2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Prolific PL2303 USB to serial adaptor driver
|
|
|
|
*
|
2007-06-13 02:43:37 +08:00
|
|
|
* Copyright (C) 2001-2007 Greg Kroah-Hartman (greg@kroah.com)
|
2005-04-17 06:20:36 +08:00
|
|
|
* Copyright (C) 2003 IBM Corp.
|
|
|
|
*
|
2013-08-07 01:26:23 +08:00
|
|
|
* Copyright (C) 2009, 2013 Frank Schäfer <fschaefer.oss@googlemail.com>
|
|
|
|
* - fixes, improvements and documentation for the baud rate encoding methods
|
|
|
|
* Copyright (C) 2013 Reinhard Max <max@suse.de>
|
|
|
|
* - fixes and improvements for the divisor based baud rate encoding method
|
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* Original driver for 2.2.x by anonymous
|
|
|
|
*
|
2007-06-13 02:43:37 +08:00
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License version
|
|
|
|
* 2 as published by the Free Software Foundation.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2008-07-22 18:14:49 +08:00
|
|
|
* See Documentation/usb/usb-serial.txt for more information on using this
|
|
|
|
* driver
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <linux/tty_driver.h>
|
|
|
|
#include <linux/tty_flip.h>
|
|
|
|
#include <linux/serial.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <linux/spinlock.h>
|
2008-07-22 18:14:49 +08:00
|
|
|
#include <linux/uaccess.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/usb.h>
|
2006-07-12 12:22:58 +08:00
|
|
|
#include <linux/usb/serial.h>
|
2013-06-26 22:47:28 +08:00
|
|
|
#include <asm/unaligned.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "pl2303.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Version Information
|
|
|
|
*/
|
|
|
|
#define DRIVER_DESC "Prolific PL2303 USB to serial adaptor driver"
|
|
|
|
|
2010-01-10 22:34:24 +08:00
|
|
|
static const struct usb_device_id id_table[] = {
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_RSAQ2) },
|
2006-06-19 20:47:49 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_DCU11) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_RSAQ3) },
|
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_PHAROS) },
|
2008-03-20 17:43:56 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_ALDIGA) },
|
2008-05-24 02:09:05 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_MMX) },
|
2008-07-03 04:25:41 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_GPRS) },
|
2010-04-13 05:25:10 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_HCR331) },
|
2011-01-21 22:35:19 +08:00
|
|
|
{ USB_DEVICE(PL2303_VENDOR_ID, PL2303_PRODUCT_ID_MOTOROLA) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(IODATA_VENDOR_ID, IODATA_PRODUCT_ID) },
|
2007-10-23 12:51:57 +08:00
|
|
|
{ USB_DEVICE(IODATA_VENDOR_ID, IODATA_PRODUCT_ID_RSAQ5) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(ATEN_VENDOR_ID, ATEN_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(ATEN_VENDOR_ID2, ATEN_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(ELCOM_VENDOR_ID, ELCOM_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(ELCOM_VENDOR_ID, ELCOM_PRODUCT_ID_UCSGT) },
|
|
|
|
{ USB_DEVICE(ITEGNO_VENDOR_ID, ITEGNO_PRODUCT_ID) },
|
2006-04-19 16:32:07 +08:00
|
|
|
{ USB_DEVICE(ITEGNO_VENDOR_ID, ITEGNO_PRODUCT_ID_2080) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(MA620_VENDOR_ID, MA620_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(RATOC_VENDOR_ID, RATOC_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(TRIPP_VENDOR_ID, TRIPP_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(RADIOSHACK_VENDOR_ID, RADIOSHACK_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(DCU10_VENDOR_ID, DCU10_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(SITECOM_VENDOR_ID, SITECOM_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(ALCATEL_VENDOR_ID, ALCATEL_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(SAMSUNG_VENDOR_ID, SAMSUNG_PRODUCT_ID) },
|
2005-11-18 01:47:32 +08:00
|
|
|
{ USB_DEVICE(SIEMENS_VENDOR_ID, SIEMENS_PRODUCT_ID_SX1) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ USB_DEVICE(SIEMENS_VENDOR_ID, SIEMENS_PRODUCT_ID_X65) },
|
2005-11-18 01:47:32 +08:00
|
|
|
{ USB_DEVICE(SIEMENS_VENDOR_ID, SIEMENS_PRODUCT_ID_X75) },
|
2007-08-24 07:51:11 +08:00
|
|
|
{ USB_DEVICE(SIEMENS_VENDOR_ID, SIEMENS_PRODUCT_ID_EF81) },
|
2009-04-07 00:35:12 +08:00
|
|
|
{ USB_DEVICE(BENQ_VENDOR_ID, BENQ_PRODUCT_ID_S81) }, /* Benq/Siemens S81 */
|
2005-04-19 08:39:32 +08:00
|
|
|
{ USB_DEVICE(SYNTECH_VENDOR_ID, SYNTECH_PRODUCT_ID) },
|
2006-02-01 21:10:52 +08:00
|
|
|
{ USB_DEVICE(NOKIA_CA42_VENDOR_ID, NOKIA_CA42_PRODUCT_ID) },
|
|
|
|
{ USB_DEVICE(CA_42_CA42_VENDOR_ID, CA_42_CA42_PRODUCT_ID) },
|
2006-01-19 21:52:38 +08:00
|
|
|
{ USB_DEVICE(SAGEM_VENDOR_ID, SAGEM_PRODUCT_ID) },
|
2006-02-01 21:10:52 +08:00
|
|
|
{ USB_DEVICE(LEADTEK_VENDOR_ID, LEADTEK_9531_PRODUCT_ID) },
|
2006-03-01 16:53:33 +08:00
|
|
|
{ USB_DEVICE(SPEEDDRAGON_VENDOR_ID, SPEEDDRAGON_PRODUCT_ID) },
|
2006-06-22 03:25:53 +08:00
|
|
|
{ USB_DEVICE(DATAPILOT_U2_VENDOR_ID, DATAPILOT_U2_PRODUCT_ID) },
|
2006-07-25 13:54:59 +08:00
|
|
|
{ USB_DEVICE(BELKIN_VENDOR_ID, BELKIN_PRODUCT_ID) },
|
2006-09-16 22:17:34 +08:00
|
|
|
{ USB_DEVICE(ALCOR_VENDOR_ID, ALCOR_PRODUCT_ID) },
|
2007-01-26 21:51:38 +08:00
|
|
|
{ USB_DEVICE(WS002IN_VENDOR_ID, WS002IN_PRODUCT_ID) },
|
2007-11-08 15:45:46 +08:00
|
|
|
{ USB_DEVICE(COREGA_VENDOR_ID, COREGA_PRODUCT_ID) },
|
2008-01-07 02:51:39 +08:00
|
|
|
{ USB_DEVICE(YCCABLE_VENDOR_ID, YCCABLE_PRODUCT_ID) },
|
2008-12-13 19:42:53 +08:00
|
|
|
{ USB_DEVICE(SUPERIAL_VENDOR_ID, SUPERIAL_PRODUCT_ID) },
|
2008-12-17 04:30:14 +08:00
