OpenCloudOS-Kernel/fs/ceph/locks.c

406 lines
10 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/file.h>
#include <linux/namei.h>
#include <linux/random.h>
#include "super.h"
#include "mds_client.h"
#include <linux/ceph/pagelist.h>
static u64 lock_secret;
static int ceph_lock_wait_for_completion(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req);
static inline u64 secure_addr(void *addr)
{
u64 v = lock_secret ^ (u64)(unsigned long)addr;
/*
* Set the most significant bit, so that MDS knows the 'owner'
* is sufficient to identify the owner of lock. (old code uses
* both 'owner' and 'pid')
*/
v |= (1ULL << 63);
return v;
}
void __init ceph_flock_init(void)
{
get_random_bytes(&lock_secret, sizeof(lock_secret));
}
/**
* Implement fcntl and flock locking functions.
*/
static int ceph_lock_message(u8 lock_type, u16 operation, struct file *file,
int cmd, u8 wait, struct file_lock *fl)
{
struct inode *inode = file_inode(file);
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_mds_request *req;
int err;
u64 length = 0;
u64 owner;
if (operation != CEPH_MDS_OP_SETFILELOCK || cmd == CEPH_LOCK_UNLOCK)
wait = 0;
req = ceph_mdsc_create_request(mdsc, operation, USE_AUTH_MDS);
if (IS_ERR(req))
return PTR_ERR(req);
req->r_inode = inode;
ihold(inode);
req->r_num_caps = 1;
/* mds requires start and length rather than start and end */
if (LLONG_MAX == fl->fl_end)
length = 0;
else
length = fl->fl_end - fl->fl_start + 1;
owner = secure_addr(fl->fl_owner);
dout("ceph_lock_message: rule: %d, op: %d, owner: %llx, pid: %llu, "
"start: %llu, length: %llu, wait: %d, type: %d", (int)lock_type,
(int)operation, owner, (u64)fl->fl_pid, fl->fl_start, length,
wait, fl->fl_type);
req->r_args.filelock_change.rule = lock_type;
req->r_args.filelock_change.type = cmd;
req->r_args.filelock_change.owner = cpu_to_le64(owner);
req->r_args.filelock_change.pid = cpu_to_le64((u64)fl->fl_pid);
req->r_args.filelock_change.start = cpu_to_le64(fl->fl_start);
req->r_args.filelock_change.length = cpu_to_le64(length);
req->r_args.filelock_change.wait = wait;
if (wait)
req->r_wait_for_completion = ceph_lock_wait_for_completion;
err = ceph_mdsc_do_request(mdsc, inode, req);
if (operation == CEPH_MDS_OP_GETFILELOCK) {
fs/locks: Remove fl_nspid and use fs-specific l_pid for remote locks Since commit c69899a17ca4 "NFSv4: Update of VFS byte range lock must be atomic with the stateid update", NFSv4 has been inserting locks in rpciod worker context. The result is that the file_lock's fl_nspid is the kworker's pid instead of the original userspace pid. The fl_nspid is only used to represent the namespaced virtual pid number when displaying locks or returning from F_GETLK. There's no reason to set it for every inserted lock, since we can usually just look it up from fl_pid. So, instead of looking up and holding struct pid for every lock, let's just look up the virtual pid number from fl_pid when it is needed. That means we can remove fl_nspid entirely. The translaton and presentation of fl_pid should handle the following four cases: 1 - F_GETLK on a remote file with a remote lock: In this case, the filesystem should determine the l_pid to return here. Filesystems should indicate that the fl_pid represents a non-local pid value that should not be translated by returning an fl_pid <= 0. 2 - F_GETLK on a local file with a remote lock: This should be the l_pid of the lock manager process, and translated. 