OpenCloudOS-Kernel/drivers/media/video/cx18/cx18-av-core.c

1381 lines
38 KiB
C
Raw Normal View History

/*
* cx18 ADEC audio functions
*
* Derived from cx25840-core.c
*
* Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
* Copyright (C) 2008 Andy Walls <awalls@radix.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <media/v4l2-chip-ident.h>
#include "cx18-driver.h"
#include "cx18-io.h"
#include "cx18-cards.h"
int cx18_av_write(struct cx18 *cx, u16 addr, u8 value)
{
u32 reg = 0xc40000 + (addr & ~3);
u32 mask = 0xff;
int shift = (addr & 3) * 8;
u32 x = cx18_read_reg(cx, reg);
x = (x & ~(mask << shift)) | ((u32)value << shift);
cx18_write_reg(cx, x, reg);
return 0;
}
int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask)
{
u32 reg = 0xc40000 + (addr & ~3);
int shift = (addr & 3) * 8;
u32 x = cx18_read_reg(cx, reg);
x = (x & ~((u32)0xff << shift)) | ((u32)value << shift);
cx18_write_reg_expect(cx, x, reg,
((u32)eval << shift), ((u32)mask << shift));
return 0;
}
int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value)
{
cx18_write_reg(cx, value, 0xc40000 + addr);
return 0;
}
int
cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask)
{
cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask);
return 0;
}
int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value)
{
cx18_write_reg_noretry(cx, value, 0xc40000 + addr);
return 0;
}
u8 cx18_av_read(struct cx18 *cx, u16 addr)
{
u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3));
int shift = (addr & 3) * 8;
return (x >> shift) & 0xff;
}
u32 cx18_av_read4(struct cx18 *cx, u16 addr)
{
return cx18_read_reg(cx, 0xc40000 + addr);
}
int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask,
u8 or_value)
{
return cx18_av_write(cx, addr,
(cx18_av_read(cx, addr) & and_mask) |
or_value);
}
int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask,
u32 or_value)
{
return cx18_av_write4(cx, addr,
(cx18_av_read4(cx, addr) & and_mask) |
or_value);
}
static int cx18_av_init(struct v4l2_subdev *sd, u32 val)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
/*
* The crystal freq used in calculations in this driver will be
* 28.636360 MHz.
* Aim to run the PLLs' VCOs near 400 MHz to minimze errors.
*/
/*
* VDCLK Integer = 0x0f, Post Divider = 0x04
* AIMCLK Integer = 0x0e, Post Divider = 0x16
*/
cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f);
/* VDCLK Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */
cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe);
/* AIMCLK Fraction = 0x05227ad */
/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/
cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56);
return 0;
}
static void cx18_av_initialize(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u32 v;
cx18_av_loadfw(cx);
/* Stop 8051 code execution */
cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000,
0x03000000, 0x13000000);
/* initallize the PLL by toggling sleep bit */
v = cx18_av_read4(cx, CXADEC_HOST_REG1);
/* enable sleep mode - register appears to be read only... */
cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe);
/* disable sleep mode */
cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe,
v & 0xfffe, 0xffff);
/* initialize DLLs */
v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF;
/* disable FLD */
cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v);
/* enable FLD */
cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100);
v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF;
/* disable FLD */
cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v);
/* enable FLD */
cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100);
/* set analog bias currents. Set Vreg to 1.20V. */
cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802);
v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1;
/* enable TUNE_FIL_RST */
cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F);
/* disable TUNE_FIL_RST */
cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3,
v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F);
/* enable 656 output */
cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00);
/* video output drive strength */
cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2);
/* reset video */
cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000);
cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0);
/*
* Disable Video Auto-config of the Analog Front End and Video PLL.
*
* Since we only use BT.656 pixel mode, which works for both 525 and 625
* line systems, it's just easier for us to set registers
* 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL),
* 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC)
* ourselves, than to run around cleaning up after the auto-config.
*
* (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit
* get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL
* autoconfig either.)
*
* As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3.
*/
cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000);
/* Setup the Video and and Aux/Audio PLLs */
cx18_av_init(sd, 0);
/* set video to auto-detect */
/* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */
/* set the comb notch = 1 */
cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800);
/* Enable wtw_en in CRUSH_CTRL (Set bit 22) */
/* Enable maj_sel in CRUSH_CTRL (Set bit 20) */
cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000);
/* Set VGA_TRACK_RANGE to 0x20 */
cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000);
/*
* Initial VBI setup
* VIP-1.1, 10 bit mode, enable Raw, disable sliced,
* don't clamp raw samples when codes are in use, 1 byte user D-words,
* IDID0 has line #, RP code V bit transition on VBLANK, data during
* blanking intervals
*/
cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e);
/* Set the video input.
