OpenCloudOS-Kernel/drivers/block/acsi_slm.c

1034 lines
26 KiB
C
Raw Normal View History

/*
* acsi_slm.c -- Device driver for the Atari SLM laser printer
*
* Copyright 1995 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
*/
/*
Notes:
The major number for SLM printers is 28 (like ACSI), but as a character
device, not block device. The minor number is the number of the printer (if
you have more than one SLM; currently max. 2 (#define-constant) SLMs are
supported). The device can be opened for reading and writing. If reading it,
you get some status infos (MODE SENSE data). Writing mode is used for the data
to be printed. Some ioctls allow to get the printer status and to tune printer
modes and some internal variables.
A special problem of the SLM driver is the timing and thus the buffering of
the print data. The problem is that all the data for one page must be present
in memory when printing starts, else --when swapping occurs-- the timing could
not be guaranteed. There are several ways to assure this:
1) Reserve a buffer of 1196k (maximum page size) statically by
atari_stram_alloc(). The data are collected there until they're complete,
and then printing starts. Since the buffer is reserved, no further
considerations about memory and swapping are needed. So this is the
simplest method, but it needs a lot of memory for just the SLM.
An striking advantage of this method is (supposed the SLM_CONT_CNT_REPROG
method works, see there), that there are no timing problems with the DMA
anymore.
2) The other method would be to reserve the buffer dynamically each time
printing is required. I could think of looking at mem_map where the
largest unallocted ST-RAM area is, taking the area, and then extending it
by swapping out the neighbored pages, until the needed size is reached.
This requires some mm hacking, but seems possible. The only obstacle could
be pages that cannot be swapped out (reserved pages)...
3) Another possibility would be to leave the real data in user space and to
work with two dribble buffers of about 32k in the driver: While the one
buffer is DMAed to the SLM, the other can be filled with new data. But
to keep the timing, that requires that the user data remain in memory and
are not swapped out. Requires mm hacking, too, but maybe not so bad as
method 2).
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/fs.h>
#include <linux/major.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_acsi.h>
#include <asm/atari_stdma.h>
#include <asm/atari_stram.h>
#include <asm/atari_SLM.h>
#undef DEBUG
/* Define this if the page data are continuous in physical memory. That
* requires less reprogramming of the ST-DMA */
#define SLM_CONTINUOUS_DMA
/* Use continuous reprogramming of the ST-DMA counter register. This is
* --strictly speaking-- not allowed, Atari recommends not to look at the
* counter register while a DMA is going on. But I don't know if that applies
* only for reading the register, or also writing to it. Writing only works
* fine for me... The advantage is that the timing becomes absolutely
* uncritical: Just update each, say 200ms, the counter reg to its maximum,
* and the DMA will work until the status byte interrupt occurs.