|
|
|
{ USB_DEVICE(HP_VENDOR_ID, HP_LD220_PRODUCT_ID) },
|
2009-06-06 04:57:52 +08:00
|
|
|
{ USB_DEVICE(CRESSI_VENDOR_ID, CRESSI_EDY_PRODUCT_ID) },
|
2010-08-09 21:55:32 +08:00
|
|
|
{ USB_DEVICE(ZEAGLE_VENDOR_ID, ZEAGLE_N2ITION3_PRODUCT_ID) },
|
2009-07-29 01:41:17 +08:00
|
|
|
{ USB_DEVICE(SONY_VENDOR_ID, SONY_QN3USB_PRODUCT_ID) },
|
2009-08-27 20:15:50 +08:00
|
|
|
{ USB_DEVICE(SANWA_VENDOR_ID, SANWA_PRODUCT_ID) },
|
2010-03-30 05:51:57 +08:00
|
|
|
{ USB_DEVICE(ADLINK_VENDOR_ID, ADLINK_ND6530_PRODUCT_ID) },
|
2011-09-24 14:04:50 +08:00
|
|
|
{ USB_DEVICE(SMART_VENDOR_ID, SMART_PRODUCT_ID) },
|
2005-04-17 06:20:36 +08:00
|
|
|
{ } /* Terminating entry */
|
|
|
|
};
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
MODULE_DEVICE_TABLE(usb, id_table);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#define SET_LINE_REQUEST_TYPE 0x21
|
|
|
|
#define SET_LINE_REQUEST 0x20
|
|
|
|
|
|
|
|
#define SET_CONTROL_REQUEST_TYPE 0x21
|
|
|
|
#define SET_CONTROL_REQUEST 0x22
|
|
|
|
#define CONTROL_DTR 0x01
|
|
|
|
#define CONTROL_RTS 0x02
|
|
|
|
|
|
|
|
#define BREAK_REQUEST_TYPE 0x21
|
2008-07-22 18:14:49 +08:00
|
|
|
#define BREAK_REQUEST 0x23
|
2005-04-17 06:20:36 +08:00
|
|
|
#define BREAK_ON 0xffff
|
|
|
|
#define BREAK_OFF 0x0000
|
|
|
|
|
|
|
|
#define GET_LINE_REQUEST_TYPE 0xa1
|
|
|
|
#define GET_LINE_REQUEST 0x21
|
|
|
|
|
|
|
|
#define VENDOR_WRITE_REQUEST_TYPE 0x40
|
|
|
|
#define VENDOR_WRITE_REQUEST 0x01
|
|
|
|
|
|
|
|
#define VENDOR_READ_REQUEST_TYPE 0xc0
|
|
|
|
#define VENDOR_READ_REQUEST 0x01
|
|
|
|
|
|
|
|
#define UART_STATE 0x08
|
|
|
|
#define UART_STATE_TRANSIENT_MASK 0x74
|
|
|
|
#define UART_DCD 0x01
|
|
|
|
#define UART_DSR 0x02
|
|
|
|
#define UART_BREAK_ERROR 0x04
|
|
|
|
#define UART_RING 0x08
|
|
|
|
#define UART_FRAME_ERROR 0x10
|
|
|
|
#define UART_PARITY_ERROR 0x20
|
|
|
|
#define UART_OVERRUN_ERROR 0x40
|
|
|
|
#define UART_CTS 0x80
|
|
|
|
|
|
|
|
|
|
|
|
enum pl2303_type {
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
type_0, /* H version ? */
|
|
|
|
type_1, /* H version ? */
|
|
|
|
HX_TA, /* HX(A) / X(A) / TA version */ /* TODO: improve */
|
|
|
|
HXD_EA_RA_SA, /* HXD / EA / RA / SA version */ /* TODO: improve */
|
|
|
|
TB, /* TB version */
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
/*
|
|
|
|
* NOTE: don't know the difference between type 0 and type 1,
|
|
|
|
* until someone from Prolific tells us...
|
|
|
|
* TODO: distinguish between X/HX, TA and HXD, EA, RA, SA variants
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-10-15 21:47:21 +08:00
|
|
|
struct pl2303_serial_private {
|
|
|
|
enum pl2303_type type;
|
|
|
|
};
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
struct pl2303_private {
|
|
|
|
spinlock_t lock;
|
|
|
|
u8 line_control;
|
|
|
|
u8 line_status;
|
|
|
|
};
|
|
|
|
|
2007-12-15 06:08:00 +08:00
|
|
|
static int pl2303_vendor_read(__u16 value, __u16 index,
|
|
|
|
struct usb_serial *serial, unsigned char *buf)
|
|
|
|
{
|
|
|
|
int res = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
|
|
|
|
VENDOR_READ_REQUEST, VENDOR_READ_REQUEST_TYPE,
|
|
|
|
value, index, buf, 1, 100);
|
2013-03-21 19:36:21 +08:00
|
|
|
dev_dbg(&serial->interface->dev, "0x%x:0x%x:0x%x:0x%x %d - %x\n",
|
2012-05-04 07:39:27 +08:00
|
|
|
VENDOR_READ_REQUEST_TYPE, VENDOR_READ_REQUEST, value, index,
|
|
|
|
res, buf[0]);
|
2007-12-15 06:08:00 +08:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pl2303_vendor_write(__u16 value, __u16 index,
|
|
|
|
struct usb_serial *serial)
|
|
|
|
{
|
|
|
|
int res = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
|
|
VENDOR_WRITE_REQUEST, VENDOR_WRITE_REQUEST_TYPE,
|
|
|
|
value, index, NULL, 0, 100);
|
2013-03-21 19:36:21 +08:00
|
|
|
dev_dbg(&serial->interface->dev, "0x%x:0x%x:0x%x:0x%x %d\n",
|
2012-05-04 07:39:27 +08:00
|
|
|
VENDOR_WRITE_REQUEST_TYPE, VENDOR_WRITE_REQUEST, value, index,
|
|
|
|
res);
|
2007-12-15 06:08:00 +08:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
static int pl2303_startup(struct usb_serial *serial)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2012-10-15 21:47:21 +08:00
|
|
|
struct pl2303_serial_private *spriv;
|
2005-04-17 06:20:36 +08:00
|
|
|
enum pl2303_type type = type_0;
|
2013-08-15 02:09:10 +08:00
|
|
|
char *type_str = "unknown (treating as type_0)";
|
2007-12-15 06:08:35 +08:00
|
|
|
unsigned char *buf;
|
2012-10-15 21:47:21 +08:00
|
|
|
|
|
|
|
spriv = kzalloc(sizeof(*spriv), GFP_KERNEL);
|
|
|
|
if (!spriv)
|
|
|
|
return -ENOMEM;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-12-15 06:08:35 +08:00
|
|
|
buf = kmalloc(10, GFP_KERNEL);
|
2012-10-15 21:47:21 +08:00
|
|
|
if (!buf) {
|
|
|
|
kfree(spriv);
|
2007-12-15 06:08:35 +08:00
|
|
|
return -ENOMEM;
|
2012-10-15 21:47:21 +08:00
|
|
|
}
|
2007-12-15 06:08:35 +08:00
|
|
|
|
2013-08-15 02:09:10 +08:00
|
|
|
if (serial->dev->descriptor.bDeviceClass == 0x02) {
|
2005-04-17 06:20:36 +08:00
|
|
|
type = type_0;
|
2013-08-15 02:09:10 +08:00
|
|
|
type_str = "type_0";
|
|
|
|
} else if (serial->dev->descriptor.bMaxPacketSize0 == 0x40) {
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
/*
|
|
|
|
* NOTE: The bcdDevice version is the only difference between
|
|
|
|
* the device descriptors of the X/HX, HXD, EA, RA, SA, TA, TB
|
|
|
|
*/
|
|
|
|
if (le16_to_cpu(serial->dev->descriptor.bcdDevice) == 0x300) {
|
|
|
|
type = HX_TA;
|
|
|
|
type_str = "X/HX/TA";
|
|
|
|
} else if (le16_to_cpu(serial->dev->descriptor.bcdDevice)
|
|
|
|
== 0x400) {
|
|
|
|
type = HXD_EA_RA_SA;
|
|
|
|
type_str = "HXD/EA/RA/SA";
