OpenCloudOS-Kernel/arch/arm64/kernel/smp.c

791 lines
18 KiB
C
Raw Normal View History

/*
* SMP initialisation and IPI support
* Based on arch/arm/kernel/smp.c
*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/percpu.h>
#include <linux/clockchips.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/irq_work.h>
#include <asm/alternative.h>
#include <asm/atomic.h>
#include <asm/cacheflush.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/cpu_ops.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/smp_plat.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
#include <asm/virt.h>
#define CREATE_TRACE_POINTS
#include <trace/events/ipi.h>
/*
* as from 2.5, kernels no longer have an init_tasks structure
* so we need some other way of telling a new secondary core
* where to place its SVC stack
*/
struct secondary_data secondary_data;
enum ipi_msg_type {
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CPU_STOP,
IPI_TIMER,
IPI_IRQ_WORK,
};
/*
* Boot a secondary CPU, and assign it the specified idle task.
* This also gives us the initial stack to use for this CPU.
*/
2013-06-18 22:18:31 +08:00
static int boot_secondary(unsigned int cpu, struct task_struct *idle)
{
if (cpu_ops[cpu]->cpu_boot)
return cpu_ops[cpu]->cpu_boot(cpu);
return -EOPNOTSUPP;
}
static DECLARE_COMPLETION(cpu_running);
2013-06-18 22:18:31 +08:00
int __cpu_up(unsigned int cpu, struct task_struct *idle)
{
int ret;
/*
* We need to tell the secondary core where to find its stack and the
* page tables.
*/
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
__flush_dcache_area(&secondary_data, sizeof(secondary_data));
/*
* Now bring the CPU into our world.
*/
ret = boot_secondary(cpu, idle);
if (ret == 0) {
/*
* CPU was successfully started, wait for it to come online or
* time out.
*/
wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(1000));
if (!cpu_online(cpu)) {
pr_crit("CPU%u: failed to come online\n", cpu);
ret = -EIO;
}
} else {
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
}
secondary_data.stack = NULL;
return ret;
}
static void smp_store_cpu_info(unsigned int cpuid)
{
store_cpu_topology(cpuid);
}
/*
* This is the secondary CPU boot entry. We're using this CPUs
* idle thread stack, but a set of temporary page tables.
*/
2013-06-18 22:18:31 +08:00
asmlinkage void secondary_start_kernel(void)
{
struct mm_struct *mm = &init_mm;
unsigned int cpu = smp_processor_id();
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
atomic_inc(&mm->mm_count);
current->active_mm = mm;
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
printk("CPU%u: Booted secondary processor\n", cpu);
/*
* TTBR0 is only used for the identity mapping at this stage. Make it
* point to zero page to avoid speculatively fetching new entries.
*/
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
cpu_set_default_tcr_t0sz();
preempt_disable();
trace_hardirqs_off();
if (cpu_ops[cpu]->cpu_postboot)
cpu_ops[cpu]->cpu_postboot();
/*
* Log the CPU info before it is marked online and might get read.
*/
cpuinfo_store_cpu();
/*
* Enable GIC and timers.
*/
notify_cpu_starting(cpu);
smp_store_cpu_info(cpu);
/*
* OK, now it's safe to let the boot CPU continue. Wait for
* the CPU migration code to notice that the CPU is online
* before we continue.
*/
set_cpu_online(cpu, true);
complete(&cpu_running);
local_dbg_enable();
local_irq_enable();
local_async_enable();
/*
* OK, it's off to the idle thread for us
*/
cpu_startup_entry(CPUHP_ONLINE);
}
#ifdef CONFIG_HOTPLUG_CPU
static int op_cpu_disable(unsigned int cpu)
{
/*
* If we don't have a cpu_die method, abort before we reach the point
* of no return. CPU0 may not have an cpu_ops, so test for it.
*/
if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
return -EOPNOTSUPP;
/*
* We may need to abort a hot unplug for some other mechanism-specific
* reason.
*/
if (cpu_ops[cpu]->cpu_disable)
return cpu_ops[cpu]->cpu_disable(cpu);
return 0;
}
/*
* __cpu_disable runs on the processor to be shutdown.