*/
#define SLM_CONT_CNT_REPROG
#define CMDSET_TARG_LUN(cmd,targ,lun) \
do { \
cmd[0] = (cmd[0] & ~0xe0) | (targ)<<5; \
cmd[1] = (cmd[1] & ~0xe0) | (lun)<<5; \
} while(0)
#define START_TIMER(to) mod_timer(&slm_timer, jiffies + (to))
#define STOP_TIMER() del_timer(&slm_timer)
static char slmreqsense_cmd[6] = { 0x03, 0, 0, 0, 0, 0 };
static char slmprint_cmd[6] = { 0x0a, 0, 0, 0, 0, 0 };
static char slminquiry_cmd[6] = { 0x12, 0, 0, 0, 0, 0x80 };
static char slmmsense_cmd[6] = { 0x1a, 0, 0, 0, 255, 0 };
#if 0
static char slmmselect_cmd[6] = { 0x15, 0, 0, 0, 0, 0 };
#endif
#define MAX_SLM 2
static struct slm {
unsigned target; /* target number */
unsigned lun; /* LUN in target controller */
atomic_t wr_ok; /* set to 0 if output part busy */
atomic_t rd_ok; /* set to 0 if status part busy */
} slm_info[MAX_SLM];
int N_SLM_Printers = 0;
/* printer buffer */
static unsigned char *SLMBuffer; /* start of buffer */
static unsigned char *BufferP; /* current position in buffer */
static int BufferSize; /* length of buffer for page size */
typedef enum { IDLE, FILLING, PRINTING } SLMSTATE;
static SLMSTATE SLMState;
static int SLMBufOwner; /* SLM# currently using the buffer */
/* DMA variables */
#ifndef SLM_CONT_CNT_REPROG
static unsigned long SLMCurAddr; /* current base addr of DMA chunk */
static unsigned long SLMEndAddr; /* expected end addr */
static unsigned long SLMSliceSize; /* size of one DMA chunk */
#endif
static int SLMError;
/* wait queues */
static DECLARE_WAIT_QUEUE_HEAD(slm_wait); /* waiting for buffer */
static DECLARE_WAIT_QUEUE_HEAD(print_wait); /* waiting for printing finished */
/* status codes */
#define SLMSTAT_OK 0x00
#define SLMSTAT_ORNERY 0x02
#define SLMSTAT_TONER 0x03
#define SLMSTAT_WARMUP 0x04
#define SLMSTAT_PAPER 0x05
#define SLMSTAT_DRUM 0x06
#define SLMSTAT_INJAM 0x07
#define SLMSTAT_THRJAM 0x08
#define SLMSTAT_OUTJAM 0x09
#define SLMSTAT_COVER 0x0a
#define SLMSTAT_FUSER 0x0b
#define SLMSTAT_IMAGER 0x0c
#define SLMSTAT_MOTOR 0x0d
#define SLMSTAT_VIDEO 0x0e
#define SLMSTAT_SYSTO 0x10
#define SLMSTAT_OPCODE 0x12
#define SLMSTAT_DEVNUM 0x15
#define SLMSTAT_PARAM 0x1a
#define SLMSTAT_ACSITO 0x1b /* driver defined */
#define SLMSTAT_NOTALL 0x1c /* driver defined */
static char *SLMErrors[] = {
/* 0x00 */ "OK and ready",
/* 0x01 */ NULL,
/* 0x02 */ "ornery printer",
/* 0x03 */ "toner empty",
/* 0x04 */ "warming up",
/* 0x05 */ "paper empty",
/* 0x06 */ "drum empty",
/* 0x07 */ "input jam",
/* 0x08 */ "through jam",
/* 0x09 */ "output jam",
/* 0x0a */ "cover open",
/* 0x0b */ "fuser malfunction",
/* 0x0c */ "imager malfunction",
/* 0x0d */ "motor malfunction",
/* 0x0e */ "video malfunction",
/* 0x0f */ NULL,
/* 0x10 */ "printer system timeout",
/* 0x11 */ NULL,
/* 0x12 */ "invalid operation code",
/* 0x13 */ NULL,
/* 0x14 */ NULL,
/* 0x15 */ "invalid device number",
/* 0x16 */ NULL,
/* 0x17 */ NULL,
/* 0x18 */ NULL,
/* 0x19 */ NULL,
/* 0x1a */ "invalid parameter list",
/* 0x1b */ "ACSI timeout",
/* 0x1c */ "not all printed"
};