The setting in MODE_CTRL gets lost when we do the above setup */
/* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */
/* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */
/*
* Analog Front End (AFE)
* Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2
* bypass_ch[1-3] use filter
* droop_comp_ch[1-3] disable
* clamp_en_ch[1-3] disable
* aud_in_sel ADC2
* luma_in_sel ADC1
* chroma_in_sel ADC2
* clamp_sel_ch[2-3] midcode
* clamp_sel_ch1 video decoder
* vga_sel_ch3 audio decoder
* vga_sel_ch[1-2] video decoder
* half_bw_ch[1-3] disable
* +12db_ch[1-3] disable
*/
cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00);
/* if(dwEnable && dw3DCombAvailable) { */
/* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */
/* } else { */
/* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */
/* } */
cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F);
state->default_volume = 228 - cx18_av_read(cx, 0x8d4);
state->default_volume = ((state->default_volume / 2) + 23) << 9;
}
static int cx18_av_reset(struct v4l2_subdev *sd, u32 val)
{
cx18_av_initialize(sd);
return 0;
}
static int cx18_av_load_fw(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
if (!state->is_initialized) {
/* initialize on first use */
state->is_initialized = 1;
cx18_av_initialize(sd);
}
return 0;
}
void cx18_av_std_setup(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
v4l2_std_id std = state->std;
int hblank, hactive, burst, vblank, vactive, sc;
int vblank656, src_decimation;
int luma_lpf, uv_lpf, comb;
u32 pll_int, pll_frac, pll_post;
/* datasheet startup, step 8d */
if (std & ~V4L2_STD_NTSC)
cx18_av_write(cx, 0x49f, 0x11);
else
cx18_av_write(cx, 0x49f, 0x14);
/*
* Note: At the end of a field, there are 3 sets of half line duration
* (double horizontal rate) pulses:
*
* 5 (625) or 6 (525) half-lines to blank for the vertical retrace
* 5 (625) or 6 (525) vertical sync pulses of half line duration
* 5 (625) or 6 (525) half-lines of equalization pulses
*/
if (std & V4L2_STD_625_50) {
/*
* The following relationships of half line counts should hold:
* 625 = vblank656 + vactive + postvactive
* 10 = vblank656 - vblank = vsync pulses + equalization pulses
*
* vblank656: half lines after line 625/mid-313 of blanked video
* vblank: half lines, after line 5/317, of blanked video
* vactive: half lines of active video
* postvactive: 5 half lines after the end of active video
*
* As far as I can tell:
* vblank656 starts counting from the falling edge of the first
* vsync pulse (start of line 1 or mid-313)
* vblank starts counting from the after the 5 vsync pulses and
* 5 or 4 equalization pulses (start of line 6 or 318)
*
* For 625 line systems the driver will extract VBI information
* from lines 6-23 and lines 318-335 (but the slicer can only
* handle 17 lines, not the 18 in the vblank region).
*/
vblank656 = 46; /* lines 1 - 23 & 313 - 335 */
vblank = 36; /* lines 6 - 23 & 318 - 335 */
vactive = 574; /* lines 24 - 310 & 336 - 622 */
/*
* For a 13.5 Mpps clock and 15,625 Hz line rate, a line is
* is 864 pixels = 720 active + 144 blanking. ITU-R BT.601
* specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after
* the end of active video to start a horizontal line, so that
* leaves 132 pixels of hblank to ignore.
*/
hblank = 132;
hactive = 720;
burst = 93;
luma_lpf = 2;
src_decimation = 0x21f;
if (std & V4L2_STD_PAL) {
uv_lpf = 1;
comb = 0x20;
sc = 688739;
} else if (std == V4L2_STD_PAL_Nc) {
uv_lpf = 1;
comb = 0x20;
sc = 556453;
} else { /* SECAM */
uv_lpf = 0;
comb = 0;
sc = 672351;
}
} else {
/*
* The following relationships of half line counts should hold:
* 525 = prevsync + vblank656 + vactive
* 12 = vblank656 - vblank = vsync pulses + equalization pulses
*
* prevsync: 6 half-lines before the vsync pulses
* vblank656: half lines, after line 3/mid-266, of blanked video
* vblank: half lines, after line 9/272, of blanked video
* vactive: half lines of active video
*
* As far as I can tell:
* vblank656 starts counting from the falling edge of the first
* vsync pulse (start of line 4 or mid-266)
* vblank starts counting from the after the 6 vsync pulses and
* 6 or 5 equalization pulses (start of line 10 or 272)
*
* For 525 line systems the driver will extract VBI information
* from lines 10-21 and lines 273-284.
