanup_eng_grps(pdev, eng_grps);
return ret;
}
static int create_eng_caps_discovery_grps(struct pci_dev *pdev,
struct otx2_cpt_eng_grps *eng_grps)
{
struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = { };
struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { {0} };
struct fw_info_t fw_info;
int ret;
mutex_lock(&eng_grps->lock);
ret = cpt_ucode_load_fw(pdev, &fw_info);
if (ret) {
mutex_unlock(&eng_grps->lock);
return ret;
}
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_AE_TYPES);
if (uc_info[0] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for AE\n");
ret = -EINVAL;
goto release_fw;
}
engs[0].type = OTX2_CPT_AE_TYPES;
engs[0].count = 2;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 1,
(void **) uc_info, 0);
if (ret)
goto release_fw;
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES);
if (uc_info[0] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for SE\n");
ret = -EINVAL;
goto delete_eng_grp;
}
engs[0].type = OTX2_CPT_SE_TYPES;
engs[0].count = 2;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 1,
(void **) uc_info, 0);
if (ret)
goto delete_eng_grp;
uc_info[0] = get_ucode(&fw_info, OTX2_CPT_IE_TYPES);
if (uc_info[0] == NULL) {
dev_err(&pdev->dev, "Unable to find firmware for IE\n");
ret = -EINVAL;
goto delete_eng_grp;
}
engs[0].type = OTX2_CPT_IE_TYPES;
engs[0].count = 2;
ret = create_engine_group(&pdev->dev, eng_grps, engs, 1,
(void **) uc_info, 0);
if (ret)
goto delete_eng_grp;
cpt_ucode_release_fw(&fw_info);
mutex_unlock(&eng_grps->lock);
return 0;
delete_eng_grp:
delete_engine_grps(pdev, eng_grps);
release_fw:
cpt_ucode_release_fw(&fw_info);
mutex_unlock(&eng_grps->lock);
return ret;
}
/*
* Get CPT HW capabilities using LOAD_FVC operation.
*/
int otx2_cpt_discover_eng_capabilities(struct otx2_cptpf_dev *cptpf)
{
struct otx2_cptlfs_info *lfs = &cptpf->lfs;
struct otx2_cpt_iq_command iq_cmd;
union otx2_cpt_opcode opcode;
union otx2_cpt_res_s *result;
union otx2_cpt_inst_s inst;
dma_addr_t rptr_baddr;
struct pci_dev *pdev;
u32 len, compl_rlen;
int ret, etype;
void *rptr;
/*
* We don't get capabilities if it was already done
* (when user enabled VFs for the first time)
*/
if (cptpf->is_eng_caps_discovered)
return 0;
pdev = cptpf->pdev;
/*
* Create engine groups for each type to submit LOAD_FVC op and
* get engine's capabilities.
*/
ret = create_eng_caps_discovery_grps(pdev, &cptpf->eng_grps);
if (ret)
goto delete_grps;
lfs->pdev = pdev;
lfs->reg_base = cptpf->reg_base;
lfs->mbox = &cptpf->afpf_mbox;
lfs->blkaddr = BLKADDR_CPT0;
ret = otx2_cptlf_init(&cptpf->lfs, OTX2_CPT_ALL_ENG_GRPS_MASK,
OTX2_CPT_QUEUE_HI_PRIO, 1);
if (ret)
goto delete_grps;
compl_rlen = ALIGN(sizeof(union otx2_cpt_res_s), OTX2_CPT_DMA_MINALIGN);
len = compl_rlen + LOADFVC_RLEN;
result = kzalloc(len, GFP_KERNEL);
if (!result) {
ret = -ENOMEM;
goto lf_cleanup;
}
rptr_baddr = dma_map_single(&pdev->dev, (void *)result, len,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, rptr_baddr)) {
dev_err(&pdev->dev, "DMA mapping failed\n");
ret = -EFAULT;
goto free_result;
}
rptr = (u8 *)result + compl_rlen;
/* Fill in the command */
opcode.s.major = LOADFVC_MAJOR_OP;
opcode.s.minor = LOADFVC_MINOR_OP;
iq_cmd.cmd.u = 0;