#define N_ERRORS (sizeof(SLMErrors)/sizeof(*SLMErrors))
/* real (driver caused) error? */
#define IS_REAL_ERROR(x) (x > 0x10)
static struct {
char *name;
int w, h;
} StdPageSize[] = {
{ "Letter", 2400, 3180 },
{ "Legal", 2400, 4080 },
{ "A4", 2336, 3386 },
{ "B5", 2016, 2914 }
};
#define N_STD_SIZES (sizeof(StdPageSize)/sizeof(*StdPageSize))
#define SLM_BUFFER_SIZE (2336*3386/8) /* A4 for now */
#define SLM_DMA_AMOUNT 255 /* #sectors to program the DMA for */
#ifdef SLM_CONTINUOUS_DMA
# define SLM_DMA_INT_OFFSET 0 /* DMA goes until seccnt 0, no offs */
# define SLM_DMA_END_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_SLICE_SIZE(w) (255*512)
#else
# define SLM_DMA_INT_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_DMA_END_OFFSET 32 /* 32 Byte ST-DMA FIFO */
# define SLM_SLICE_SIZE(w) ((254*512)/(w/8)*(w/8))
#endif
/* calculate the number of jiffies to wait for 'n' bytes */
#ifdef SLM_CONT_CNT_REPROG
#define DMA_TIME_FOR(n) 50
#define DMA_STARTUP_TIME 0
#else
#define DMA_TIME_FOR(n) (n/1400-1)
#define DMA_STARTUP_TIME 650
#endif
/***************************** Prototypes *****************************/
static char *slm_errstr( int stat );
static int slm_getstats( char *buffer, int device );
static ssize_t slm_read( struct file* file, char *buf, size_t count, loff_t
*ppos );
static void start_print( int device );
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t slm_interrupt(int irc, void *data);
static void slm_test_ready( unsigned long dummy );
static void set_dma_addr( unsigned long paddr );
static unsigned long get_dma_addr( void );
static ssize_t slm_write( struct file *file, const char *buf, size_t count,
loff_t *ppos );
static int slm_ioctl( struct inode *inode, struct file *file, unsigned int
cmd, unsigned long arg );
static int slm_open( struct inode *inode, struct file *file );
static int slm_release( struct inode *inode, struct file *file );
static int slm_req_sense( int device );
static int slm_mode_sense( int device, char *buffer, int abs_flag );
#if 0
static int slm_mode_select( int device, char *buffer, int len, int
default_flag );
#endif
static int slm_get_pagesize( int device, int *w, int *h );
/************************* End of Prototypes **************************/
static DEFINE_TIMER(slm_timer, slm_test_ready, 0, 0);
static const struct file_operations slm_fops = {
.owner = THIS_MODULE,
.read = slm_read,
.write = slm_write,
.ioctl = slm_ioctl,
.open = slm_open,
.release = slm_release,
};
/* ---------------------------------------------------------------------- */
/* Status Functions */
static char *slm_errstr( int stat )
{ char *p;
static char str[22];
stat &= 0x1f;
if (stat >= 0 && stat < N_ERRORS && (p = SLMErrors[stat]))
return( p );
sprintf( str, "unknown status 0x%02x", stat );
return( str );
}
static int slm_getstats( char *buffer, int device )
{ int len = 0, stat, i, w, h;
unsigned char buf[256];
stat = slm_mode_sense( device, buf, 0 );
if (IS_REAL_ERROR(stat))
return( -EIO );
#define SHORTDATA(i) ((buf[i] << 8) | buf[i+1])