*/
int __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
int ret;
ret = op_cpu_disable(cpu);
if (ret)
return ret;
/*
* Take this CPU offline. Once we clear this, we can't return,
* and we must not schedule until we're ready to give up the cpu.
*/
set_cpu_online(cpu, false);
/*
* OK - migrate IRQs away from this CPU
*/
irq_migrate_all_off_this_cpu();
return 0;
}
static int op_cpu_kill(unsigned int cpu)
{
/*
* If we have no means of synchronising with the dying CPU, then assume
* that it is really dead. We can only wait for an arbitrary length of
* time and hope that it's dead, so let's skip the wait and just hope.
*/
if (!cpu_ops[cpu]->cpu_kill)
return 0;
return cpu_ops[cpu]->cpu_kill(cpu);
}
/*
* called on the thread which is asking for a CPU to be shutdown -
* waits until shutdown has completed, or it is timed out.
*/
void __cpu_die(unsigned int cpu)
{
int err;
if (!cpu_wait_death(cpu, 5)) {
pr_crit("CPU%u: cpu didn't die\n", cpu);
return;
}
pr_notice("CPU%u: shutdown\n", cpu);
/*
* Now that the dying CPU is beyond the point of no return w.r.t.
* in-kernel synchronisation, try to get the firwmare to help us to
* verify that it has really left the kernel before we consider
* clobbering anything it might still be using.
*/
err = op_cpu_kill(cpu);
if (err)
pr_warn("CPU%d may not have shut down cleanly: %d\n",
cpu, err);
}
/*
* Called from the idle thread for the CPU which has been shutdown.
*
* Note that we disable IRQs here, but do not re-enable them
* before returning to the caller. This is also the behaviour
* of the other hotplug-cpu capable cores, so presumably coming
* out of idle fixes this.
*/
void cpu_die(void)
{
unsigned int cpu = smp_processor_id();
idle_task_exit();
local_irq_disable();
/* Tell __cpu_die() that this CPU is now safe to dispose of */
(void)cpu_report_death();
/*
* Actually shutdown the CPU. This must never fail. The specific hotplug
* mechanism must perform all required cache maintenance to ensure that
* no dirty lines are lost in the process of shutting down the CPU.
*/
cpu_ops[cpu]->cpu_die(cpu);
BUG();
}
#endif
static void __init hyp_mode_check(void)
{
if (is_hyp_mode_available())
pr_info("CPU: All CPU(s) started at EL2\n");
else if (is_hyp_mode_mismatched())
WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
"CPU: CPUs started in inconsistent modes");
else
pr_info("CPU: All CPU(s) started at EL1\n");
}
void __init smp_cpus_done(unsigned int max_cpus)
{
pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
hyp_mode_check();
apply_alternatives_all();
}
void __init smp_prepare_boot_cpu(void)
{
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
}
static u64 __init of_get_cpu_mpidr(struct device_node *dn)
{
const __be32 *cell;
u64 hwid;
/*
* A cpu node with missing "reg" property is
* considered invalid to build a cpu_logical_map
* entry.
*/
cell = of_get_property(dn, "reg", NULL);
if (!cell) {
pr_err("%s: missing reg property\n", dn->full_name);
return INVALID_HWID;
}
hwid = of_read_number(cell, of_n_addr_cells(dn));
/*
* Non affinity bits must be set to 0 in the DT
*/
if (hwid & ~MPIDR_HWID_BITMASK) {
pr_err("%s: invalid reg property\n", dn->full_name);
return INVALID_HWID;
}
return hwid;
}
/*
* Duplicate MPIDRs are a recipe for disaster. Scan all initialized
* entries and check for duplicates. If any is found just ignore the
* cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
* matching valid MPIDR values.
