OpenCloudOS-Kernel/kernel/time/tick-sched.h

86 lines
2.5 KiB
C
Raw Normal View History

#ifndef _TICK_SCHED_H
#define _TICK_SCHED_H
#include <linux/hrtimer.h>
enum tick_device_mode {
TICKDEV_MODE_PERIODIC,
TICKDEV_MODE_ONESHOT,
};
struct tick_device {
struct clock_event_device *evtdev;
enum tick_device_mode mode;
};
enum tick_nohz_mode {
NOHZ_MODE_INACTIVE,
NOHZ_MODE_LOWRES,
NOHZ_MODE_HIGHRES,
};
/**
* struct tick_sched - sched tick emulation and no idle tick control/stats
* @sched_timer: hrtimer to schedule the periodic tick in high
* resolution mode
* @last_tick: Store the last tick expiry time when the tick
* timer is modified for nohz sleeps. This is necessary
* to resume the tick timer operation in the timeline
* when the CPU returns from nohz sleep.
* @tick_stopped: Indicator that the idle tick has been stopped
* @idle_jiffies: jiffies at the entry to idle for idle time accounting
* @idle_calls: Total number of idle calls
* @idle_sleeps: Number of idle calls, where the sched tick was stopped
* @idle_entrytime: Time when the idle call was entered
* @idle_waketime: Time when the idle was interrupted
* @idle_exittime: Time when the idle state was left
* @idle_sleeptime: Sum of the time slept in idle with sched tick stopped
* @iowait_sleeptime: Sum of the time slept in idle with sched tick stopped, with IO outstanding
* @sleep_length: Duration of the current idle sleep
* @do_timer_lst: CPU was the last one doing do_timer before going idle
*/
struct tick_sched {
struct hrtimer sched_timer;
unsigned long check_clocks;
enum tick_nohz_mode nohz_mode;
ktime_t last_tick;
int inidle;
int tick_stopped;
unsigned long idle_jiffies;
unsigned long idle_calls;
unsigned long idle_sleeps;
int idle_active;
ktime_t idle_entrytime;
ktime_t idle_waketime;
ktime_t idle_exittime;
ktime_t idle_sleeptime;
ktime_t iowait_sleeptime;
ktime_t sleep_length;
unsigned long last_jiffies;
u64 next_timer;
ktime_t idle_expires;
int do_timer_last;
nohz: New tick dependency mask The tick dependency is evaluated on every IRQ and context switch. This consists is a batch of checks which determine whether it is safe to stop the tick or not. These checks are often split in many details: posix cpu timers, scheduler, sched clock, perf events.... each of which are made of smaller details: posix cpu timer involves checking process wide timers then thread wide timers. Perf involves checking freq events then more per cpu details. Checking these informations asynchronously every time we update the full dynticks state bring avoidable overhead and a messy layout. Let's introduce instead tick dependency masks: one for system wide dependency (unstable sched clock, freq based perf events), one for CPU wide dependency (sched, throttling perf events), and task/signal level dependencies (posix cpu timers). The subsystems are responsible for setting and clearing their dependency through a set of APIs that will take care of concurrent dependency mask modifications and kick targets to restart the relevant CPU tick whenever needed. This new dependency engine stays beside the old one until all subsystems having a tick dependency are converted to it. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2015-06-07 21:54:30 +08:00
unsigned long tick_dep_mask;
};
extern struct tick_sched *tick_get_tick_sched(int cpu);
extern void tick_setup_sched_timer(void);
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
extern void tick_cancel_sched_timer(int cpu);
#else
static inline void tick_cancel_sched_timer(int cpu) { }
#endif
tick/broadcast: Make idle check independent from mode and config Currently the broadcast busy check, which prevents the idle code from going into deep idle, works only in one shot mode. If NOHZ and HIGHRES are off (config or command line) there is no sanity check at all, so under certain conditions cpus are allowed to go into deep idle, where the local timer stops, and are not woken up again because there is no broadcast timer installed or a hrtimer based broadcast device is not evaluated. Move tick_broadcast_oneshot_control() into the common code and provide proper subfunctions for the various config combinations. The common check in tick_broadcast_oneshot_control() is for the C3STOP misfeature flag of the local clock event device. If its not set, idle can proceed. If set, further checks are necessary. Provide checks for the trivial cases: - If broadcast is disabled in the config, then return busy - If oneshot mode (NOHZ/HIGHES) is disabled in the config, return busy if the broadcast device is hrtimer based. - If oneshot mode is enabled in the config call the original tick_broadcast_oneshot_control() function. That function needs extra checks which will be implemented in seperate patches. [ Split out from a larger combo patch ] Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Suzuki Poulose <Suzuki.Poulose@arm.com> Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com> Cc: Catalin Marinas <Catalin.Marinas@arm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
2015-07-07 22:29:38 +08:00
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
extern int __tick_broadcast_oneshot_control(enum tick_broadcast_state state);
#else
static inline int
__tick_broadcast_oneshot_control(enum tick_broadcast_state state)
{
return -EBUSY;
}
#endif
#endif