*/
vblank656 = 38; /* lines 4 - 22 & 266 - 284 */
vblank = 26; /* lines 10 - 22 & 272 - 284 */
vactive = 481; /* lines 23 - 263 & 285 - 525 */
/*
* For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is
* is 858 pixels = 720 active + 138 blanking. The Hsync leading
* edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the
* end of active video, leaving 122 pixels of hblank to ignore
* before active video starts.
*/
hactive = 720;
hblank = 122;
luma_lpf = 1;
uv_lpf = 1;
src_decimation = 0x21f;
if (std == V4L2_STD_PAL_60) {
burst = 0x5b;
luma_lpf = 2;
comb = 0x20;
sc = 688739;
} else if (std == V4L2_STD_PAL_M) {
burst = 0x61;
comb = 0x20;
sc = 555452;
} else {
burst = 0x5b;
comb = 0x66;
sc = 556063;
}
}
/* DEBUG: Displays configured PLL frequency */
pll_int = cx18_av_read(cx, 0x108);
pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff;
pll_post = cx18_av_read(cx, 0x109);
CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n",
pll_int, pll_frac, pll_post);
if (pll_post) {
int fin, fsc, pll;
pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25;
pll /= pll_post;
CX18_DEBUG_INFO_DEV(sd, "PLL = %d.%06d MHz\n",
pll / 1000000, pll % 1000000);
CX18_DEBUG_INFO_DEV(sd, "PLL/8 = %d.%06d MHz\n",
pll / 8000000, (pll / 8) % 1000000);
fin = ((u64)src_decimation * pll) >> 12;
CX18_DEBUG_INFO_DEV(sd, "ADC Sampling freq = %d.%06d MHz\n",
fin / 1000000, fin % 1000000);
fsc = (((u64)sc) * pll) >> 24L;
CX18_DEBUG_INFO_DEV(sd,
"Chroma sub-carrier freq = %d.%06d MHz\n",
fsc / 1000000, fsc % 1000000);
CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, "
"vactive %i, vblank656 %i, src_dec %i, "
"burst 0x%02x, luma_lpf %i, uv_lpf %i, "
"comb 0x%02x, sc 0x%06x\n",
hblank, hactive, vblank, vactive, vblank656,
src_decimation, burst, luma_lpf, uv_lpf,
comb, sc);
}
/* Sets horizontal blanking delay and active lines */
cx18_av_write(cx, 0x470, hblank);
cx18_av_write(cx, 0x471, 0xff & (((hblank >> 8) & 0x3) |
(hactive << 4)));
cx18_av_write(cx, 0x472, hactive >> 4);
/* Sets burst gate delay */
cx18_av_write(cx, 0x473, burst);
/* Sets vertical blanking delay and active duration */
cx18_av_write(cx, 0x474, vblank);
cx18_av_write(cx, 0x475, 0xff & (((vblank >> 8) & 0x3) |
(vactive << 4)));
cx18_av_write(cx, 0x476, vactive >> 4);
cx18_av_write(cx, 0x477, vblank656);
/* Sets src decimation rate */
cx18_av_write(cx, 0x478, 0xff & src_decimation);
cx18_av_write(cx, 0x479, 0xff & (src_decimation >> 8));
/* Sets Luma and UV Low pass filters */
cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30));
/* Enables comb filters */
cx18_av_write(cx, 0x47b, comb);
/* Sets SC Step*/
cx18_av_write(cx, 0x47c, sc);
cx18_av_write(cx, 0x47d, 0xff & sc >> 8);
cx18_av_write(cx, 0x47e, 0xff & sc >> 16);
if (std & V4L2_STD_625_50) {
state->slicer_line_delay = 1;
state->slicer_line_offset = (6 + state->slicer_line_delay - 2);
} else {
state->slicer_line_delay = 0;
state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
}
cx18_av_write(cx, 0x47f, state->slicer_line_delay);
}
static void input_change(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
v4l2_std_id std = state->std;
u8 v;
/* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */
cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11);
cx18_av_and_or(cx, 0x401, ~0x60, 0);
cx18_av_and_or(cx, 0x401, ~0x60, 0x60);
if (std & V4L2_STD_525_60) {
if (std == V4L2_STD_NTSC_M_JP) {
/* Japan uses EIAJ audio standard */
cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f);
} else if (std == V4L2_STD_NTSC_M_KR) {
/* South Korea uses A2 audio standard */
cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
} else {
/* Others use the BTSC audio standard */
cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f);
}
} else if (std & V4L2_STD_PAL) {
/* Follow tuner change procedure for PAL */
cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
} else if (std & V4L2_STD_SECAM) {
/* Select autodetect for SECAM */
cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
}