#define BOOLDATA(i,mask) ((buf[i] & mask) ? "on" : "off")
w = SHORTDATA( 3 );
h = SHORTDATA( 1 );
len += sprintf( buffer+len, "Status\t\t%s\n",
slm_errstr( stat ) );
len += sprintf( buffer+len, "Page Size\t%dx%d",
w, h );
for( i = 0; i < N_STD_SIZES; ++i ) {
if (w == StdPageSize[i].w && h == StdPageSize[i].h)
break;
}
if (i < N_STD_SIZES)
len += sprintf( buffer+len, " (%s)", StdPageSize[i].name );
buffer[len++] = '\n';
len += sprintf( buffer+len, "Top/Left Margin\t%d/%d\n",
SHORTDATA( 5 ), SHORTDATA( 7 ) );
len += sprintf( buffer+len, "Manual Feed\t%s\n",
BOOLDATA( 9, 0x01 ) );
len += sprintf( buffer+len, "Input Select\t%d\n",
(buf[9] >> 1) & 7 );
len += sprintf( buffer+len, "Auto Select\t%s\n",
BOOLDATA( 9, 0x10 ) );
len += sprintf( buffer+len, "Prefeed Paper\t%s\n",
BOOLDATA( 9, 0x20 ) );
len += sprintf( buffer+len, "Thick Pixels\t%s\n",
BOOLDATA( 9, 0x40 ) );
len += sprintf( buffer+len, "H/V Resol.\t%d/%d dpi\n",
SHORTDATA( 12 ), SHORTDATA( 10 ) );
len += sprintf( buffer+len, "System Timeout\t%d\n",
buf[14] );
len += sprintf( buffer+len, "Scan Time\t%d\n",
SHORTDATA( 15 ) );
len += sprintf( buffer+len, "Page Count\t%d\n",
SHORTDATA( 17 ) );
len += sprintf( buffer+len, "In/Out Cap.\t%d/%d\n",
SHORTDATA( 19 ), SHORTDATA( 21 ) );
len += sprintf( buffer+len, "Stagger Output\t%s\n",
BOOLDATA( 23, 0x01 ) );
len += sprintf( buffer+len, "Output Select\t%d\n",
(buf[23] >> 1) & 7 );
len += sprintf( buffer+len, "Duplex Print\t%s\n",
BOOLDATA( 23, 0x10 ) );
len += sprintf( buffer+len, "Color Sep.\t%s\n",
BOOLDATA( 23, 0x20 ) );
return( len );
}
static ssize_t slm_read( struct file *file, char *buf, size_t count,
loff_t *ppos )
{
struct inode *node = file->f_path.dentry->d_inode;
unsigned long page;
int length;
int end;
if (!(page = __get_free_page( GFP_KERNEL )))
return( -ENOMEM );
length = slm_getstats( (char *)page, iminor(node) );
if (length < 0) {
count = length;
goto out;
}
if (file->f_pos >= length) {
count = 0;
goto out;
}
if (count + file->f_pos > length)
count = length - file->f_pos;
end = count + file->f_pos;
if (copy_to_user(buf, (char *)page + file->f_pos, count)) {
count = -EFAULT;
goto out;
}
file->f_pos = end;
out: free_page( page );
return( count );
}
/* ---------------------------------------------------------------------- */
/* Printing */
static void start_print( int device )
{ struct slm *sip = &slm_info[device];
unsigned char *cmd;
unsigned long paddr;
int i;
stdma_lock( slm_interrupt, NULL );
CMDSET_TARG_LUN( slmprint_cmd, sip->target, sip->lun );
cmd = slmprint_cmd;
paddr = virt_to_phys( SLMBuffer );
dma_cache_maintenance( paddr, virt_to_phys(BufferP)-paddr, 1 );
DISABLE_IRQ();
/* Low on A1 */
dma_wd.dma_mode_status = 0x88;
MFPDELAY();
/* send the command bytes except the last */
for( i = 0; i < 5; ++i ) {
DMA_LONG_WRITE( *cmd++, 0x8a );
udelay(20);
if (!acsi_wait_for_IRQ( HZ/2 )) {
SLMError = 1;
return; /* timeout */
}
}
/* last command byte */
DMA_LONG_WRITE( *cmd++, 0x82 );
MFPDELAY();
/* set DMA address */
set_dma_addr( paddr );