3 - F_GETLK on a remote file with a local lock, and 4 - F_GETLK on a local file with a local lock: These should be the translated l_pid of the local locking process. Fuse was already doing the correct thing by translating the pid into the caller's namespace. With this change we must update fuse to translate to init's pid namespace, so that the locks API can then translate from init's pid namespace into the pid namespace of the caller. With this change, the locks API will expect that if a filesystem returns a remote pid as opposed to a local pid for F_GETLK, that remote pid will be <= 0. This signifies that the pid is remote, and the locks API will forego translating that pid into the pid namespace of the local calling process. Finally, we convert remote filesystems to present remote pids using negative numbers. Have lustre, 9p, ceph, cifs, and dlm negate the remote pid returned for F_GETLK lock requests. Since local pids will never be larger than PID_MAX_LIMIT (which is currently defined as <= 4 million), but pid_t is an unsigned int, we should have plenty of room to represent remote pids with negative numbers if we assume that remote pid numbers are similarly limited. If this is not the case, then we run the risk of having a remote pid returned for which there is also a corresponding local pid. This is a problem we have now, but this patch should reduce the chances of that occurring, while also returning those remote pid numbers, for whatever that may be worth. Signed-off-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Jeff Layton <jlayton@redhat.com>
2017-07-16 22:28:22 +08:00
fl->fl_pid = -le64_to_cpu(req->r_reply_info.filelock_reply->pid);
if (CEPH_LOCK_SHARED == req->r_reply_info.filelock_reply->type)
fl->fl_type = F_RDLCK;
else if (CEPH_LOCK_EXCL == req->r_reply_info.filelock_reply->type)
fl->fl_type = F_WRLCK;
else
fl->fl_type = F_UNLCK;
fl->fl_start = le64_to_cpu(req->r_reply_info.filelock_reply->start);
length = le64_to_cpu(req->r_reply_info.filelock_reply->start) +
le64_to_cpu(req->r_reply_info.filelock_reply->length);
if (length >= 1)
fl->fl_end = length -1;
else
fl->fl_end = 0;
}
ceph_mdsc_put_request(req);
dout("ceph_lock_message: rule: %d, op: %d, pid: %llu, start: %llu, "
"length: %llu, wait: %d, type: %d, err code %d", (int)lock_type,
(int)operation, (u64)fl->fl_pid, fl->fl_start,
length, wait, fl->fl_type, err);
return err;
}
static int ceph_lock_wait_for_completion(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req)
{
struct ceph_mds_request *intr_req;
struct inode *inode = req->r_inode;
int err, lock_type;
BUG_ON(req->r_op != CEPH_MDS_OP_SETFILELOCK);
if (req->r_args.filelock_change.rule == CEPH_LOCK_FCNTL)
lock_type = CEPH_LOCK_FCNTL_INTR;
else if (req->r_args.filelock_change.rule == CEPH_LOCK_FLOCK)
lock_type = CEPH_LOCK_FLOCK_INTR;
else
BUG_ON(1);
BUG_ON(req->r_args.filelock_change.type == CEPH_LOCK_UNLOCK);
err = wait_for_completion_interruptible(&req->r_completion);
if (!err)
return 0;
dout("ceph_lock_wait_for_completion: request %llu was interrupted\n",
req->r_tid);
mutex_lock(&mdsc->mutex);
if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
err = 0;
} else {
/*
* ensure we aren't running concurrently with
* ceph_fill_trace or ceph_readdir_prepopulate, which
* rely on locks (dir mutex) held by our caller.
*/
mutex_lock(&req->r_fill_mutex);
req->r_err = err;
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
mutex_unlock(&req->r_fill_mutex);
if (!req->r_session) {
// haven't sent the request
err = 0;
}
}
mutex_unlock(&mdsc->mutex);
if (!err)
return 0;
intr_req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_SETFILELOCK,
USE_AUTH_MDS);
if (IS_ERR(intr_req))
return PTR_ERR(intr_req);
intr_req->r_inode = inode;
ihold(inode);
intr_req->r_num_caps = 1;
intr_req->r_args.filelock_change = req->r_args.filelock_change;
intr_req->r_args.filelock_change.rule = lock_type;
intr_req->r_args.filelock_change.type = CEPH_LOCK_UNLOCK;
err = ceph_mdsc_do_request(mdsc, inode, intr_req);
ceph_mdsc_put_request(intr_req);
if (err && err != -ERESTARTSYS)
return err;
wait_for_completion_killable(&req->r_safe_completion);
return 0;
}
/**
* Attempt to set an fcntl lock.
* For now, this just goes away to the server. Later it may be more awesome.