v = cx18_av_read(cx, 0x803);
if (v & 0x10) {
/* restart audio decoder microcontroller */
v &= ~0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
v |= 0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
}
}
static int cx18_av_s_frequency(struct v4l2_subdev *sd,
struct v4l2_frequency *freq)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
input_change(cx);
return 0;
}
static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input,
enum cx18_av_audio_input aud_input)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
enum analog_signal_type {
NONE, CVBS, Y, C, SIF, Pb, Pr
} ch[3] = {NONE, NONE, NONE};
u8 afe_mux_cfg;
u8 adc2_cfg;
u32 afe_cfg;
int i;
CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n",
vid_input, aud_input);
if (vid_input >= CX18_AV_COMPOSITE1 &&
vid_input <= CX18_AV_COMPOSITE8) {
afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1);
ch[0] = CVBS;
} else {
int luma = vid_input & 0xf0;
int chroma = vid_input & 0xf00;
if ((vid_input & ~0xff0) ||
luma < CX18_AV_SVIDEO_LUMA1 ||
luma > CX18_AV_SVIDEO_LUMA8 ||
chroma < CX18_AV_SVIDEO_CHROMA4 ||
chroma > CX18_AV_SVIDEO_CHROMA8) {
CX18_ERR_DEV(sd, "0x%04x is not a valid video input!\n",
vid_input);
return -EINVAL;
}
afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4);
ch[0] = Y;
if (chroma >= CX18_AV_SVIDEO_CHROMA7) {
afe_mux_cfg &= 0x3f;
afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2;
ch[2] = C;
} else {
afe_mux_cfg &= 0xcf;
afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4;
ch[1] = C;
}
}
/* TODO: LeadTek WinFast DVR3100 H & WinFast PVR2100 can do Y/Pb/Pr */
switch (aud_input) {
case CX18_AV_AUDIO_SERIAL1:
case CX18_AV_AUDIO_SERIAL2:
/* do nothing, use serial audio input */
break;
case CX18_AV_AUDIO4:
afe_mux_cfg &= ~0x30;
ch[1] = SIF;
break;
case CX18_AV_AUDIO5:
afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10;
ch[1] = SIF;
break;
case CX18_AV_AUDIO6:
afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20;
ch[1] = SIF;
break;
case CX18_AV_AUDIO7:
afe_mux_cfg &= ~0xc0;
ch[2] = SIF;
break;
case CX18_AV_AUDIO8:
afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40;
ch[2] = SIF;
break;
default:
CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n",
aud_input);
return -EINVAL;
}
/* Set up analog front end multiplexers */
cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7);
/* Set INPUT_MODE to Composite (0) or S-Video (1) */
cx18_av_and_or(cx, 0x401, ~0x6, ch[0] == CVBS ? 0 : 0x02);
/* Set CH_SEL_ADC2 to 1 if input comes from CH3 */
adc2_cfg = cx18_av_read(cx, 0x102);
if (ch[2] == NONE)
adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */
else
adc2_cfg |= 0x2; /* Signal on CH3, set ADC2 to CH3 for input */
/* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */
if (ch[1] != NONE && ch[2] != NONE)
adc2_cfg |= 0x4; /* Set dual mode */
else
adc2_cfg &= ~0x4; /* Clear dual mode */
cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17);
/* Configure the analog front end */
afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL);
afe_cfg &= 0xff000000;
afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */
if (ch[1] != NONE && ch[2] != NONE)
afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */
for (i = 0; i < 3; i++) {
switch (ch[i]) {
default:
case NONE:
/* CLAMP_SEL = Fixed to midcode clamp level */
afe_cfg |= (0x00000200 << i);
break;
case CVBS:
case Y:
if (i > 0)
afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */
break;
case C:
case Pb:
case Pr:
/* CLAMP_SEL = Fixed to midcode clamp level */
afe_cfg |= (0x00000200 << i);
if (i == 0 && ch[i] == C)
afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */
break;
case SIF:
/*
* VGA_GAIN_SEL = Audio Decoder
* CLAMP_SEL = Fixed to midcode clamp level
*/
afe_cfg |= (0x00000240 << i);
if (i == 0)
afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */
break;
}
}
cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg);
state->vid_input = vid_input;
state->aud_input = aud_input;
cx18_av_audio_set_path(cx);
input_change(cx);