|
|
|
|
} else if (le16_to_cpu(serial->dev->descriptor.bcdDevice)
|
|
|
|
== 0x500) {
|
|
|
|
type = TB;
|
|
|
|
type_str = "TB";
|
|
|
|
} else {
|
|
|
|
dev_info(&serial->interface->dev,
|
|
|
|
"unknown/unsupported device type\n");
|
|
|
|
kfree(spriv);
|
|
|
|
kfree(buf);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
2013-08-15 02:09:10 +08:00
|
|
|
} else if (serial->dev->descriptor.bDeviceClass == 0x00
|
|
|
|
|| serial->dev->descriptor.bDeviceClass == 0xFF) {
|
2005-04-17 06:20:36 +08:00
|
|
|
type = type_1;
|
2013-08-15 02:09:10 +08:00
|
|
|
type_str = "type_1";
|
|
|
|
}
|
|
|
|
dev_dbg(&serial->interface->dev, "device type: %s\n", type_str);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-10-15 21:47:21 +08:00
|
|
|
spriv->type = type;
|
|
|
|
usb_set_serial_data(serial, spriv);
|
2007-12-15 06:08:35 +08:00
|
|
|
|
|
|
|
pl2303_vendor_read(0x8484, 0, serial, buf);
|
|
|
|
pl2303_vendor_write(0x0404, 0, serial);
|
|
|
|
pl2303_vendor_read(0x8484, 0, serial, buf);
|
|
|
|
pl2303_vendor_read(0x8383, 0, serial, buf);
|
|
|
|
pl2303_vendor_read(0x8484, 0, serial, buf);
|
|
|
|
pl2303_vendor_write(0x0404, 1, serial);
|
|
|
|
pl2303_vendor_read(0x8484, 0, serial, buf);
|
|
|
|
pl2303_vendor_read(0x8383, 0, serial, buf);
|
|
|
|
pl2303_vendor_write(0, 1, serial);
|
|
|
|
pl2303_vendor_write(1, 0, serial);
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
if (type == type_0 || type == type_1)
|
2007-12-15 06:08:35 +08:00
|
|
|
pl2303_vendor_write(2, 0x24, serial);
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
else
|
|
|
|
pl2303_vendor_write(2, 0x44, serial);
|
2007-12-15 06:08:35 +08:00
|
|
|
|
|
|
|
kfree(buf);
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
2012-10-15 21:47:21 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-10-15 21:47:21 +08:00
|
|
|
static void pl2303_release(struct usb_serial *serial)
|
|
|
|
{
|
|
|
|
struct pl2303_serial_private *spriv;
|
|
|
|
|
|
|
|
spriv = usb_get_serial_data(serial);
|
|
|
|
kfree(spriv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pl2303_port_probe(struct usb_serial_port *port)
|
|
|
|
{
|
|
|
|
struct pl2303_private *priv;
|
|
|
|
|
|
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
|
|
if (!priv)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock_init(&priv->lock);
|
|
|
|
|
|
|
|
usb_set_serial_port_data(port, priv);
|
|
|
|
|
2013-06-26 22:47:23 +08:00
|
|
|
port->port.drain_delay = 256;
|
|
|
|
|
2012-10-15 21:47:21 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pl2303_port_remove(struct usb_serial_port *port)
|
|
|
|
{
|
|
|
|
struct pl2303_private *priv;
|
|
|
|
|
|
|
|
priv = usb_get_serial_port_data(port);
|
|
|
|
kfree(priv);
|
|
|
|
|
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-03-21 19:36:22 +08:00
|
|
|
static int pl2303_set_control_lines(struct usb_serial_port *port, u8 value)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-03-21 19:36:22 +08:00
|
|
|
struct usb_device *dev = port->serial->dev;
|
2005-04-17 06:20:36 +08:00
|
|
|
int retval;
|
2008-07-22 18:14:49 +08:00
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
|
|
|
|
SET_CONTROL_REQUEST, SET_CONTROL_REQUEST_TYPE,
|
|
|
|
value, 0, NULL, 0, 100);
|
2013-03-21 19:36:22 +08:00
|
|
|
dev_dbg(&port->dev, "%s - value = %d, retval = %d\n", __func__,
|
2012-05-04 07:39:27 +08:00
|
|
|
value, retval);
|
2005-04-17 06:20:36 +08:00
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2013-08-07 01:26:26 +08:00
|
|
|
static int pl2303_baudrate_encode_direct(int baud, enum pl2303_type type,
|
|
|
|
u8 buf[4])
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* NOTE: Only the values defined in baud_sup are supported !
|
|
|
|
* => if unsupported values are set, the PL2303 seems to
|
|
|
|
* use 9600 baud (at least my PL2303X always does)
|
|
|
|
*/
|
|
|
|
const int baud_sup[] = { 75, 150, 300, 600, 1200, 1800, 2400, 3600,
|
|
|
|
4800, 7200, 9600, 14400, 19200, 28800, 38400,
|
|
|
|
57600, 115200, 230400, 460800, 614400, 921600,
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
1228800, 2457600, 3000000, 6000000, 12000000 };
|
2013-08-07 01:26:29 +08:00
|
|
|
/*
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
* NOTE: With the exception of type_0/1 devices, the following
|
|
|
|
* additional baud rates are supported (tested with HX rev. 3A only):
|
|
|
|
* 110*, 56000*, 128000, 134400, 161280, 201600, 256000*, 268800,
|
|
|
|
* 403200, 806400. (*: not HX)
|
|
|
|
*
|
|
|
|
* Maximum values: HXD, TB: 12000000; HX, TA: 6000000;
|
|
|
|
* type_0+1: 1228800; RA: 921600; SA: 115200
|
|
|
|
*
|
|
|
|
* As long as we are not using this encoding method for anything else
|
|
|
|
* than the type_0+1 and HX chips, there is no point in complicating
|
|
|
|
* the code to support them.
|
2013-08-07 01:26:29 +08:00
|
|
|
*/
|
2013-08-07 01:26:26 +08:00
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Set baudrate to nearest supported value */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(baud_sup); ++i) {
|
|
|
|
if (baud_sup[i] > baud)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(baud_sup))
|
|
|
|
baud = baud_sup[i - 1];
|
|
|
|
else if (i > 0 && (baud_sup[i] - baud) > (baud - baud_sup[i - 1]))
|
|
|
|
baud = baud_sup[i - 1];
|
|
|
|
else
|
|
|
|
baud = baud_sup[i];
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
/* Respect the chip type specific baud rate limits */
|
|
|
|
/*
|
|
|
|
* FIXME: as long as we don't know how to distinguish between the
|
|
|
|
* HXD, EA, RA, and SA chip variants, allow the max. value of 12M.