*/
static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
{
unsigned int i;
for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
if (cpu_logical_map(i) == hwid)
return true;
return false;
}
ARM64: kernel: make cpu_ops hooks DT agnostic ARM64 CPU operations such as cpu_init and cpu_init_idle take a struct device_node pointer as a parameter, which corresponds to the device tree node of the logical cpu on which the operation has to be applied. With the advent of ACPI on arm64, where MADT static table entries are used to initialize cpus, the device tree node parameter in cpu_ops hooks become useless when booting with ACPI, since in that case cpu device tree nodes are not present and can not be used for cpu initialization. The current cpu_init hook requires a struct device_node pointer parameter because it is called while parsing the device tree to initialize CPUs, when the cpu_logical_map (that is used to match a cpu node reg property to a device tree node) for a given logical cpu id is not set up yet. This means that the cpu_init hook cannot rely on the of_get_cpu_node function to retrieve the device tree node corresponding to the logical cpu id passed in as parameter, so the cpu device tree node must be passed in as a parameter to fix this catch-22 dependency cycle. This patch reshuffles the cpu_logical_map initialization code so that the cpu_init cpu_ops hook can safely use the of_get_cpu_node function to retrieve the cpu device tree node, removing the need for the device tree node pointer parameter. In the process, the patch removes device tree node parameters from all cpu_ops hooks, in preparation for SMP DT/ACPI cpus initialization consolidation. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Hanjun Guo <hanjun.guo@linaro.org> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Mark Rutland <mark.rutland@arm.com> [DT] Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-05-13 21:12:46 +08:00
/*
* Initialize cpu operations for a logical cpu and
* set it in the possible mask on success
*/
static int __init smp_cpu_setup(int cpu)
{
if (cpu_read_ops(cpu))
return -ENODEV;
if (cpu_ops[cpu]->cpu_init(cpu))
return -ENODEV;
set_cpu_possible(cpu, true);
return 0;
}
static bool bootcpu_valid __initdata;
static unsigned int cpu_count = 1;
#ifdef CONFIG_ACPI
/*
* acpi_map_gic_cpu_interface - parse processor MADT entry
*
* Carry out sanity checks on MADT processor entry and initialize
* cpu_logical_map on success
*/
static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
{
u64 hwid = processor->arm_mpidr;
if (!(processor->flags & ACPI_MADT_ENABLED)) {
pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
return;
}
if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
return;
}
if (is_mpidr_duplicate(cpu_count, hwid)) {
pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
return;
}
/* Check if GICC structure of boot CPU is available in the MADT */
if (cpu_logical_map(0) == hwid) {
if (bootcpu_valid) {
pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
hwid);
return;
}
bootcpu_valid = true;
return;
}
if (cpu_count >= NR_CPUS)
return;
/* map the logical cpu id to cpu MPIDR */
cpu_logical_map(cpu_count) = hwid;
cpu_count++;
}
static int __init
acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *processor;
processor = (struct acpi_madt_generic_interrupt *)header;
if (BAD_MADT_GICC_ENTRY(processor, end))
return -EINVAL;
acpi_table_print_madt_entry(header);
acpi_map_gic_cpu_interface(processor);
return 0;
}
#else
#define acpi_table_parse_madt(...) do { } while (0)
#endif
/*
* Enumerate the possible CPU set from the device tree and build the
* cpu logical map array containing MPIDR values related to logical
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
*/
void __init of_parse_and_init_cpus(void)
{
struct device_node *dn = NULL;
while ((dn = of_find_node_by_type(dn, "cpu"))) {
u64 hwid = of_get_cpu_mpidr(dn);
if (hwid == INVALID_HWID)
goto next;
if (is_mpidr_duplicate(cpu_count, hwid)) {
pr_err("%s: duplicate cpu reg properties in the DT\n",
dn->full_name);
goto next;
}
/*
* The numbering scheme requires that the boot CPU
* must be assigned logical id 0. Record it so that
* the logical map built from DT is validated and can
* be used.
*/
if (hwid == cpu_logical_map(0)) {
if (bootcpu_valid) {
pr_err("%s: duplicate boot cpu reg property in DT\n",
dn->full_name);
goto next;
}
bootcpu_valid = true;
/*
* cpu_logical_map has already been
* initialized and the boot cpu doesn't need
* the enable-method so continue without
* incrementing cpu.