iq_cmd.cmd.s.opcode = cpu_to_be16(opcode.flags);
/* 64-bit swap for microcode data reads, not needed for addresses */
cpu_to_be64s(&iq_cmd.cmd.u);
iq_cmd.dptr = 0;
iq_cmd.rptr = rptr_baddr + compl_rlen;
iq_cmd.cptr.u = 0;
for (etype = 1; etype < OTX2_CPT_MAX_ENG_TYPES; etype++) {
result->s.compcode = OTX2_CPT_COMPLETION_CODE_INIT;
iq_cmd.cptr.s.grp = otx2_cpt_get_eng_grp(&cptpf->eng_grps,
etype);
otx2_cpt_fill_inst(&inst, &iq_cmd, rptr_baddr);
lfs->ops->send_cmd(&inst, 1, &cptpf->lfs.lf[0]);
while (lfs->ops->cpt_get_compcode(result) ==
OTX2_CPT_COMPLETION_CODE_INIT)
cpu_relax();
cptpf->eng_caps[etype].u = be64_to_cpup(rptr);
}
dma_unmap_single(&pdev->dev, rptr_baddr, len, DMA_BIDIRECTIONAL);
cptpf->is_eng_caps_discovered = true;
free_result:
kfree(result);
lf_cleanup:
otx2_cptlf_shutdown(&cptpf->lfs);
delete_grps:
delete_engine_grps(pdev, &cptpf->eng_grps);
return ret;
}
int otx2_cpt_dl_custom_egrp_create(struct otx2_cptpf_dev *cptpf,
struct devlink_param_gset_ctx *ctx)
{
struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { { 0 } };
struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = {};
struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps;
char *ucode_filename[OTX2_CPT_MAX_ETYPES_PER_GRP];
char tmp_buf[OTX2_CPT_NAME_LENGTH] = { 0 };
struct device *dev = &cptpf->pdev->dev;
char *start, *val, *err_msg, *tmp;
int grp_idx = 0, ret = -EINVAL;
bool has_se, has_ie, has_ae;
struct fw_info_t fw_info;
int ucode_idx = 0;
if (!eng_grps->is_grps_created) {
dev_err(dev, "Not allowed before creating the default groups\n");
return -EINVAL;
}
err_msg = "Invalid engine group format";
strscpy(tmp_buf, ctx->val.vstr, strlen(ctx->val.vstr) + 1);
start = tmp_buf;
has_se = has_ie = has_ae = false;
for (;;) {
val = strsep(&start, ";");
if (!val)
break;
val = strim(val);
if (!*val)
continue;
if (!strncasecmp(val, "se", 2) && strchr(val, ':')) {
if (has_se || ucode_idx)
goto err_print;
tmp = strim(strsep(&val, ":"));
if (!val)
goto err_print;
if (strlen(tmp) != 2)
goto err_print;
if (kstrtoint(strim(val), 10, &engs[grp_idx].count))
goto err_print;
engs[grp_idx++].type = OTX2_CPT_SE_TYPES;
has_se = true;
} else if (!strncasecmp(val, "ae", 2) && strchr(val, ':')) {
if (has_ae || ucode_idx)
goto err_print;
tmp = strim(strsep(&val, ":"));
if (!val)
goto err_print;
if (strlen(tmp) != 2)
goto err_print;
if (kstrtoint(strim(val), 10, &engs[grp_idx].count))
goto err_print;
engs[grp_idx++].type = OTX2_CPT_AE_TYPES;
has_ae = true;
} else if (!strncasecmp(val, "ie", 2) && strchr(val, ':')) {
if (has_ie || ucode_idx)
goto err_print;
tmp = strim(strsep(&val, ":"));
if (!val)
goto err_print;
if (strlen(tmp) != 2)
goto err_print;
if (kstrtoint(strim(val), 10, &engs[grp_idx].count))
goto err_print;
engs[grp_idx++].type = OTX2_CPT_IE_TYPES;
has_ie = true;
} else {
if (ucode_idx > 1)
goto err_print;
if (!strlen(val))
goto err_print;
if (strnstr(val, " ", strlen(val)))
goto err_print;
ucode_filename[ucode_idx++] = val;
}
}
/* Validate input parameters */
if (!(grp_idx && ucode_idx))
goto err_print;
if (ucode_idx > 1 && grp_idx < 2)
goto err_print;
if (grp_idx > OTX2_CPT_MAX_ETYPES_PER_GRP) {
err_msg = "Error max 2 engine types can be attached";