|
|
|
|
*/
|
|
|
|
if (type == HX_TA)
|
|
|
|
baud = min_t(int, baud, 6000000);
|
|
|
|
else if (type == type_0 || type == type_1)
|
2013-08-07 01:26:26 +08:00
|
|
|
baud = min_t(int, baud, 1228800);
|
|
|
|
/* Direct (standard) baud rate encoding method */
|
|
|
|
put_unaligned_le32(baud, buf);
|
|
|
|
|
|
|
|
return baud;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pl2303_baudrate_encode_divisor(int baud, enum pl2303_type type,
|
|
|
|
u8 buf[4])
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Divisor based baud rate encoding method
|
|
|
|
*
|
|
|
|
* NOTE: it's not clear if the type_0/1 chips support this method
|
|
|
|
*
|
|
|
|
* divisor = 12MHz * 32 / baudrate = 2^A * B
|
|
|
|
*
|
|
|
|
* with
|
|
|
|
*
|
|
|
|
* A = buf[1] & 0x0e
|
|
|
|
* B = buf[0] + (buf[1] & 0x01) << 8
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* => 8 < B < 16: device seems to work not properly
|
|
|
|
* => B <= 8: device uses the max. value B = 512 instead
|
|
|
|
*/
|
|
|
|
unsigned int A, B;
|
|
|
|
|
2013-08-07 01:26:27 +08:00
|
|
|
/*
|
|
|
|
* NOTE: The Windows driver allows maximum baud rates of 110% of the
|
|
|
|
* specified maximium value.
|
|
|
|
* Quick tests with early (2004) HX (rev. A) chips suggest, that even
|
|
|
|
* higher baud rates (up to the maximum of 24M baud !) are working fine,
|
|
|
|
* but that should really be tested carefully in "real life" scenarios
|
|
|
|
* before removing the upper limit completely.
|
|
|
|
* Baud rates smaller than the specified 75 baud are definitely working
|
|
|
|
* fine.
|
|
|
|
*/
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
if (type == type_0 || type == type_1)
|
2013-08-07 01:26:27 +08:00
|
|
|
baud = min_t(int, baud, 1228800 * 1.1);
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
else if (type == HX_TA)
|
|
|
|
baud = min_t(int, baud, 6000000 * 1.1);
|
|
|
|
else if (type == HXD_EA_RA_SA)
|
|
|
|
/* HXD, EA: 12Mbps; RA: 1Mbps; SA: 115200 bps */
|
|
|
|
/*
|
|
|
|
* FIXME: as long as we don't know how to distinguish between
|
|
|
|
* these chip variants, allow the max. of these values
|
|
|
|
*/
|
|
|
|
baud = min_t(int, baud, 12000000 * 1.1);
|
|
|
|
else if (type == TB)
|
|
|
|
baud = min_t(int, baud, 12000000 * 1.1);
|
2013-08-07 01:26:26 +08:00
|
|
|
/* Determine factors A and B */
|
|
|
|
A = 0;
|
|
|
|
B = 12000000 * 32 / baud; /* 12MHz */
|
|
|
|
B <<= 1; /* Add one bit for rounding */
|
|
|
|
while (B > (512 << 1) && A <= 14) {
|
|
|
|
A += 2;
|
|
|
|
B >>= 2;
|
|
|
|
}
|
|
|
|
if (A > 14) { /* max. divisor = min. baudrate reached */
|
|
|
|
A = 14;
|
|
|
|
B = 512;
|
|
|
|
/* => ~45.78 baud */
|
|
|
|
} else {
|
|
|
|
B = (B + 1) >> 1; /* Round the last bit */
|
|
|
|
}
|
|
|
|
/* Handle special cases */
|
|
|
|
if (B == 512)
|
|
|
|
B = 0; /* also: 1 to 8 */
|
|
|
|
else if (B < 16)
|
|
|
|
/*
|
|
|
|
* NOTE: With the current algorithm this happens
|
|
|
|
* only for A=0 and means that the min. divisor
|
|
|
|
* (respectively: the max. baudrate) is reached.
|
|
|
|
*/
|
|
|
|
B = 16; /* => 24 MBaud */
|
|
|
|
/* Encode the baud rate */
|
|
|
|
buf[3] = 0x80; /* Select divisor encoding method */
|
|
|
|
buf[2] = 0;
|
|
|
|
buf[1] = (A & 0x0e); /* A */
|
|
|
|
buf[1] |= ((B & 0x100) >> 8); /* MSB of B */
|
|
|
|
buf[0] = B & 0xff; /* 8 LSBs of B */
|
|
|
|
/* Calculate the actual/resulting baud rate */
|
|
|
|
if (B <= 8)
|
|
|
|
B = 512;
|
|
|
|
baud = 12000000 * 32 / ((1 << A) * B);
|
|
|
|
|
|
|
|
return baud;
|
|
|
|
}
|
|
|
|
|
2013-06-26 22:47:27 +08:00
|
|
|
static void pl2303_encode_baudrate(struct tty_struct *tty,
|
|
|
|
struct usb_serial_port *port,
|
2013-08-07 01:26:26 +08:00
|
|
|
enum pl2303_type type,
|
2013-06-26 22:47:27 +08:00
|
|
|
u8 buf[4])
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-06-26 22:47:27 +08:00
|
|
|
int baud;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-07-22 18:09:07 +08:00
|
|
|
baud = tty_get_baud_rate(tty);
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "baud requested = %d\n", baud);
|
2013-06-26 22:47:28 +08:00
|
|
|
if (!baud)
|
|
|
|
return;
|
2013-08-07 01:26:26 +08:00
|
|
|
/*
|
|
|
|
* There are two methods for setting/encoding the baud rate
|
|
|
|
* 1) Direct method: encodes the baud rate value directly
|
|
|
|
* => supported by all chip types
|
|
|
|
* 2) Divisor based method: encodes a divisor to a base value (12MHz*32)
|
|
|
|
* => supported by HX chips (and likely not by type_0/1 chips)
|
2013-08-07 01:26:29 +08:00
|
|
|
*
|
|
|
|
* NOTE: Although the divisor based baud rate encoding method is much
|
|
|
|
* more flexible, some of the standard baud rate values can not be
|
|
|
|
* realized exactly. But the difference is very small (max. 0.2%) and
|
|
|
|
* the device likely uses the same baud rate generator for both methods
|
|
|
|
* so that there is likley no difference.
|
2013-08-07 01:26:26 +08:00
|
|
|
*/
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
if (type == type_0 || type == type_1)
|
2013-08-07 01:26:26 +08:00
|
|
|
baud = pl2303_baudrate_encode_direct(baud, type, buf);
|
|
|
|
else
|
|
|
|
baud = pl2303_baudrate_encode_divisor(baud, type, buf);
|
2013-06-26 22:47:27 +08:00
|
|
|
/* Save resulting baud rate */
|
2013-06-26 22:47:28 +08:00
|
|
|
tty_encode_baud_rate(tty, baud, baud);
|
|
|
|
dev_dbg(&port->dev, "baud set = %d\n", baud);
|
2013-06-26 22:47:27 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pl2303_set_termios(struct tty_struct *tty,
|
|
|
|
struct usb_serial_port *port, struct ktermios *old_termios)
|
|
|
|
{
|
|
|
|
struct usb_serial *serial = port->serial;
|
|
|
|
struct pl2303_serial_private *spriv = usb_get_serial_data(serial);
|
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned char *buf;
|
|
|
|
int i;
|
|
|
|
u8 control;
|
|
|
|
|
2013-06-26 22:47:29 +08:00
|
|
|
/*
|
|
|
|
* The PL2303 is reported to lose bytes if you change serial settings
|
|
|
|
* even to the same values as before. Thus we actually need to filter
|
|
|
|
* in this specific case.