/* program DMA for write and select sector counter reg */
dma_wd.dma_mode_status = 0x192;
MFPDELAY();
/* program for 255*512 bytes and start DMA */
DMA_LONG_WRITE( SLM_DMA_AMOUNT, 0x112 );
#ifndef SLM_CONT_CNT_REPROG
SLMCurAddr = paddr;
SLMEndAddr = paddr + SLMSliceSize + SLM_DMA_INT_OFFSET;
#endif
START_TIMER( DMA_STARTUP_TIME + DMA_TIME_FOR( SLMSliceSize ));
#if !defined(SLM_CONT_CNT_REPROG) && defined(DEBUG)
printk( "SLM: CurAddr=%#lx EndAddr=%#lx timer=%ld\n",
SLMCurAddr, SLMEndAddr, DMA_TIME_FOR( SLMSliceSize ) );
#endif
ENABLE_IRQ();
}
/* Only called when an error happened or at the end of a page */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t slm_interrupt(int irc, void *data)
{ unsigned long addr;
int stat;
STOP_TIMER();
addr = get_dma_addr();
stat = acsi_getstatus();
SLMError = (stat < 0) ? SLMSTAT_ACSITO :
(addr < virt_to_phys(BufferP)) ? SLMSTAT_NOTALL :
stat;
dma_wd.dma_mode_status = 0x80;
MFPDELAY();
#ifdef DEBUG
printk( "SLM: interrupt, addr=%#lx, error=%d\n", addr, SLMError );
#endif
wake_up( &print_wait );
stdma_release();
ENABLE_IRQ();
return IRQ_HANDLED;
}
static void slm_test_ready( unsigned long dummy )
{
#ifdef SLM_CONT_CNT_REPROG
/* program for 255*512 bytes again */
dma_wd.fdc_acces_seccount = SLM_DMA_AMOUNT;
START_TIMER( DMA_TIME_FOR(0) );
#ifdef DEBUG
printk( "SLM: reprogramming timer for %d jiffies, addr=%#lx\n",
DMA_TIME_FOR(0), get_dma_addr() );
#endif
#else /* !SLM_CONT_CNT_REPROG */
unsigned long flags, addr;
int d, ti;
#ifdef DEBUG
struct timeval start_tm, end_tm;
int did_wait = 0;
#endif
local_irq_save(flags);
addr = get_dma_addr();
if ((d = SLMEndAddr - addr) > 0) {
local_irq_restore(flags);
/* slice not yet finished, decide whether to start another timer or to
* busy-wait */
ti = DMA_TIME_FOR( d );
if (ti > 0) {
#ifdef DEBUG
printk( "SLM: reprogramming timer for %d jiffies, rest %d bytes\n",
ti, d );
#endif
START_TIMER( ti );
return;
}
/* wait for desired end address to be reached */
#ifdef DEBUG
do_gettimeofday( &start_tm );
did_wait = 1;
#endif
local_irq_disable();
while( get_dma_addr() < SLMEndAddr )
barrier();
}
/* slice finished, start next one */
SLMCurAddr += SLMSliceSize;
#ifdef SLM_CONTINUOUS_DMA
/* program for 255*512 bytes again */
dma_wd.fdc_acces_seccount = SLM_DMA_AMOUNT;
#else
/* set DMA address;
* add 2 bytes for the ones in the SLM controller FIFO! */
set_dma_addr( SLMCurAddr + 2 );
/* toggle DMA to write and select sector counter reg */
dma_wd.dma_mode_status = 0x92;
MFPDELAY();
dma_wd.dma_mode_status = 0x192;
MFPDELAY();
/* program for 255*512 bytes and start DMA */
DMA_LONG_WRITE( SLM_DMA_AMOUNT, 0x112 );
#endif
local_irq_restore(flags);
#ifdef DEBUG
if (did_wait) {
int ms;
do_gettimeofday( &end_tm );
ms = (end_tm.tv_sec*1000000+end_tm.tv_usec) -
(start_tm.tv_sec*1000000+start_tm.tv_usec);
printk( "SLM: did %ld.%ld ms busy waiting for %d bytes\n",
ms/1000, ms%1000, d );
}
else
printk( "SLM: didn't wait (!)\n" );
#endif
if ((unsigned char *)PTOV( SLMCurAddr + SLMSliceSize ) >= BufferP) {