*/
int ceph_lock(struct file *file, int cmd, struct file_lock *fl)
{
u8 lock_cmd;
int err;
u8 wait = 0;
u16 op = CEPH_MDS_OP_SETFILELOCK;
if (!(fl->fl_flags & FL_POSIX))
return -ENOLCK;
/* No mandatory locks */
if (__mandatory_lock(file->f_mapping->host) && fl->fl_type != F_UNLCK)
return -ENOLCK;
dout("ceph_lock, fl_owner: %p", fl->fl_owner);
/* set wait bit as appropriate, then make command as Ceph expects it*/
if (IS_GETLK(cmd))
op = CEPH_MDS_OP_GETFILELOCK;
else if (IS_SETLKW(cmd))
wait = 1;
if (F_RDLCK == fl->fl_type)
lock_cmd = CEPH_LOCK_SHARED;
else if (F_WRLCK == fl->fl_type)
lock_cmd = CEPH_LOCK_EXCL;
else
lock_cmd = CEPH_LOCK_UNLOCK;
err = ceph_lock_message(CEPH_LOCK_FCNTL, op, file, lock_cmd, wait, fl);
if (!err) {
if (op != CEPH_MDS_OP_GETFILELOCK) {
dout("mds locked, locking locally");
err = posix_lock_file(file, fl, NULL);
if (err && (CEPH_MDS_OP_SETFILELOCK == op)) {
/* undo! This should only happen if
* the kernel detects local
* deadlock. */
ceph_lock_message(CEPH_LOCK_FCNTL, op, file,
CEPH_LOCK_UNLOCK, 0, fl);
dout("got %d on posix_lock_file, undid lock",
err);
}
}
}
return err;
}
int ceph_flock(struct file *file, int cmd, struct file_lock *fl)
{
u8 lock_cmd;
int err;
u8 wait = 0;
if (!(fl->fl_flags & FL_FLOCK))
return -ENOLCK;
/* No mandatory locks */
if (fl->fl_type & LOCK_MAND)
return -EOPNOTSUPP;
dout("ceph_flock, fl_file: %p", fl->fl_file);
if (IS_SETLKW(cmd))
wait = 1;
if (F_RDLCK == fl->fl_type)
lock_cmd = CEPH_LOCK_SHARED;
else if (F_WRLCK == fl->fl_type)
lock_cmd = CEPH_LOCK_EXCL;
else
lock_cmd = CEPH_LOCK_UNLOCK;
err = ceph_lock_message(CEPH_LOCK_FLOCK, CEPH_MDS_OP_SETFILELOCK,
file, lock_cmd, wait, fl);
if (!err) {
err = locks_lock_file_wait(file, fl);
if (err) {
ceph_lock_message(CEPH_LOCK_FLOCK,
CEPH_MDS_OP_SETFILELOCK,
file, CEPH_LOCK_UNLOCK, 0, fl);
dout("got %d on locks_lock_file_wait, undid lock", err);
}
}
return err;
}
/*
* Fills in the passed counter variables, so you can prepare pagelist metadata
* before calling ceph_encode_locks.
*/
void ceph_count_locks(struct inode *inode, int *fcntl_count, int *flock_count)
{
struct file_lock *lock;
struct file_lock_context *ctx;
*fcntl_count = 0;
*flock_count = 0;
ctx = inode->i_flctx;
if (ctx) {
spin_lock(&ctx->flc_lock);
list_for_each_entry(lock, &ctx->flc_posix, fl_list)
++(*fcntl_count);
list_for_each_entry(lock, &ctx->flc_flock, fl_list)
++(*flock_count);
spin_unlock(&ctx->flc_lock);
}
dout("counted %d flock locks and %d fcntl locks",
*flock_count, *fcntl_count);
}
/**
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
* Encode the flock and fcntl locks for the given inode into the ceph_filelock
* array. Must be called with inode->i_lock already held.
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
* If we encounter more of a specific lock type than expected, return -ENOSPC.
*/
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
int ceph_encode_locks_to_buffer(struct inode *inode,
struct ceph_filelock *flocks,
int num_fcntl_locks, int num_flock_locks)
{
struct file_lock *lock;
struct file_lock_context *ctx = inode->i_flctx;
int err = 0;
int seen_fcntl = 0;
int seen_flock = 0;
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
int l = 0;
dout("encoding %d flock and %d fcntl locks", num_flock_locks,
num_fcntl_locks);
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
if (!ctx)
return 0;
spin_lock(&ctx->flc_lock);
list_for_each_entry(lock, &ctx->flc_posix, fl_list) {
++seen_fcntl;
if (seen_fcntl > num_fcntl_locks) {
err = -ENOSPC;
goto fail;
}
err = lock_to_ceph_filelock(lock, &flocks[l]);
if (err)
goto fail;
++l;
}
list_for_each_entry(lock, &ctx->flc_flock, fl_list) {
++seen_flock;
if (seen_flock > num_flock_locks) {
err = -ENOSPC;
goto fail;
}
err = lock_to_ceph_filelock(lock, &flocks[l]);
if (err)
goto fail;
++l;
}
fail:
spin_unlock(&ctx->flc_lock);
return err;
}