|
|
|
|
*/
|
2013-06-26 22:47:27 +08:00
|
|
|
if (old_termios && !tty_termios_hw_change(&tty->termios, old_termios))
|
|
|
|
return;
|
|
|
|
|
|
|
|
buf = kzalloc(7, GFP_KERNEL);
|
|
|
|
if (!buf) {
|
|
|
|
dev_err(&port->dev, "%s - out of memory.\n", __func__);
|
|
|
|
/* Report back no change occurred */
|
|
|
|
if (old_termios)
|
|
|
|
tty->termios = *old_termios;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
i = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
|
|
|
|
GET_LINE_REQUEST, GET_LINE_REQUEST_TYPE,
|
|
|
|
0, 0, buf, 7, 100);
|
|
|
|
dev_dbg(&port->dev, "0xa1:0x21:0:0 %d - %7ph\n", i, buf);
|
|
|
|
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_CSIZE(tty)) {
|
|
|
|
switch (C_CSIZE(tty)) {
|
2013-06-26 22:47:27 +08:00
|
|
|
case CS5:
|
|
|
|
buf[6] = 5;
|
|
|
|
break;
|
|
|
|
case CS6:
|
|
|
|
buf[6] = 6;
|
|
|
|
break;
|
|
|
|
case CS7:
|
|
|
|
buf[6] = 7;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
case CS8:
|
|
|
|
buf[6] = 8;
|
|
|
|
}
|
|
|
|
dev_dbg(&port->dev, "data bits = %d\n", buf[6]);
|
|
|
|
}
|
|
|
|
|
2013-08-07 01:26:26 +08:00
|
|
|
/* For reference: buf[0]:buf[3] baud rate value */
|
|
|
|
pl2303_encode_baudrate(tty, port, spriv->type, buf);
|
2013-06-26 22:47:27 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* For reference buf[4]=0 is 1 stop bits */
|
|
|
|
/* For reference buf[4]=1 is 1.5 stop bits */
|
|
|
|
/* For reference buf[4]=2 is 2 stop bits */
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_CSTOPB(tty)) {
|
|
|
|
/*
|
|
|
|
* NOTE: Comply with "real" UARTs / RS232:
|
2009-08-19 02:34:24 +08:00
|
|
|
* use 1.5 instead of 2 stop bits with 5 data bits
|
|
|
|
*/
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_CSIZE(tty) == CS5) {
|
2009-08-19 02:34:24 +08:00
|
|
|
buf[4] = 1;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "stop bits = 1.5\n");
|
2009-08-19 02:34:24 +08:00
|
|
|
} else {
|
|
|
|
buf[4] = 2;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "stop bits = 2\n");
|
2009-08-19 02:34:24 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
|
|
|
buf[4] = 0;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "stop bits = 1\n");
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_PARENB(tty)) {
|
2005-04-17 06:20:36 +08:00
|
|
|
/* For reference buf[5]=0 is none parity */
|
|
|
|
/* For reference buf[5]=1 is odd parity */
|
|
|
|
/* For reference buf[5]=2 is even parity */
|
|
|
|
/* For reference buf[5]=3 is mark parity */
|
|
|
|
/* For reference buf[5]=4 is space parity */
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_PARODD(tty)) {
|
|
|
|
if (tty->termios.c_cflag & CMSPAR) {
|
2009-08-19 02:31:11 +08:00
|
|
|
buf[5] = 3;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "parity = mark\n");
|
2009-08-19 02:31:11 +08:00
|
|
|
} else {
|
|
|
|
buf[5] = 1;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "parity = odd\n");
|
2009-08-19 02:31:11 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
2013-06-26 22:47:29 +08:00
|
|
|
if (tty->termios.c_cflag & CMSPAR) {
|
2009-08-19 02:31:11 +08:00
|
|
|
buf[5] = 4;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "parity = space\n");
|
2009-08-19 02:31:11 +08:00
|
|
|
} else {
|
|
|
|
buf[5] = 2;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "parity = even\n");
|
2009-08-19 02:31:11 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
buf[5] = 0;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "parity = none\n");
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
i = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
|
|
SET_LINE_REQUEST, SET_LINE_REQUEST_TYPE,
|
|
|
|
0, 0, buf, 7, 100);
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "0x21:0x20:0:0 %d\n", i);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* change control lines if we are switching to or from B0 */
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
|
|
control = priv->line_control;
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_BAUD(tty) == B0)
|
2005-04-17 06:20:36 +08:00
|
|
|
priv->line_control &= ~(CONTROL_DTR | CONTROL_RTS);
|
2013-06-11 00:29:38 +08:00
|
|
|
else if (old_termios && (old_termios->c_cflag & CBAUD) == B0)
|
2005-04-17 06:20:36 +08:00
|
|
|
priv->line_control |= (CONTROL_DTR | CONTROL_RTS);
|
|
|
|
if (control != priv->line_control) {
|
|
|
|
control = priv->line_control;
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2013-03-21 19:36:22 +08:00
|
|
|
pl2303_set_control_lines(port, control);
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
}
|
2006-08-01 02:39:27 +08:00
|
|
|
|
2013-06-26 22:47:29 +08:00
|
|
|
memset(buf, 0, 7);
|
2006-08-01 02:39:27 +08:00
|
|
|
i = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
|
|
|
|
GET_LINE_REQUEST, GET_LINE_REQUEST_TYPE,
|
|
|
|
0, 0, buf, 7, 100);
|
2013-05-28 17:49:17 +08:00
|
|
|
dev_dbg(&port->dev, "0xa1:0x21:0:0 %d - %7ph\n", i, buf);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-06-26 22:47:29 +08:00
|
|
|
if (C_CRTSCTS(tty)) {
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
if (spriv->type == type_0 || spriv->type == type_1)
|
2007-12-15 06:08:00 +08:00
|
|
|
pl2303_vendor_write(0x0, 0x41, serial);
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
else
|
|
|
|
pl2303_vendor_write(0x0, 0x61, serial);
|
2007-04-25 21:05:22 +08:00
|
|
|
} else {
|
2007-12-15 06:08:00 +08:00
|
|
|
pl2303_vendor_write(0x0, 0x0, serial);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2006-07-29 21:46:37 +08:00
|
|
|
|
|
|
|
kfree(buf);
|
|
|
|
}
|
|
|
|
|
2009-06-11 19:26:29 +08:00
|
|
|
static void pl2303_dtr_rts(struct usb_serial_port *port, int on)
|
|
|
|
{
|
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
unsigned long flags;
|
|
|
|
u8 control;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
|
|
/* Change DTR and RTS */
|
|
|
|
if (on)
|
|
|
|
priv->line_control |= (CONTROL_DTR | CONTROL_RTS);
|
|
|
|
else
|
|
|
|
priv->line_control &= ~(CONTROL_DTR | CONTROL_RTS);
|
|
|
|
control = priv->line_control;
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2013-03-21 19:36:22 +08:00
|
|
|
pl2303_set_control_lines(port, control);
|
2009-06-11 19:26:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pl2303_close(struct usb_serial_port *port)
|
2006-07-29 21:46:37 +08:00
|
|
|
{
|
2010-03-18 06:06:04 +08:00
|
|
|
usb_serial_generic_close(port);
|
2006-07-29 21:46:37 +08:00
|
|
|
usb_kill_urb(port->interrupt_in_urb);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-20 04:13:26 +08:00
|
|
|
static int pl2303_open(struct tty_struct *tty, struct usb_serial_port *port)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct usb_serial *serial = port->serial;
|
2012-10-15 21:47:21 +08:00
|
|
|
struct pl2303_serial_private *spriv = usb_get_serial_data(serial);
|
2005-04-17 06:20:36 +08:00
|
|
|
int result;
|
|
|
|
|
pl2303: improve the chip type detection/distinction
The driver currently knows about 3 different PL2303 chip types:
The two legacy chip types type_0 and type_1 (PL2303H ?) and the HX
type.