return 0;
}
static int cx18_av_s_video_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
return set_input(cx, input, state->aud_input);
}
static int cx18_av_s_audio_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
return set_input(cx, state->vid_input, input);
}
static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 vpres;
u8 mode;
int val = 0;
if (state->radio)
return 0;
vpres = cx18_av_read(cx, 0x40e) & 0x20;
vt->signal = vpres ? 0xffff : 0x0;
vt->capability |=
V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 |
V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP;
mode = cx18_av_read(cx, 0x804);
/* get rxsubchans and audmode */
if ((mode & 0xf) == 1)
val |= V4L2_TUNER_SUB_STEREO;
else
val |= V4L2_TUNER_SUB_MONO;
if (mode == 2 || mode == 4)
val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
if (mode & 0x10)
val |= V4L2_TUNER_SUB_SAP;
vt->rxsubchans = val;
vt->audmode = state->audmode;
return 0;
}
static int cx18_av_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 v;
if (state->radio)
return 0;
v = cx18_av_read(cx, 0x809);
v &= ~0xf;
switch (vt->audmode) {
case V4L2_TUNER_MODE_MONO:
/* mono -> mono
stereo -> mono
bilingual -> lang1 */
break;
case V4L2_TUNER_MODE_STEREO:
case V4L2_TUNER_MODE_LANG1:
/* mono -> mono
stereo -> stereo
bilingual -> lang1 */
v |= 0x4;
break;
case V4L2_TUNER_MODE_LANG1_LANG2:
/* mono -> mono
stereo -> stereo
bilingual -> lang1/lang2 */
v |= 0x7;
break;
case V4L2_TUNER_MODE_LANG2:
/* mono -> mono
stereo -> stereo
bilingual -> lang2 */
v |= 0x1;
break;
default:
return -EINVAL;
}
cx18_av_write_expect(cx, 0x809, v, v, 0xff);
state->audmode = vt->audmode;
return 0;
}
static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 fmt = 0; /* zero is autodetect */
u8 pal_m = 0;
if (state->radio == 0 && state->std == norm)
return 0;
state->radio = 0;
state->std = norm;
/* First tests should be against specific std */
if (state->std == V4L2_STD_NTSC_M_JP) {
fmt = 0x2;
} else if (state->std == V4L2_STD_NTSC_443) {
fmt = 0x3;
} else if (state->std == V4L2_STD_PAL_M) {
pal_m = 1;
fmt = 0x5;
} else if (state->std == V4L2_STD_PAL_N) {
fmt = 0x6;
} else if (state->std == V4L2_STD_PAL_Nc) {
fmt = 0x7;
} else if (state->std == V4L2_STD_PAL_60) {
fmt = 0x8;
} else {
/* Then, test against generic ones */
if (state->std & V4L2_STD_NTSC)
fmt = 0x1;
else if (state->std & V4L2_STD_PAL)
fmt = 0x4;
else if (state->std & V4L2_STD_SECAM)
fmt = 0xc;
}
CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt);
/* Follow step 9 of section 3.16 in the cx18_av datasheet.
Without this PAL may display a vertical ghosting effect.
This happens for example with the Yuan MPC622. */
if (fmt >= 4 && fmt < 8) {
/* Set format to NTSC-M */
cx18_av_and_or(cx, 0x400, ~0xf, 1);
/* Turn off LCOMB */
cx18_av_and_or(cx, 0x47b, ~6, 0);
}
cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20);
cx18_av_and_or(cx, 0x403, ~0x3, pal_m);
cx18_av_std_setup(cx);
input_change(cx);
return 0;
}
static int cx18_av_s_radio(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
state->radio = 1;
return 0;
}
static int cx18_av_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
if (ctrl->value < 0 || ctrl->value > 255) {
CX18_ERR_DEV(sd, "invalid brightness setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x414, ctrl->value - 128);
break;
case V4L2_CID_CONTRAST:
if (ctrl->value < 0 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid contrast setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x415, ctrl->value << 1);
break;
case V4L2_CID_SATURATION:
if (ctrl->value < 0 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid saturation setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x420, ctrl->value << 1);
cx18_av_write(cx, 0x421, ctrl->value << 1);
break;
case V4L2_CID_HUE:
if (ctrl->value < -128 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid hue setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x422, ctrl->value);
break;
case V4L2_CID_AUDIO_VOLUME:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_MUTE:
return cx18_av_audio_s_ctrl(cx, ctrl);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ctrl->value = (s8)cx18_av_read(cx, 0x414) + 128;
break;
case V4L2_CID_CONTRAST:
ctrl->value = cx18_av_read(cx, 0x415) >> 1;
break;
case V4L2_CID_SATURATION:
ctrl->value = cx18_av_read(cx, 0x420) >> 1;
break;
case V4L2_CID_HUE:
ctrl->value = (s8)cx18_av_read(cx, 0x422);
break;
case V4L2_CID_AUDIO_VOLUME:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_MUTE:
return cx18_av_audio_g_ctrl(cx, ctrl);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
switch (qc->id) {
case V4L2_CID_BRIGHTNESS:
return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
case V4L2_CID_CONTRAST:
case V4L2_CID_SATURATION:
return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
case V4L2_CID_HUE:
return v4l2_ctrl_query_fill(qc, -128, 127, 1, 0);
default:
break;
}
switch (qc->id) {
case V4L2_CID_AUDIO_VOLUME:
return v4l2_ctrl_query_fill(qc, 0, 65535,
65535 / 100, state->default_volume);
case V4L2_CID_AUDIO_MUTE:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, 32768);
default:
return -EINVAL;
}
return -EINVAL;
}
static int cx18_av_g_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
return cx18_av_vbi_g_fmt(cx, fmt);
}
static int cx18_av_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
struct v4l2_pix_format *pix;
int HSC, VSC, Vsrc, Hsrc, filter, Vlines;
int is_50Hz = !(state->std & V4L2_STD_525_60);
switch (fmt->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
pix = &(fmt->fmt.pix);
Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4;
Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4;
Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4;
Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4;
/*
* This adjustment reflects the excess of vactive, set in
* cx18_av_std_setup(), above standard values:
*
* 480 + 1 for 60 Hz systems
* 576 - 2 for 50 Hz systems
*/
Vlines = pix->height + (is_50Hz ? -2 : 1);
/*
* Invalid height and width scaling requests are:
* 1. width less than 1/16 of the source width
* 2. width greater than the source width
* 3. height less than 1/8 of the source height
* 4. height greater than the source height
*/
if ((pix->width * 16 < Hsrc) || (Hsrc < pix->width) ||
(Vlines * 8 < Vsrc) || (Vsrc < Vlines)) {
CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n",
pix->width, pix->height);
return -ERANGE;
}
HSC = (Hsrc * (1 << 20)) / pix->width - (1 << 20);
VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9));
VSC &= 0x1fff;
if (pix->width >= 385)
filter = 0;
else if (pix->width > 192)
filter = 1;
else if (pix->width > 96)
filter = 2;
else
filter = 3;
CX18_DEBUG_INFO_DEV(sd,
"decoder set size %dx%d -> scale %ux%u\n",
pix->width, pix->height, HSC, VSC);
/* HSCALE=HSC */
cx18_av_write(cx, 0x418, HSC & 0xff);
cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff);
cx18_av_write(cx, 0x41a, HSC >> 16);
/* VSCALE=VSC */
cx18_av_write(cx, 0x41c, VSC & 0xff);
cx18_av_write(cx, 0x41d, VSC >> 8);
/* VS_INTRLACE=1 VFILT=filter */
cx18_av_write(cx, 0x41e, 0x8 | filter);
break;
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
return cx18_av_vbi_s_fmt(cx, fmt);
case V4L2_BUF_TYPE_VBI_CAPTURE:
return cx18_av_vbi_s_fmt(cx, fmt);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable");
if (enable) {
cx18_av_write(cx, 0x115, 0x8c);
cx18_av_write(cx, 0x116, 0x07);
} else {
cx18_av_write(cx, 0x115, 0x00);
cx18_av_write(cx, 0x116, 0x00);
}
return 0;
}
static void log_video_status(struct cx18 *cx)
{
static const char *const fmt_strs[] = {
"0x0",
"NTSC-M", "NTSC-J", "NTSC-4.43",
"PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60",
"0x9", "0xA", "0xB",
"SECAM",
"0xD", "0xE", "0xF"
};
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf;
u8 gen_stat1 = cx18_av_read(cx, 0x40d);
u8 gen_stat2 = cx18_av_read(cx, 0x40e);
int vid_input = state->vid_input;
CX18_INFO_DEV(sd, "Video signal: %spresent\n",
(gen_stat2 & 0x20) ? "" : "not ");
CX18_INFO_DEV(sd, "Detected format: %s\n",