*/
continue;
}
if (cpu_count >= NR_CPUS)
goto next;
pr_debug("cpu logical map 0x%llx\n", hwid);
cpu_logical_map(cpu_count) = hwid;
next:
cpu_count++;
}
}
/*
* Enumerate the possible CPU set from the device tree or ACPI and build the
* cpu logical map array containing MPIDR values related to logical
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
*/
void __init smp_init_cpus(void)
{
int i;
if (acpi_disabled)
of_parse_and_init_cpus();
else
/*
* do a walk of MADT to determine how many CPUs
* we have including disabled CPUs, and get information
* we need for SMP init
*/
acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
acpi_parse_gic_cpu_interface, 0);
if (cpu_count > NR_CPUS)
pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
cpu_count, NR_CPUS);
if (!bootcpu_valid) {
pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
return;
}
/*
ARM64: kernel: make cpu_ops hooks DT agnostic ARM64 CPU operations such as cpu_init and cpu_init_idle take a struct device_node pointer as a parameter, which corresponds to the device tree node of the logical cpu on which the operation has to be applied. With the advent of ACPI on arm64, where MADT static table entries are used to initialize cpus, the device tree node parameter in cpu_ops hooks become useless when booting with ACPI, since in that case cpu device tree nodes are not present and can not be used for cpu initialization. The current cpu_init hook requires a struct device_node pointer parameter because it is called while parsing the device tree to initialize CPUs, when the cpu_logical_map (that is used to match a cpu node reg property to a device tree node) for a given logical cpu id is not set up yet. This means that the cpu_init hook cannot rely on the of_get_cpu_node function to retrieve the device tree node corresponding to the logical cpu id passed in as parameter, so the cpu device tree node must be passed in as a parameter to fix this catch-22 dependency cycle. This patch reshuffles the cpu_logical_map initialization code so that the cpu_init cpu_ops hook can safely use the of_get_cpu_node function to retrieve the cpu device tree node, removing the need for the device tree node pointer parameter. In the process, the patch removes device tree node parameters from all cpu_ops hooks, in preparation for SMP DT/ACPI cpus initialization consolidation. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Hanjun Guo <hanjun.guo@linaro.org> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Mark Rutland <mark.rutland@arm.com> [DT] Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-05-13 21:12:46 +08:00
* We need to set the cpu_logical_map entries before enabling
* the cpus so that cpu processor description entries (DT cpu nodes
* and ACPI MADT entries) can be retrieved by matching the cpu hwid
* with entries in cpu_logical_map while initializing the cpus.
* If the cpu set-up fails, invalidate the cpu_logical_map entry.
*/
ARM64: kernel: make cpu_ops hooks DT agnostic ARM64 CPU operations such as cpu_init and cpu_init_idle take a struct device_node pointer as a parameter, which corresponds to the device tree node of the logical cpu on which the operation has to be applied. With the advent of ACPI on arm64, where MADT static table entries are used to initialize cpus, the device tree node parameter in cpu_ops hooks become useless when booting with ACPI, since in that case cpu device tree nodes are not present and can not be used for cpu initialization. The current cpu_init hook requires a struct device_node pointer parameter because it is called while parsing the device tree to initialize CPUs, when the cpu_logical_map (that is used to match a cpu node reg property to a device tree node) for a given logical cpu id is not set up yet. This means that the cpu_init hook cannot rely on the of_get_cpu_node function to retrieve the device tree node corresponding to the logical cpu id passed in as parameter, so the cpu device tree node must be passed in as a parameter to fix this catch-22 dependency cycle. This patch reshuffles the cpu_logical_map initialization code so that the cpu_init cpu_ops hook can safely use the of_get_cpu_node function to retrieve the cpu device tree node, removing the need for the device tree node pointer parameter. In the process, the patch removes device tree node parameters from all cpu_ops hooks, in preparation for SMP DT/ACPI cpus initialization consolidation. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Hanjun Guo <hanjun.guo@linaro.org> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Mark Rutland <mark.rutland@arm.com> [DT] Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-05-13 21:12:46 +08:00
for (i = 1; i < NR_CPUS; i++) {
if (cpu_logical_map(i) != INVALID_HWID) {
if (smp_cpu_setup(i))
cpu_logical_map(i) = INVALID_HWID;
}
}
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
int err;
unsigned int cpu, ncores = num_possible_cpus();
init_cpu_topology();
smp_store_cpu_info(smp_processor_id());
/*
* are we trying to boot more cores than exist?