The device distinction is currently completely based on the examination
of the USB descriptors.
During the last years, Prolific has introduced further PL2303 chips,
such as the HXD (HX rev. D), TA (which replaced the X/HX chips), SA,
RA, EA and TB variants.
Unfortunately, all these new chips are currently detected as HX chips,
because they are all using the same bMaxPacketSize0 = 0x40 value in the
USB device descriptor.
At this point it is not clear if these chips are really working with
the driver, there are just some positive indicators (like device
manufacturers claiming Linux support for these devices or commit
8d48fdf689 "correctly handle baudrates above 115200" which should only
be necessary for newer devices, ...)
For a complete support of all devices, we need to distinguish between
them, because they differ in several functional aspects, such as the
maximum supported baud rate (HXD, TB, EA: 12Mbps, HX, TA: 6Mbps,
RA: 1Mbps, SA: 115.2kbps), handshaking line support, RS422/485 and
GPIO ports support (currently not supported by the driver).
And there might be further differences that we don't know yet.
This patch improves the chip type detection by evaluating the bcdDevice
value of the device descriptor. The values are taken from the
datasheets and are safe to use because manufacturers can't change them:
3.00: X/HX, TA
4.00: HXD, EA, RA, SA
5.00: TB
The rest of the device descriptors is completely identical, so no
further distinction is possible this way.
Anyway, Prolifics "checkChipVersion.exe"-tool is definitely able to
distinguish for example between the X/HX and the TA chips, so there
must be a possibility to improve the distinction further...
Signed-off-by: Frank Schäfer <fschaefer.oss@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-15 02:09:11 +08:00
|
|
|
if (spriv->type == type_0 || spriv->type == type_1) {
|
2005-07-29 00:06:13 +08:00
|
|
|
usb_clear_halt(serial->dev, port->write_urb->pipe);
|
|
|
|
usb_clear_halt(serial->dev, port->read_urb->pipe);
|
2007-12-15 06:08:35 +08:00
|
|
|
} else {
|
2005-04-17 06:20:36 +08:00
|
|
|
/* reset upstream data pipes */
|
2007-12-15 06:08:00 +08:00
|
|
|
pl2303_vendor_write(8, 0, serial);
|
|
|
|
pl2303_vendor_write(9, 0, serial);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Setup termios */
|
2008-07-22 18:09:07 +08:00
|
|
|
if (tty)
|
2013-06-11 00:29:38 +08:00
|
|
|
pl2303_set_termios(tty, port, NULL);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
result = usb_submit_urb(port->interrupt_in_urb, GFP_KERNEL);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (result) {
|
2006-08-01 02:39:27 +08:00
|
|
|
dev_err(&port->dev, "%s - failed submitting interrupt urb,"
|
2008-03-04 08:08:34 +08:00
|
|
|
" error %d\n", __func__, result);
|
2011-11-07 02:06:34 +08:00
|
|
|
return result;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2011-11-07 02:06:35 +08:00
|
|
|
|
2011-11-07 02:06:36 +08:00
|
|
|
result = usb_serial_generic_open(tty, port);
|
2011-11-07 02:06:35 +08:00
|
|
|
if (result) {
|
|
|
|
usb_kill_urb(port->interrupt_in_urb);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-02-15 00:26:50 +08:00
|
|
|
static int pl2303_tiocmset(struct tty_struct *tty,
|
2006-08-01 02:39:27 +08:00
|
|
|
unsigned int set, unsigned int clear)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-07-22 18:09:07 +08:00
|
|
|
struct usb_serial_port *port = tty->driver_data;
|
2005-04-17 06:20:36 +08:00
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
unsigned long flags;
|
|
|
|
u8 control;
|
2012-04-25 21:56:31 +08:00
|
|
|
int ret;
|
2005-04-19 08:39:31 +08:00
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (set & TIOCM_RTS)
|
|
|
|
priv->line_control |= CONTROL_RTS;
|
|
|
|
if (set & TIOCM_DTR)
|
|
|
|
priv->line_control |= CONTROL_DTR;
|
|
|
|
if (clear & TIOCM_RTS)
|
|
|
|
priv->line_control &= ~CONTROL_RTS;
|
|
|
|
if (clear & TIOCM_DTR)
|
|
|
|
priv->line_control &= ~CONTROL_DTR;
|
|
|
|
control = priv->line_control;
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-03-21 19:37:45 +08:00
|
|
|
ret = pl2303_set_control_lines(port, control);
|
|
|
|
if (ret)
|
|
|
|
return usb_translate_errors(ret);
|
2012-04-25 21:56:31 +08:00
|
|
|
|
2013-03-21 19:37:45 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2011-02-15 00:26:14 +08:00
|
|
|
static int pl2303_tiocmget(struct tty_struct *tty)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-07-22 18:09:07 +08:00
|
|
|
struct usb_serial_port *port = tty->driver_data;
|
2005-04-17 06:20:36 +08:00
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned int mcr;
|
|
|
|
unsigned int status;
|
|
|
|
unsigned int result;
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
mcr = priv->line_control;
|
|
|
|
status = priv->line_status;
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
result = ((mcr & CONTROL_DTR) ? TIOCM_DTR : 0)
|
|
|
|
| ((mcr & CONTROL_RTS) ? TIOCM_RTS : 0)
|
|
|
|
| ((status & UART_CTS) ? TIOCM_CTS : 0)
|
|
|
|
| ((status & UART_DSR) ? TIOCM_DSR : 0)
|
|
|
|
| ((status & UART_RING) ? TIOCM_RI : 0)
|
|
|
|
| ((status & UART_DCD) ? TIOCM_CD : 0);
|
|
|
|
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "%s - result = %x\n", __func__, result);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2009-06-11 19:26:29 +08:00
|
|
|
static int pl2303_carrier_raised(struct usb_serial_port *port)
|
|
|
|
{
|
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
if (priv->line_status & UART_DCD)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-03-21 19:37:20 +08:00
|
|
|
static int pl2303_tiocmiwait(struct tty_struct *tty, unsigned long arg)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-03-21 19:37:20 +08:00
|
|
|
struct usb_serial_port *port = tty->driver_data;
|
2005-04-17 06:20:36 +08:00
