OpenCloudOS-Kernel/drivers/usb/gadget/gmidi.c

178 lines
4.8 KiB
C
Raw Normal View History

/*
* gmidi.c -- USB MIDI Gadget Driver
*
* Copyright (C) 2006 Thumtronics Pty Ltd.
* Developed for Thumtronics by Grey Innovation
* Ben Williamson <ben.williamson@greyinnovation.com>
*
* This software is distributed under the terms of the GNU General Public
* License ("GPL") version 2, as published by the Free Software Foundation.
*
* This code is based in part on:
*
* Gadget Zero driver, Copyright (C) 2003-2004 David Brownell.
* USB Audio driver, Copyright (C) 2002 by Takashi Iwai.
* USB MIDI driver, Copyright (C) 2002-2005 Clemens Ladisch.
*
* Refer to the USB Device Class Definition for MIDI Devices:
* http://www.usb.org/developers/devclass_docs/midi10.pdf
*/
/* #define VERBOSE_DEBUG */
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/device.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/rawmidi.h>
#include <linux/usb/ch9.h>
#include <linux/usb/composite.h>
#include <linux/usb/gadget.h>
#include <linux/usb/audio.h>
#include <linux/usb/midi.h>
#include "gadget_chips.h"
#include "f_midi.c"
/*-------------------------------------------------------------------------*/
MODULE_AUTHOR("Ben Williamson");
MODULE_LICENSE("GPL v2");
static const char shortname[] = "g_midi";
static const char longname[] = "MIDI Gadget";
USB_GADGET_COMPOSITE_OPTIONS();
static int index = SNDRV_DEFAULT_IDX1;
module_param(index, int, S_IRUGO);
MODULE_PARM_DESC(index, "Index value for the USB MIDI Gadget adapter.");
static char *id = SNDRV_DEFAULT_STR1;
module_param(id, charp, S_IRUGO);
MODULE_PARM_DESC(id, "ID string for the USB MIDI Gadget adapter.");
static unsigned int buflen = 256;
module_param(buflen, uint, S_IRUGO);
MODULE_PARM_DESC(buflen, "MIDI buffer length");
static unsigned int qlen = 32;
module_param(qlen, uint, S_IRUGO);
MODULE_PARM_DESC(qlen, "USB read request queue length");
static unsigned int in_ports = 1;
module_param(in_ports, uint, S_IRUGO);
MODULE_PARM_DESC(in_ports, "Number of MIDI input ports");
static unsigned int out_ports = 1;
module_param(out_ports, uint, S_IRUGO);
MODULE_PARM_DESC(out_ports, "Number of MIDI output ports");
/* Thanks to Grey Innovation for donating this product ID.
*
* DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!!
* Instead: allocate your own, using normal USB-IF procedures.
*/
#define DRIVER_VENDOR_NUM 0x17b3 /* Grey Innovation */
#define DRIVER_PRODUCT_NUM 0x0004 /* Linux-USB "MIDI Gadget" */
/* string IDs are assigned dynamically */
#define STRING_DESCRIPTION_IDX USB_GADGET_FIRST_AVAIL_IDX
static struct usb_device_descriptor device_desc = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = __constant_cpu_to_le16(0x0200),
.bDeviceClass = USB_CLASS_PER_INTERFACE,
.idVendor = __constant_cpu_to_le16(DRIVER_VENDOR_NUM),
.idProduct = __constant_cpu_to_le16(DRIVER_PRODUCT_NUM),
/* .iManufacturer = DYNAMIC */
/* .iProduct = DYNAMIC */
.bNumConfigurations = 1,
};
static struct usb_string strings_dev[] = {
[USB_GADGET_MANUFACTURER_IDX].s = "Grey Innovation",
[USB_GADGET_PRODUCT_IDX].s = "MIDI Gadget",
[USB_GADGET_SERIAL_IDX].s = "",
[STRING_DESCRIPTION_IDX].s = "MIDI",
{ } /* end of list */
};
static struct usb_gadget_strings stringtab_dev = {
.language = 0x0409, /* en-us */
.strings = strings_dev,
};
static struct usb_gadget_strings *dev_strings[] = {
&stringtab_dev,
NULL,
};
static int __exit midi_unbind(struct usb_composite_dev *dev)
{
return 0;
}
static struct usb_configuration midi_config = {
.label = "MIDI Gadget",
.bConfigurationValue = 1,
/* .iConfiguration = DYNAMIC */
.bmAttributes = USB_CONFIG_ATT_ONE,
.MaxPower = CONFIG_USB_GADGET_VBUS_DRAW,
};
static int __init midi_bind_config(struct usb_configuration *c)
{
return f_midi_bind_config(c, index, id,
in_ports, out_ports,
buflen, qlen);
}
static int __init midi_bind(struct usb_composite_dev *cdev)
{
usb: gadget: remove usb_gadget_controller_number() The bcdDevice field is defined as |Device release number in binary-coded decimal in the USB 2.0 specification. We use this field to distinguish the UDCs from each other. In theory this could be used on the host side to apply certain quirks if the "special" UDC in combination with this gadget is used. This hasn't been done as far as I am aware. In practice it would be better to fix the UDC driver before shipping since a later release might not need this quirk anymore. There are some driver in tree (on the host side) which use the bcdDevice field to figure out special workarounds for a given firmware revision. This seems to make sense. Therefore this patch converts all gadgets (except a few) to use the kernel version instead a random 2 or 3 plus the UDC number. The few that don't report kernel's version are: - webcam This one reports always a version 0x10 so allow it to do so in future. - nokia This one reports always 0x211. The comment says that this gadget works only if the UDC supports altsettings so I added a check for this. - serial This one reports 0x2400 + UDC number. Since the gadget version is 2.4 this could make sense. Therefore bcdDevice is 0x2400 here. I also remove various gadget_is_<name> macros which are unused. The remaining few macros should be moved to feature / bug bitfield. Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Felipe Balbi <balbi@ti.com>
2012-09-10 15:16:07 +08:00
int status;
status = usb_string_ids_tab(cdev, strings_dev);
if (status < 0)
return status;
device_desc.iManufacturer = strings_dev[USB_GADGET_MANUFACTURER_IDX].id;
device_desc.iProduct = strings_dev[USB_GADGET_PRODUCT_IDX].id;
midi_config.iConfiguration = strings_dev[STRING_DESCRIPTION_IDX].id;
status = usb_add_config(cdev, &midi_config, midi_bind_config);
if (status < 0)
return status;
usb_composite_overwrite_options(cdev, &coverwrite);
pr_info("%s\n", longname);
return 0;
}
static __refdata struct usb_composite_driver midi_driver = {
.name = (char *) longname,
.dev = &device_desc,
.strings = dev_strings,
.max_speed = USB_SPEED_HIGH,
.bind = midi_bind,
.unbind = __exit_p(midi_unbind),
};
static int __init midi_init(void)
{
return usb_composite_probe(&midi_driver);
}
module_init(midi_init);
static void __exit midi_cleanup(void)
{
usb_composite_unregister(&midi_driver);
}
module_exit(midi_cleanup);