*/
if (max_cpus > ncores)
max_cpus = ncores;
/* Don't bother if we're effectively UP */
if (max_cpus <= 1)
return;
/*
* Initialise the present map (which describes the set of CPUs
* actually populated at the present time) and release the
* secondaries from the bootloader.
*
* Make sure we online at most (max_cpus - 1) additional CPUs.
*/
max_cpus--;
for_each_possible_cpu(cpu) {
if (max_cpus == 0)
break;
if (cpu == smp_processor_id())
continue;
if (!cpu_ops[cpu])
continue;
err = cpu_ops[cpu]->cpu_prepare(cpu);
if (err)
continue;
set_cpu_present(cpu, true);
max_cpus--;
}
}
void (*__smp_cross_call)(const struct cpumask *, unsigned int);
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
{
__smp_cross_call = fn;
}
static const char *ipi_types[NR_IPI] __tracepoint_string = {
#define S(x,s) [x] = s
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
S(IPI_CALL_FUNC, "Function call interrupts"),
S(IPI_CPU_STOP, "CPU stop interrupts"),
S(IPI_TIMER, "Timer broadcast interrupts"),
S(IPI_IRQ_WORK, "IRQ work interrupts"),
};
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
{
trace_ipi_raise(target, ipi_types[ipinr]);
__smp_cross_call(target, ipinr);
}
void show_ipi_list(struct seq_file *p, int prec)
{
unsigned int cpu, i;
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
prec >= 4 ? " " : "");
for_each_online_cpu(cpu)
seq_printf(p, "%10u ",
__get_irq_stat(cpu, ipi_irqs[i]));
seq_printf(p, " %s\n", ipi_types[i]);
}
}
u64 smp_irq_stat_cpu(unsigned int cpu)
{
u64 sum = 0;
int i;
for (i = 0; i < NR_IPI; i++)
sum += __get_irq_stat(cpu, ipi_irqs[i]);
return sum;
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_CALL_FUNC);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
}
#ifdef CONFIG_IRQ_WORK
void arch_irq_work_raise(void)
{
if (__smp_cross_call)
smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
}
#endif
static DEFINE_RAW_SPINLOCK(stop_lock);
/*
* ipi_cpu_stop - handle IPI from smp_send_stop()
*/
static void ipi_cpu_stop(unsigned int cpu)
{
if (system_state == SYSTEM_BOOTING ||
system_state == SYSTEM_RUNNING) {
raw_spin_lock(&stop_lock);
pr_crit("CPU%u: stopping\n", cpu);
dump_stack();
raw_spin_unlock(&stop_lock);
}
set_cpu_online(cpu, false);
local_irq_disable();
while (1)
cpu_relax();
}
/*
* Main handler for inter-processor interrupts
*/
void handle_IPI(int ipinr, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
struct pt_regs *old_regs = set_irq_regs(regs);
if ((unsigned)ipinr < NR_IPI) {
trace_ipi_entry_rcuidle(ipi_types[ipinr]);
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
}
switch (ipinr) {
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
irq_enter();
generic_smp_call_function_interrupt();
irq_exit();
break;
case IPI_CPU_STOP:
irq_enter();
ipi_cpu_stop(cpu);
irq_exit();
break;
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
case IPI_TIMER:
irq_enter();
tick_receive_broadcast();
irq_exit();
break;
#endif
#ifdef CONFIG_IRQ_WORK
case IPI_IRQ_WORK:
irq_enter();
irq_work_run();
irq_exit();
break;
#endif
default:
pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
break;
}
if ((unsigned)ipinr < NR_IPI)
trace_ipi_exit_rcuidle(ipi_types[ipinr]);
set_irq_regs(old_regs);
}
void smp_send_reschedule(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_TIMER);
}
#endif
void smp_send_stop(void)
{
unsigned long timeout;
if (num_online_cpus() > 1) {
cpumask_t mask;
cpumask_copy(&mask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &mask);
smp_cross_call(&mask, IPI_CPU_STOP);
}
/* Wait up to one second for other CPUs to stop */
timeout = USEC_PER_SEC;
while (num_online_cpus() > 1 && timeout--)
udelay(1);
if (num_online_cpus() > 1)
pr_warning("SMP: failed to stop secondary CPUs\n");
}
/*
* not supported here
*/
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}