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned int prevstatus;
|
|
|
|
unsigned int status;
|
|
|
|
unsigned int changed;
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
prevstatus = priv->line_status;
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
while (1) {
|
2013-03-21 19:37:21 +08:00
|
|
|
interruptible_sleep_on(&port->port.delta_msr_wait);
|
2005-04-17 06:20:36 +08:00
|
|
|
/* see if a signal did it */
|
|
|
|
if (signal_pending(current))
|
|
|
|
return -ERESTARTSYS;
|
2006-08-01 02:39:27 +08:00
|
|
|
|
2013-03-19 16:21:22 +08:00
|
|
|
if (port->serial->disconnected)
|
|
|
|
return -EIO;
|
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
status = priv->line_status;
|
2006-08-01 02:39:27 +08:00
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
|
2008-07-22 18:14:49 +08:00
|
|
|
changed = prevstatus ^ status;
|
2006-08-01 02:39:27 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
if (((arg & TIOCM_RNG) && (changed & UART_RING)) ||
|
|
|
|
((arg & TIOCM_DSR) && (changed & UART_DSR)) ||
|
|
|
|
((arg & TIOCM_CD) && (changed & UART_DCD)) ||
|
2008-07-22 18:14:49 +08:00
|
|
|
((arg & TIOCM_CTS) && (changed & UART_CTS))) {
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
prevstatus = status;
|
|
|
|
}
|
|
|
|
/* NOTREACHED */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-02-15 00:27:06 +08:00
|
|
|
static int pl2303_ioctl(struct tty_struct *tty,
|
2006-08-01 02:39:27 +08:00
|
|
|
unsigned int cmd, unsigned long arg)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2010-02-25 23:09:08 +08:00
|
|
|
struct serial_struct ser;
|
2008-07-22 18:09:07 +08:00
|
|
|
struct usb_serial_port *port = tty->driver_data;
|
2012-05-04 07:39:27 +08:00
|
|
|
|
|
|
|
dev_dbg(&port->dev, "%s cmd = 0x%04x\n", __func__, cmd);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
switch (cmd) {
|
2010-02-25 23:09:08 +08:00
|
|
|
case TIOCGSERIAL:
|
|
|
|
memset(&ser, 0, sizeof ser);
|
|
|
|
ser.type = PORT_16654;
|
2013-06-08 02:04:28 +08:00
|
|
|
ser.line = port->minor;
|
2013-06-07 01:32:00 +08:00
|
|
|
ser.port = port->port_number;
|
2010-02-25 23:09:08 +08:00
|
|
|
ser.baud_base = 460800;
|
|
|
|
|
|
|
|
if (copy_to_user((void __user *)arg, &ser, sizeof ser))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
2008-07-22 18:14:49 +08:00
|
|
|
default:
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "%s not supported = 0x%04x\n", __func__, cmd);
|
2008-07-22 18:14:49 +08:00
|
|
|
break;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
return -ENOIOCTLCMD;
|
|
|
|
}
|
|
|
|
|
2008-07-22 18:09:07 +08:00
|
|
|
static void pl2303_break_ctl(struct tty_struct *tty, int break_state)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-07-22 18:09:07 +08:00
|
|
|
struct usb_serial_port *port = tty->driver_data;
|
2005-04-17 06:20:36 +08:00
|
|
|
struct usb_serial *serial = port->serial;
|
|
|
|
u16 state;
|
|
|
|
int result;
|
|
|
|
|
|
|
|
if (break_state == 0)
|
|
|
|
state = BREAK_OFF;
|
|
|
|
else
|
|
|
|
state = BREAK_ON;
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "%s - turning break %s\n", __func__,
|
2008-07-22 18:14:49 +08:00
|
|
|
state == BREAK_OFF ? "off" : "on");
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-08-01 02:39:27 +08:00
|
|
|
result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
|
|
BREAK_REQUEST, BREAK_REQUEST_TYPE, state,
|
|
|
|
0, NULL, 0, 100);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (result)
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_err(&port->dev, "error sending break = %d\n", result);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2005-04-19 08:39:31 +08:00
|
|
|
static void pl2303_update_line_status(struct usb_serial_port *port,
|
|
|
|
unsigned char *data,
|
|
|
|
unsigned int actual_length)
|
|
|
|
{
|
|
|
|
|
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
2011-01-14 21:30:21 +08:00
|
|
|
struct tty_struct *tty;
|
2005-04-19 08:39:31 +08:00
|
|
|
unsigned long flags;
|
|
|
|
u8 status_idx = UART_STATE;
|
2005-07-28 21:32:20 +08:00
|
|
|
u8 length = UART_STATE + 1;
|
2011-01-14 21:30:21 +08:00
|
|
|
u8 prev_line_status;
|
2006-07-29 21:47:12 +08:00
|
|
|
u16 idv, idp;
|
2005-04-19 08:39:31 +08:00
|
|
|
|
2006-07-29 21:47:12 +08:00
|
|
|
idv = le16_to_cpu(port->serial->dev->descriptor.idVendor);
|
|
|
|
idp = le16_to_cpu(port->serial->dev->descriptor.idProduct);
|
|
|
|
|
|
|
|
|
|
|
|
if (idv == SIEMENS_VENDOR_ID) {
|
|
|
|
if (idp == SIEMENS_PRODUCT_ID_X65 ||
|
|
|
|
idp == SIEMENS_PRODUCT_ID_SX1 ||
|
|
|
|
idp == SIEMENS_PRODUCT_ID_X75) {
|
|
|
|
|
|
|
|
length = 1;
|
|
|
|
status_idx = 0;
|
|
|
|
}
|
2005-04-19 08:39:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (actual_length < length)
|
2006-07-26 03:58:30 +08:00
|
|
|
return;
|
2005-04-19 08:39:31 +08:00
|
|
|
|
2008-07-22 18:14:49 +08:00
|
|
|
/* Save off the uart status for others to look at */
|
2005-04-19 08:39:31 +08:00
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
2011-01-14 21:30:21 +08:00
|
|
|
prev_line_status = priv->line_status;
|
2005-04-19 08:39:31 +08:00
|
|
|
priv->line_status = data[status_idx];
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2009-05-30 02:34:16 +08:00
|
|
|
if (priv->line_status & UART_BREAK_ERROR)
|
|
|
|
usb_serial_handle_break(port);
|
2013-03-21 19:37:21 +08:00
|
|
|
wake_up_interruptible(&port->port.delta_msr_wait);
|
2011-01-14 21:30:21 +08:00
|
|
|
|
|
|
|
tty = tty_port_tty_get(&port->port);
|
|
|
|
if (!tty)
|
|
|
|
return;
|
|
|
|
if ((priv->line_status ^ prev_line_status) & UART_DCD)
|
|
|
|
usb_serial_handle_dcd_change(port, tty,
|
|
|
|
priv->line_status & UART_DCD);
|
|
|
|
tty_kref_put(tty);
|
2005-04-19 08:39:31 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
|
|
|
static void pl2303_read_int_callback(struct urb *urb)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-02-24 18:41:47 +08:00