/* will be last slice, no timer necessary */
#ifdef DEBUG
printk( "SLM: CurAddr=%#lx EndAddr=%#lx last slice -> no timer\n",
SLMCurAddr, SLMEndAddr );
#endif
}
else {
/* not last slice */
SLMEndAddr = SLMCurAddr + SLMSliceSize + SLM_DMA_INT_OFFSET;
START_TIMER( DMA_TIME_FOR( SLMSliceSize ));
#ifdef DEBUG
printk( "SLM: CurAddr=%#lx EndAddr=%#lx timer=%ld\n",
SLMCurAddr, SLMEndAddr, DMA_TIME_FOR( SLMSliceSize ) );
#endif
}
#endif /* SLM_CONT_CNT_REPROG */
}
static void set_dma_addr( unsigned long paddr )
{ unsigned long flags;
local_irq_save(flags);
dma_wd.dma_lo = (unsigned char)paddr;
paddr >>= 8;
MFPDELAY();
dma_wd.dma_md = (unsigned char)paddr;
paddr >>= 8;
MFPDELAY();
if (ATARIHW_PRESENT( EXTD_DMA ))
st_dma_ext_dmahi = (unsigned short)paddr;
else
dma_wd.dma_hi = (unsigned char)paddr;
MFPDELAY();
local_irq_restore(flags);
}
static unsigned long get_dma_addr( void )
{ unsigned long addr;
addr = dma_wd.dma_lo & 0xff;
MFPDELAY();
addr |= (dma_wd.dma_md & 0xff) << 8;
MFPDELAY();
addr |= (dma_wd.dma_hi & 0xff) << 16;
MFPDELAY();
return( addr );
}
static ssize_t slm_write( struct file *file, const char *buf, size_t count,
loff_t *ppos )
{
struct inode *node = file->f_path.dentry->d_inode;
int device = iminor(node);
int n, filled, w, h;
while( SLMState == PRINTING ||
(SLMState == FILLING && SLMBufOwner != device) ) {
interruptible_sleep_on( &slm_wait );
if (signal_pending(current))
return( -ERESTARTSYS );
}
if (SLMState == IDLE) {
/* first data of page: get current page size */
if (slm_get_pagesize( device, &w, &h ))
return( -EIO );
BufferSize = w*h/8;
if (BufferSize > SLM_BUFFER_SIZE)
return( -ENOMEM );
SLMState = FILLING;
SLMBufOwner = device;
}
n = count;
filled = BufferP - SLMBuffer;
if (filled + n > BufferSize)
n = BufferSize - filled;
if (copy_from_user(BufferP, buf, n))
return -EFAULT;
BufferP += n;
filled += n;
if (filled == BufferSize) {
/* Check the paper size again! The user may have switched it in the
* time between starting the data and finishing them. Would end up in
* a trashy page... */
if (slm_get_pagesize( device, &w, &h ))
return( -EIO );
if (BufferSize != w*h/8) {
printk( KERN_NOTICE "slm%d: page size changed while printing\n",
device );
return( -EAGAIN );
}
SLMState = PRINTING;
/* choose a slice size that is a multiple of the line size */
#ifndef SLM_CONT_CNT_REPROG
SLMSliceSize = SLM_SLICE_SIZE(w);
#endif
start_print( device );
sleep_on( &print_wait );
if (SLMError && IS_REAL_ERROR(SLMError)) {
printk( KERN_ERR "slm%d: %s\n", device, slm_errstr(SLMError) );
n = -EIO;
}
SLMState = IDLE;
BufferP = SLMBuffer;
wake_up_interruptible( &slm_wait );
}
return( n );
}
/* ---------------------------------------------------------------------- */
/* ioctl Functions */
static int slm_ioctl( struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg )
{ int device = iminor(inode), err;
/* I can think of setting:
* - manual feed
* - paper format
* - copy count
* - ...
* but haven't implemented that yet :-)
* BTW, has anybody better docs about the MODE SENSE/MODE SELECT data?