goto err_print;
}
if (grp_idx > 1) {
if ((engs[0].type + engs[1].type) !=
(OTX2_CPT_SE_TYPES + OTX2_CPT_IE_TYPES)) {
err_msg = "Only combination of SE+IE engines is allowed";
goto err_print;
}
/* Keep SE engines at zero index */
if (engs[1].type == OTX2_CPT_SE_TYPES)
swap(engs[0], engs[1]);
}
mutex_lock(&eng_grps->lock);
if (cptpf->enabled_vfs) {
dev_err(dev, "Disable VFs before modifying engine groups\n");
ret = -EACCES;
goto err_unlock;
}
INIT_LIST_HEAD(&fw_info.ucodes);
ret = load_fw(dev, &fw_info, ucode_filename[0]);
if (ret) {
dev_err(dev, "Unable to load firmware %s\n", ucode_filename[0]);
goto err_unlock;
}
if (ucode_idx > 1) {
ret = load_fw(dev, &fw_info, ucode_filename[1]);
if (ret) {
dev_err(dev, "Unable to load firmware %s\n",
ucode_filename[1]);
goto release_fw;
}
}
uc_info[0] = get_ucode(&fw_info, engs[0].type);
if (uc_info[0] == NULL) {
dev_err(dev, "Unable to find firmware for %s\n",
get_eng_type_str(engs[0].type));
ret = -EINVAL;
goto release_fw;
}
if (ucode_idx > 1) {
uc_info[1] = get_ucode(&fw_info, engs[1].type);
if (uc_info[1] == NULL) {
dev_err(dev, "Unable to find firmware for %s\n",
get_eng_type_str(engs[1].type));
ret = -EINVAL;
goto release_fw;
}
}
ret = create_engine_group(dev, eng_grps, engs, grp_idx,
(void **)uc_info, 1);
release_fw:
cpt_ucode_release_fw(&fw_info);
err_unlock:
mutex_unlock(&eng_grps->lock);
return ret;
err_print:
dev_err(dev, "%s\n", err_msg);
return ret;
}
int otx2_cpt_dl_custom_egrp_delete(struct otx2_cptpf_dev *cptpf,
struct devlink_param_gset_ctx *ctx)
{
struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps;
struct device *dev = &cptpf->pdev->dev;
char *tmp, *err_msg;
int egrp;
int ret;
err_msg = "Invalid input string format(ex: egrp:0)";
if (strncasecmp(ctx->val.vstr, "egrp", 4))
goto err_print;
tmp = ctx->val.vstr;
strsep(&tmp, ":");
if (!tmp)
goto err_print;
if (kstrtoint(tmp, 10, &egrp))
goto err_print;
if (egrp < 0 || egrp >= OTX2_CPT_MAX_ENGINE_GROUPS) {
dev_err(dev, "Invalid engine group %d", egrp);
return -EINVAL;
}
if (!eng_grps->grp[egrp].is_enabled) {
dev_err(dev, "Error engine_group%d is not configured", egrp);
return -EINVAL;
}
mutex_lock(&eng_grps->lock);
ret = delete_engine_group(dev, &eng_grps->grp[egrp]);
mutex_unlock(&eng_grps->lock);
return ret;
err_print:
dev_err(dev, "%s\n", err_msg);
return -EINVAL;
}
static void get_engs_info(struct otx2_cpt_eng_grp_info *eng_grp, char *buf,
int size, int idx)
{
struct otx2_cpt_engs_rsvd *mirrored_engs = NULL;
struct otx2_cpt_engs_rsvd *engs;
int len, i;
buf[0] = '\0';
for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) {
engs = &eng_grp->engs[i];
if (!engs->type)
continue;
if (idx != -1 && idx != i)
continue;
if (eng_grp->mirror.is_ena)
mirrored_engs = find_engines_by_type(
&eng_grp->g->grp[eng_grp->mirror.idx],
engs->type);
if (i > 0 && idx == -1) {
len = strlen(buf);
scnprintf(buf + len, size - len, ", ");
}
len = strlen(buf);
scnprintf(buf + len, size - len, "%d %s ",
mirrored_engs ? engs->count + mirrored_engs->count :
engs->count,
get_eng_type_str(engs->type));
if (mirrored_engs) {
len = strlen(buf);
scnprintf(buf + len, size - len,
"(%d shared with engine_group%d) ",
engs->count <= 0 ?