|
|
|
struct usb_serial_port *port = urb->context;
|
2005-04-17 06:20:36 +08:00
|
|
|
unsigned char *data = urb->transfer_buffer;
|
2005-04-19 08:39:31 +08:00
|
|
|
unsigned int actual_length = urb->actual_length;
|
2007-06-16 06:44:13 +08:00
|
|
|
int status = urb->status;
|
|
|
|
int retval;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-06-16 06:44:13 +08:00
|
|
|
switch (status) {
|
2005-04-17 06:20:36 +08:00
|
|
|
case 0:
|
|
|
|
/* success */
|
|
|
|
break;
|
|
|
|
case -ECONNRESET:
|
|
|
|
case -ENOENT:
|
|
|
|
case -ESHUTDOWN:
|
|
|
|
/* this urb is terminated, clean up */
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "%s - urb shutting down with status: %d\n",
|
|
|
|
__func__, status);
|
2005-04-17 06:20:36 +08:00
|
|
|
return;
|
|
|
|
default:
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_dbg(&port->dev, "%s - nonzero urb status received: %d\n",
|
|
|
|
__func__, status);
|
2005-04-17 06:20:36 +08:00
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
2012-09-18 16:58:57 +08:00
|
|
|
usb_serial_debug_data(&port->dev, __func__,
|
2006-08-01 02:39:27 +08:00
|
|
|
urb->actual_length, urb->transfer_buffer);
|
|
|
|
|
2005-04-19 08:39:31 +08:00
|
|
|
pl2303_update_line_status(port, data, actual_length);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
exit:
|
2007-06-16 06:44:13 +08:00
|
|
|
retval = usb_submit_urb(urb, GFP_ATOMIC);
|
|
|
|
if (retval)
|
2012-05-04 07:39:27 +08:00
|
|
|
dev_err(&port->dev,
|
2006-08-01 02:39:27 +08:00
|
|
|
"%s - usb_submit_urb failed with result %d\n",
|
2008-03-04 08:08:34 +08:00
|
|
|
__func__, retval);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2010-03-18 06:05:58 +08:00
|
|
|
static void pl2303_process_read_urb(struct urb *urb)
|
2009-07-09 20:36:58 +08:00
|
|
|
{
|
2010-03-18 06:05:58 +08:00
|
|
|
struct usb_serial_port *port = urb->context;
|
|
|
|
struct pl2303_private *priv = usb_get_serial_port_data(port);
|
2009-07-09 20:36:58 +08:00
|
|
|
unsigned char *data = urb->transfer_buffer;
|
|
|
|
char tty_flag = TTY_NORMAL;
|
2010-03-18 06:05:58 +08:00
|
|
|
unsigned long flags;
|
|
|
|
u8 line_status;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* update line status */
|
|
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
|
|
line_status = priv->line_status;
|
|
|
|
priv->line_status &= ~UART_STATE_TRANSIENT_MASK;
|
|
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
2013-03-21 19:37:21 +08:00
|
|
|
wake_up_interruptible(&port->port.delta_msr_wait);
|
2010-03-18 06:05:58 +08:00
|
|
|
|
|
|
|
if (!urb->actual_length)
|
|
|
|
return;
|
|
|
|
|
2009-07-09 20:36:58 +08:00
|
|
|
/* break takes precedence over parity, */
|
|
|
|
/* which takes precedence over framing errors */
|
|
|
|
if (line_status & UART_BREAK_ERROR)
|
|
|
|
tty_flag = TTY_BREAK;
|
|
|
|
else if (line_status & UART_PARITY_ERROR)
|
|
|
|
tty_flag = TTY_PARITY;
|
|
|
|
else if (line_status & UART_FRAME_ERROR)
|
|
|
|
tty_flag = TTY_FRAME;
|
|
|
|
|
2013-06-26 22:47:30 +08:00
|
|
|
if (tty_flag != TTY_NORMAL)
|
|
|
|
dev_dbg(&port->dev, "%s - tty_flag = %d\n", __func__,
|
|
|
|
tty_flag);
|
2009-07-09 20:36:58 +08:00
|
|
|
/* overrun is special, not associated with a char */
|
|
|
|
if (line_status & UART_OVERRUN_ERROR)
|
2013-01-03 22:53:03 +08:00
|
|
|
tty_insert_flip_char(&port->port, 0, TTY_OVERRUN);
|
2009-10-08 17:36:46 +08:00
|
|
|
|
2010-05-08 21:18:41 +08:00
|
|
|
if (port->port.console && port->sysrq) {
|
2009-07-09 20:36:58 +08:00
|
|
|
for (i = 0; i < urb->actual_length; ++i)
|
2010-08-18 12:15:47 +08:00
|
|
|
if (!usb_serial_handle_sysrq_char(port, data[i]))
|
2013-01-03 22:53:03 +08:00
|
|
|
tty_insert_flip_char(&port->port, data[i],
|
|
|
|
tty_flag);
|
2010-05-08 21:18:41 +08:00
|
|
|
} else {
|
2013-01-03 22:53:02 +08:00
|
|
|
tty_insert_flip_string_fixed_flag(&port->port, data, tty_flag,
|
2010-05-08 21:18:41 +08:00
|
|
|
urb->actual_length);
|
2009-10-08 17:36:46 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2013-01-03 22:53:06 +08:00
|
|
|
tty_flip_buffer_push(&port->port);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2006-07-29 21:46:37 +08:00
|
|
|
/* All of the device info needed for the PL2303 SIO serial converter */
|
|
|
|
static struct usb_serial_driver pl2303_device = {
|
|
|
|
.driver = {
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.name = "pl2303",
|
|
|
|
},
|
|
|
|
.id_table = id_table,
|
|
|
|
.num_ports = 1,
|
2010-03-18 06:00:41 +08:00
|
|
|
.bulk_in_size = 256,
|
2010-03-18 06:00:40 +08:00
|
|
|
.bulk_out_size = 256,
|
2006-07-29 21:46:37 +08:00
|
|
|
.open = pl2303_open,
|
|
|
|
.close = pl2303_close,
|
2009-06-11 19:26:29 +08:00
|
|
|
.dtr_rts = pl2303_dtr_rts,
|
|
|
|
.carrier_raised = pl2303_carrier_raised,
|
2006-07-29 21:46:37 +08:00
|
|
|
.ioctl = pl2303_ioctl,
|
|
|
|
.break_ctl = pl2303_break_ctl,
|
|
|
|
.set_termios = pl2303_set_termios,
|
|
|
|
.tiocmget = pl2303_tiocmget,
|
|
|
|
.tiocmset = pl2303_tiocmset,
|
2013-03-21 19:37:20 +08:00
|
|
|
.tiocmiwait = pl2303_tiocmiwait,
|
2010-03-18 06:05:58 +08:00
|
|
|
.process_read_urb = pl2303_process_read_urb,
|
2006-07-29 21:46:37 +08:00
|
|
|
.read_int_callback = pl2303_read_int_callback,
|
|
|
|
.attach = pl2303_startup,
|
2009-06-02 23:53:55 +08:00
|
|
|
.release = pl2303_release,
|
2012-10-15 21:47:21 +08:00
|
|
|
.port_probe = pl2303_port_probe,
|
|
|
|
.port_remove = pl2303_port_remove,
|
2006-07-29 21:46:37 +08:00
|
|
|
};
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-02-24 03:57:18 +08:00
|
|
|
static struct usb_serial_driver * const serial_drivers[] = {
|
|
|
|
&pl2303_device, NULL
|
|
|
|
};
|
|
|
|
|
2012-05-09 06:46:14 +08:00
|
|
|
module_usb_serial_driver(serial_drivers, id_table);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|
|
|
|
MODULE_LICENSE("GPL");
|