fmt_strs[gen_stat1 & 0xf]);
CX18_INFO_DEV(sd, "Specified standard: %s\n",
vidfmt_sel ? fmt_strs[vidfmt_sel]
: "automatic detection");
if (vid_input >= CX18_AV_COMPOSITE1 &&
vid_input <= CX18_AV_COMPOSITE8) {
CX18_INFO_DEV(sd, "Specified video input: Composite %d\n",
vid_input - CX18_AV_COMPOSITE1 + 1);
} else {
CX18_INFO_DEV(sd, "Specified video input: "
"S-Video (Luma In%d, Chroma In%d)\n",
(vid_input & 0xf0) >> 4,
(vid_input & 0xf00) >> 8);
}
CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n",
state->audclk_freq);
}
static void log_audio_status(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
u8 download_ctl = cx18_av_read(cx, 0x803);
u8 mod_det_stat0 = cx18_av_read(cx, 0x804);
u8 mod_det_stat1 = cx18_av_read(cx, 0x805);
u8 audio_config = cx18_av_read(cx, 0x808);
u8 pref_mode = cx18_av_read(cx, 0x809);
u8 afc0 = cx18_av_read(cx, 0x80b);
u8 mute_ctl = cx18_av_read(cx, 0x8d3);
int aud_input = state->aud_input;
char *p;
switch (mod_det_stat0) {
case 0x00: p = "mono"; break;
case 0x01: p = "stereo"; break;
case 0x02: p = "dual"; break;
case 0x04: p = "tri"; break;
case 0x10: p = "mono with SAP"; break;
case 0x11: p = "stereo with SAP"; break;
case 0x12: p = "dual with SAP"; break;
case 0x14: p = "tri with SAP"; break;
case 0xfe: p = "forced mode"; break;
default: p = "not defined"; break;
}
CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p);
switch (mod_det_stat1) {
case 0x00: p = "not defined"; break;
case 0x01: p = "EIAJ"; break;
case 0x02: p = "A2-M"; break;
case 0x03: p = "A2-BG"; break;
case 0x04: p = "A2-DK1"; break;
case 0x05: p = "A2-DK2"; break;
case 0x06: p = "A2-DK3"; break;
case 0x07: p = "A1 (6.0 MHz FM Mono)"; break;
case 0x08: p = "AM-L"; break;
case 0x09: p = "NICAM-BG"; break;
case 0x0a: p = "NICAM-DK"; break;
case 0x0b: p = "NICAM-I"; break;
case 0x0c: p = "NICAM-L"; break;
case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break;
case 0x0e: p = "IF FM Radio"; break;
case 0x0f: p = "BTSC"; break;
case 0x10: p = "detected chrominance"; break;
case 0xfd: p = "unknown audio standard"; break;
case 0xfe: p = "forced audio standard"; break;
case 0xff: p = "no detected audio standard"; break;
default: p = "not defined"; break;
}
CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p);
CX18_INFO_DEV(sd, "Audio muted: %s\n",
(mute_ctl & 0x2) ? "yes" : "no");
CX18_INFO_DEV(sd, "Audio microcontroller: %s\n",
(download_ctl & 0x10) ? "running" : "stopped");
switch (audio_config >> 4) {
case 0x00: p = "undefined"; break;
case 0x01: p = "BTSC"; break;
case 0x02: p = "EIAJ"; break;
case 0x03: p = "A2-M"; break;
case 0x04: p = "A2-BG"; break;
case 0x05: p = "A2-DK1"; break;
case 0x06: p = "A2-DK2"; break;
case 0x07: p = "A2-DK3"; break;
case 0x08: p = "A1 (6.0 MHz FM Mono)"; break;
case 0x09: p = "AM-L"; break;
case 0x0a: p = "NICAM-BG"; break;
case 0x0b: p = "NICAM-DK"; break;
case 0x0c: p = "NICAM-I"; break;
case 0x0d: p = "NICAM-L"; break;
case 0x0e: p = "FM radio"; break;
case 0x0f: p = "automatic detection"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p);
if ((audio_config >> 4) < 0xF) {
switch (audio_config & 0xF) {
case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break;
case 0x01: p = "MONO2 (LANGUAGE B)"; break;
case 0x02: p = "MONO3 (STEREO forced MONO)"; break;
case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break;
case 0x04: p = "STEREO"; break;
case 0x05: p = "DUAL1 (AC)"; break;
case 0x06: p = "DUAL2 (BC)"; break;
case 0x07: p = "DUAL3 (AB)"; break;
default: p = "undefined";
}
CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p);
} else {
switch (audio_config & 0xF) {
case 0x00: p = "BG"; break;
case 0x01: p = "DK1"; break;
case 0x02: p = "DK2"; break;
case 0x03: p = "DK3"; break;
case 0x04: p = "I"; break;
case 0x05: p = "L"; break;
case 0x06: p = "BTSC"; break;
case 0x07: p = "EIAJ"; break;
case 0x08: p = "A2-M"; break;
case 0x09: p = "FM Radio (4.5 MHz)"; break;
case 0x0a: p = "FM Radio (5.5 MHz)"; break;
case 0x0b: p = "S-Video"; break;