ceph: ceph_pagelist_append might sleep while atomic Ceph's encode_caps_cb() worked hard to not call __page_cache_alloc() while holding a lock, but it's spoiled because ceph_pagelist_addpage() always calls kmap(), which might sleep. Here's the result: [13439.295457] ceph: mds0 reconnect start [13439.300572] BUG: sleeping function called from invalid context at include/linux/highmem.h:58 [13439.309243] in_atomic(): 1, irqs_disabled(): 0, pid: 12059, name: kworker/1:1 . . . [13439.376225] Call Trace: [13439.378757] [<ffffffff81076f4c>] __might_sleep+0xfc/0x110 [13439.384353] [<ffffffffa03f4ce0>] ceph_pagelist_append+0x120/0x1b0 [libceph] [13439.391491] [<ffffffffa0448fe9>] ceph_encode_locks+0x89/0x190 [ceph] [13439.398035] [<ffffffff814ee849>] ? _raw_spin_lock+0x49/0x50 [13439.403775] [<ffffffff811cadf5>] ? lock_flocks+0x15/0x20 [13439.409277] [<ffffffffa045e2af>] encode_caps_cb+0x41f/0x4a0 [ceph] [13439.415622] [<ffffffff81196748>] ? igrab+0x28/0x70 [13439.420610] [<ffffffffa045e9f8>] ? iterate_session_caps+0xe8/0x250 [ceph] [13439.427584] [<ffffffffa045ea25>] iterate_session_caps+0x115/0x250 [ceph] [13439.434499] [<ffffffffa045de90>] ? set_request_path_attr+0x2d0/0x2d0 [ceph] [13439.441646] [<ffffffffa0462888>] send_mds_reconnect+0x238/0x450 [ceph] [13439.448363] [<ffffffffa0464542>] ? ceph_mdsmap_decode+0x5e2/0x770 [ceph] [13439.455250] [<ffffffffa0462e42>] check_new_map+0x352/0x500 [ceph] [13439.461534] [<ffffffffa04631ad>] ceph_mdsc_handle_map+0x1bd/0x260 [ceph] [13439.468432] [<ffffffff814ebc7e>] ? mutex_unlock+0xe/0x10 [13439.473934] [<ffffffffa043c612>] extra_mon_dispatch+0x22/0x30 [ceph] [13439.480464] [<ffffffffa03f6c2c>] dispatch+0xbc/0x110 [libceph] [13439.486492] [<ffffffffa03eec3d>] process_message+0x1ad/0x1d0 [libceph] [13439.493190] [<ffffffffa03f1498>] ? read_partial_message+0x3e8/0x520 [libceph] . . . [13439.587132] ceph: mds0 reconnect success [13490.720032] ceph: mds0 caps stale [13501.235257] ceph: mds0 recovery completed [13501.300419] ceph: mds0 caps renewed Fix it up by encoding locks into a buffer first, and when the number of encoded locks is stable, copy that into a ceph_pagelist. [elder@inktank.com: abbreviated the stack info a bit.] Cc: stable@vger.kernel.org # 3.4+ Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Alex Elder <elder@inktank.com>
2013-05-16 02:03:35 +08:00
/**
* Copy the encoded flock and fcntl locks into the pagelist.
* Format is: #fcntl locks, sequential fcntl locks, #flock locks,
* sequential flock locks.
* Returns zero on success.
*/
int ceph_locks_to_pagelist(struct ceph_filelock *flocks,
struct ceph_pagelist *pagelist,
int num_fcntl_locks, int num_flock_locks)
{
int err = 0;
__le32 nlocks;
nlocks = cpu_to_le32(num_fcntl_locks);
err = ceph_pagelist_append(pagelist, &nlocks, sizeof(nlocks));
if (err)
goto out_fail;
err = ceph_pagelist_append(pagelist, flocks,
num_fcntl_locks * sizeof(*flocks));
if (err)
goto out_fail;
nlocks = cpu_to_le32(num_flock_locks);
err = ceph_pagelist_append(pagelist, &nlocks, sizeof(nlocks));
if (err)
goto out_fail;
err = ceph_pagelist_append(pagelist,
&flocks[num_fcntl_locks],
num_flock_locks * sizeof(*flocks));
out_fail:
return err;
}
/*
* Given a pointer to a lock, convert it to a ceph filelock
*/
int lock_to_ceph_filelock(struct file_lock *lock,
struct ceph_filelock *cephlock)
{
int err = 0;
cephlock->start = cpu_to_le64(lock->fl_start);
cephlock->length = cpu_to_le64(lock->fl_end - lock->fl_start + 1);
cephlock->client = cpu_to_le64(0);
cephlock->pid = cpu_to_le64((u64)lock->fl_pid);
cephlock->owner = cpu_to_le64(secure_addr(lock->fl_owner));
switch (lock->fl_type) {
case F_RDLCK:
cephlock->type = CEPH_LOCK_SHARED;
break;
case F_WRLCK:
cephlock->type = CEPH_LOCK_EXCL;
break;
case F_UNLCK:
cephlock->type = CEPH_LOCK_UNLOCK;
break;
default:
dout("Have unknown lock type %d", lock->fl_type);
err = -EINVAL;
}
return err;
}