*/
switch( cmd ) {
case SLMIORESET: /* reset buffer, i.e. empty the buffer */
if (!(file->f_mode & 2))
return( -EINVAL );
if (SLMState == PRINTING)
return( -EBUSY );
SLMState = IDLE;
BufferP = SLMBuffer;
wake_up_interruptible( &slm_wait );
return( 0 );
case SLMIOGSTAT: { /* get status */
int stat;
char *str;
stat = slm_req_sense( device );
if (arg) {
str = slm_errstr( stat );
if (put_user(stat,
(long *)&((struct SLM_status *)arg)->stat))
return -EFAULT;
if (copy_to_user( ((struct SLM_status *)arg)->str, str,
strlen(str) + 1))
return -EFAULT;
}
return( stat );
}
case SLMIOGPSIZE: { /* get paper size */
int w, h;
if ((err = slm_get_pagesize( device, &w, &h ))) return( err );
if (put_user(w, (long *)&((struct SLM_paper_size *)arg)->width))
return -EFAULT;
if (put_user(h, (long *)&((struct SLM_paper_size *)arg)->height))
return -EFAULT;
return( 0 );
}
case SLMIOGMFEED: /* get manual feed */
return( -EINVAL );
case SLMIOSPSIZE: /* set paper size */
return( -EINVAL );
case SLMIOSMFEED: /* set manual feed */
return( -EINVAL );
}
return( -EINVAL );
}
/* ---------------------------------------------------------------------- */
/* Opening and Closing */
static int slm_open( struct inode *inode, struct file *file )
{ int device;
struct slm *sip;
device = iminor(inode);
if (device >= N_SLM_Printers)
return( -ENXIO );
sip = &slm_info[device];
if (file->f_mode & 2) {
/* open for writing is exclusive */
if ( !atomic_dec_and_test(&sip->wr_ok) ) {
atomic_inc(&sip->wr_ok);
return( -EBUSY );
}
}
if (file->f_mode & 1) {
/* open for reading is exclusive */
if ( !atomic_dec_and_test(&sip->rd_ok) ) {
atomic_inc(&sip->rd_ok);
return( -EBUSY );
}
}
return( 0 );
}
static int slm_release( struct inode *inode, struct file *file )
{ int device;
struct slm *sip;
device = iminor(inode);
sip = &slm_info[device];
if (file->f_mode & 2)
atomic_inc( &sip->wr_ok );
if (file->f_mode & 1)
atomic_inc( &sip->rd_ok );
return( 0 );
}
/* ---------------------------------------------------------------------- */
/* ACSI Primitives for the SLM */
static int slm_req_sense( int device )
{ int stat, rv;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmreqsense_cmd, sip->target, sip->lun );
if (!acsicmd_nodma( slmreqsense_cmd, 0 ) ||
(stat = acsi_getstatus()) < 0)
rv = SLMSTAT_ACSITO;
else
rv = stat & 0x1f;
ENABLE_IRQ();
stdma_release();
return( rv );
}
static int slm_mode_sense( int device, char *buffer, int abs_flag )
{ unsigned char stat, len;
int rv = 0;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmmsense_cmd, sip->target, sip->lun );
slmmsense_cmd[5] = abs_flag ? 0x80 : 0;
if (!acsicmd_nodma( slmmsense_cmd, 0 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extstatus( &stat, 1 )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extstatus( &len, 1 )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
buffer[0] = len;
if (!acsi_extstatus( buffer+1, len )) {
acsi_end_extstatus();
rv = SLMSTAT_ACSITO;
goto the_end;
}
acsi_end_extstatus();
rv = stat & 0x1f;
the_end:
ENABLE_IRQ();
stdma_release();
return( rv );
}
#if 0
/* currently unused */