case 0x0f: p = "automatic standard and mode detection"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Configured audio system: %s\n", p);
}
if (aud_input)
CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n",
aud_input);
else
CX18_INFO_DEV(sd, "Specified audio input: External\n");
switch (pref_mode & 0xf) {
case 0: p = "mono/language A"; break;
case 1: p = "language B"; break;
case 2: p = "language C"; break;
case 3: p = "analog fallback"; break;
case 4: p = "stereo"; break;
case 5: p = "language AC"; break;
case 6: p = "language BC"; break;
case 7: p = "language AB"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p);
if ((audio_config & 0xf) == 0xf) {
switch ((afc0 >> 3) & 0x1) {
case 0: p = "system DK"; break;
case 1: p = "system L"; break;
}
CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p);
switch (afc0 & 0x7) {
case 0: p = "Chroma"; break;
case 1: p = "BTSC"; break;
case 2: p = "EIAJ"; break;
case 3: p = "A2-M"; break;
case 4: p = "autodetect"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p);
}
}
static int cx18_av_log_status(struct v4l2_subdev *sd)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
log_video_status(cx);
log_audio_status(cx);
return 0;
}
static inline int cx18_av_dbg_match(const struct v4l2_dbg_match *match)
{
return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 1;
}
static int cx18_av_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
if (cx18_av_dbg_match(&chip->match)) {
chip->ident = state->id;
chip->revision = state->rev;
}
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int cx18_av_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
if (!cx18_av_dbg_match(&reg->match))
return -EINVAL;
if ((reg->reg & 0x3) != 0)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
reg->size = 4;
reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc);
return 0;
}
static int cx18_av_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
if (!cx18_av_dbg_match(&reg->match))
return -EINVAL;
if ((reg->reg & 0x3) != 0)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val);
return 0;
}
#endif
static const struct v4l2_subdev_core_ops cx18_av_general_ops = {
.g_chip_ident = cx18_av_g_chip_ident,
.log_status = cx18_av_log_status,
.init = cx18_av_init,
.load_fw = cx18_av_load_fw,
.reset = cx18_av_reset,
.queryctrl = cx18_av_queryctrl,
.g_ctrl = cx18_av_g_ctrl,
.s_ctrl = cx18_av_s_ctrl,
.s_std = cx18_av_s_std,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = cx18_av_g_register,
.s_register = cx18_av_s_register,
#endif
};
static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = {
.s_radio = cx18_av_s_radio,
.s_frequency = cx18_av_s_frequency,
.g_tuner = cx18_av_g_tuner,
.s_tuner = cx18_av_s_tuner,
};
static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = {
.s_clock_freq = cx18_av_s_clock_freq,
.s_routing = cx18_av_s_audio_routing,
};
static const struct v4l2_subdev_video_ops cx18_av_video_ops = {
.s_routing = cx18_av_s_video_routing,
.decode_vbi_line = cx18_av_decode_vbi_line,
.s_stream = cx18_av_s_stream,
.g_fmt = cx18_av_g_fmt,
.s_fmt = cx18_av_s_fmt,
};
static const struct v4l2_subdev_ops cx18_av_ops = {
.core = &cx18_av_general_ops,
.tuner = &cx18_av_tuner_ops,
.audio = &cx18_av_audio_ops,
.video = &cx18_av_video_ops,
};
int cx18_av_probe(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd;
state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff;
state->id = ((state->rev >> 4) == CXADEC_CHIP_TYPE_MAKO)
? V4L2_IDENT_CX23418_843 : V4L2_IDENT_UNKNOWN;
state->vid_input = CX18_AV_COMPOSITE7;
state->aud_input = CX18_AV_AUDIO8;
state->audclk_freq = 48000;
state->audmode = V4L2_TUNER_MODE_LANG1;
state->slicer_line_delay = 0;
state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
sd = &state->sd;
v4l2_subdev_init(sd, &cx18_av_ops);
v4l2_set_subdevdata(sd, cx);
snprintf(sd->name, sizeof(sd->name),
"%s %03x", cx->v4l2_dev.name, (state->rev >> 4));
sd->grp_id = CX18_HW_418_AV;
return v4l2_device_register_subdev(&cx->v4l2_dev, sd);
}