engs->count + mirrored_engs->count :
mirrored_engs->count,
eng_grp->mirror.idx);
}
}
}
void otx2_cpt_print_uc_dbg_info(struct otx2_cptpf_dev *cptpf)
{
struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps;
struct otx2_cpt_eng_grp_info *mirrored_grp;
char engs_info[2 * OTX2_CPT_NAME_LENGTH];
struct otx2_cpt_eng_grp_info *grp;
struct otx2_cpt_engs_rsvd *engs;
int i, j;
pr_debug("Engine groups global info");
pr_debug("max SE %d, max IE %d, max AE %d", eng_grps->avail.max_se_cnt,
eng_grps->avail.max_ie_cnt, eng_grps->avail.max_ae_cnt);
pr_debug("free SE %d", eng_grps->avail.se_cnt);
pr_debug("free IE %d", eng_grps->avail.ie_cnt);
pr_debug("free AE %d", eng_grps->avail.ae_cnt);
for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) {
grp = &eng_grps->grp[i];
pr_debug("engine_group%d, state %s", i,
grp->is_enabled ? "enabled" : "disabled");
if (grp->is_enabled) {
mirrored_grp = &eng_grps->grp[grp->mirror.idx];
pr_debug("Ucode0 filename %s, version %s",
grp->mirror.is_ena ?
mirrored_grp->ucode[0].filename :
grp->ucode[0].filename,
grp->mirror.is_ena ?
mirrored_grp->ucode[0].ver_str :
grp->ucode[0].ver_str);
if (is_2nd_ucode_used(grp))
pr_debug("Ucode1 filename %s, version %s",
grp->ucode[1].filename,
grp->ucode[1].ver_str);
}
for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) {
engs = &grp->engs[j];
if (engs->type) {
crypto: octeontx2 - Avoid stack variable overflow Building with -Warray-bounds showed a stack variable array index overflow. Increase the expected size of the array to avoid the warning: In file included from ./include/linux/printk.h:555, from ./include/asm-generic/bug.h:22, from ./arch/x86/include/asm/bug.h:84, from ./include/linux/bug.h:5, from ./include/linux/mmdebug.h:5, from ./include/linux/gfp.h:5, from ./include/linux/firmware.h:7, from drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c:5: drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c: In function 'otx2_cpt_print_uc_dbg_info': ./include/linux/dynamic_debug.h:162:33: warning: array subscript 4 is above array bounds of 'u32[4]' {aka 'unsigned int[4]'} [-Warray-bounds] 162 | _dynamic_func_call(fmt, __dynamic_pr_debug, \ | ^ ./include/linux/dynamic_debug.h:134:17: note: in definition of macro '__dynamic_func_call' 134 | func(&id, ##__VA_ARGS__); \ | ^~~~ ./include/linux/dynamic_debug.h:162:9: note: in expansion of macro '_dynamic_func_call' 162 | _dynamic_func_call(fmt, __dynamic_pr_debug, \ | ^~~~~~~~~~~~~~~~~~ ./include/linux/printk.h:570:9: note: in expansion of macro 'dynamic_pr_debug' 570 | dynamic_pr_debug(fmt, ##__VA_ARGS__) | ^~~~~~~~~~~~~~~~ drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c:1807:41: note: in expansion of macro 'pr_debug' 1807 | pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x %8.8x", | ^~~~~~~~ drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c:1765:13: note: while referencing 'mask' 1765 | u32 mask[4]; | ^~~~ This is justified because the mask size (eng_grps->engs_num) can be at most 144 (OTX2_CPT_MAX_ENGINES bits), which is larger than available storage. 4 * 32 == 128, so this must be 5: 5 * 32bit = 160. Additionally clear the mask before conversion so trailing bits are zero. Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Arnaud Ebalard <arno@natisbad.org> Cc: Srujana Challa <schalla@marvell.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Suheil Chandran <schandran@marvell.com> Cc: Shijith Thotton <sthotton@marvell.com> Cc: Lukasz Bartosik <lbartosik@marvell.com> Cc: linux-crypto@vger.kernel.org Fixes: d9d7749773e8 ("crypto: octeontx2 - add apis for custom engine groups") Acked-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-01-13 04:38:11 +08:00
u32 mask[5] = { };
get_engs_info(grp, engs_info,
2 * OTX2_CPT_NAME_LENGTH, j);
pr_debug("Slot%d: %s", j, engs_info);
bitmap_to_arr32(mask, engs->bmap,
eng_grps->engs_num);
if (is_dev_otx2(cptpf->pdev))
pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x",
mask[3], mask[2], mask[1],
mask[0]);
else
pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x %8.8x",
mask[4], mask[3], mask[2], mask[1],
mask[0]);
}
}
}
}