static int slm_mode_select( int device, char *buffer, int len,
int default_flag )
{ int stat, rv;
struct slm *sip = &slm_info[device];
stdma_lock( NULL, NULL );
CMDSET_TARG_LUN( slmmselect_cmd, sip->target, sip->lun );
slmmselect_cmd[5] = default_flag ? 0x80 : 0;
if (!acsicmd_nodma( slmmselect_cmd, 0 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!default_flag) {
unsigned char c = len;
if (!acsi_extcmd( &c, 1 )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
if (!acsi_extcmd( buffer, len )) {
rv = SLMSTAT_ACSITO;
goto the_end;
}
}
stat = acsi_getstatus();
rv = (stat < 0 ? SLMSTAT_ACSITO : stat);
the_end:
ENABLE_IRQ();
stdma_release();
return( rv );
}
#endif
static int slm_get_pagesize( int device, int *w, int *h )
{ char buf[256];
int stat;
stat = slm_mode_sense( device, buf, 0 );
ENABLE_IRQ();
stdma_release();
if (stat != SLMSTAT_OK)
return( -EIO );
*w = (buf[3] << 8) | buf[4];
*h = (buf[1] << 8) | buf[2];
return( 0 );
}
/* ---------------------------------------------------------------------- */
/* Initialization */
int attach_slm( int target, int lun )
{ static int did_register;
int len;
if (N_SLM_Printers >= MAX_SLM) {
printk( KERN_WARNING "Too much SLMs\n" );
return( 0 );
}
/* do an INQUIRY */
udelay(100);
CMDSET_TARG_LUN( slminquiry_cmd, target, lun );
if (!acsicmd_nodma( slminquiry_cmd, 0 )) {
inq_timeout:
printk( KERN_ERR "SLM inquiry command timed out.\n" );
inq_fail:
acsi_end_extstatus();
return( 0 );
}
/* read status and header of return data */
if (!acsi_extstatus( SLMBuffer, 6 ))
goto inq_timeout;
if (SLMBuffer[1] != 2) { /* device type == printer? */
printk( KERN_ERR "SLM inquiry returned device type != printer\n" );
goto inq_fail;
}
len = SLMBuffer[5];
/* read id string */
if (!acsi_extstatus( SLMBuffer, len ))
goto inq_timeout;
acsi_end_extstatus();
SLMBuffer[len] = 0;
if (!did_register) {
did_register = 1;
}
slm_info[N_SLM_Printers].target = target;
slm_info[N_SLM_Printers].lun = lun;
atomic_set(&slm_info[N_SLM_Printers].wr_ok, 1 );
atomic_set(&slm_info[N_SLM_Printers].rd_ok, 1 );
printk( KERN_INFO " Printer: %s\n", SLMBuffer );
printk( KERN_INFO "Detected slm%d at id %d lun %d\n",
N_SLM_Printers, target, lun );
N_SLM_Printers++;
return( 1 );
}
int slm_init( void )
{
int i;
if (register_chrdev( ACSI_MAJOR, "slm", &slm_fops )) {
printk( KERN_ERR "Unable to get major %d for ACSI SLM\n", ACSI_MAJOR );
return -EBUSY;
}
if (!(SLMBuffer = atari_stram_alloc( SLM_BUFFER_SIZE, "SLM" ))) {
printk( KERN_ERR "Unable to get SLM ST-Ram buffer.\n" );
unregister_chrdev( ACSI_MAJOR, "slm" );
return -ENOMEM;
}
BufferP = SLMBuffer;
SLMState = IDLE;
return 0;
}
#ifdef MODULE
/* from acsi.c */
void acsi_attach_SLMs( int (*attach_func)( int, int ) );
int init_module(void)
{
int err;
if ((err = slm_init()))
return( err );
/* This calls attach_slm() for every target/lun where acsi.c detected a
* printer */
acsi_attach_SLMs( attach_slm );
return( 0 );
}
void cleanup_module(void)
{
if (unregister_chrdev( ACSI_MAJOR, "slm" ) != 0)
printk( KERN_ERR "acsi_slm: cleanup_module failed\n");
atari_stram_free( SLMBuffer );
}
#endif