OpenCloudOS-Kernel/drivers/net/fs_enet/mac-fcc.c

548 lines
14 KiB
C
Raw Normal View History

/*
* FCC driver for Motorola MPC82xx (PQ2).
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/of_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
/* FCC access macros */
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
#define R32(_p, _m) in_be32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
#define R16(_p, _m) in_be16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
#define R8(_p, _m) in_8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
/*************************************************/
#define FCC_MAX_MULTICAST_ADDRS 64
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end 0
#define MAX_CR_CMD_LOOPS 10000
static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
{
const struct fs_platform_info *fpi = fep->fpi;
return cpm_command(fpi->cp_command, op);
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct of_device *ofdev = to_of_device(fep->dev);
struct fs_platform_info *fpi = fep->fpi;
int ret = -EINVAL;
fep->interrupt = of_irq_to_resource(ofdev->node, 0, NULL);
if (fep->interrupt == NO_IRQ)
goto out;
fep->fcc.fccp = of_iomap(ofdev->node, 0);
if (!fep->fcc.fccp)
goto out;
fep->fcc.ep = of_iomap(ofdev->node, 1);
if (!fep->fcc.ep)
goto out_fccp;
fep->fcc.fcccp = of_iomap(ofdev->node, 2);
if (!fep->fcc.fcccp)
goto out_ep;
fep->fcc.mem = (void __iomem *)cpm2_immr;
fpi->dpram_offset = cpm_dpalloc(128, 8);
if (IS_ERR_VALUE(fpi->dpram_offset)) {
ret = fpi->dpram_offset;
goto out_fcccp;
}
return 0;
out_fcccp:
iounmap(fep->fcc.fcccp);
out_ep:
iounmap(fep->fcc.ep);
out_fccp:
iounmap(fep->fcc.fccp);
out:
return ret;
}
#define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
#define FCC_RX_EVENT (FCC_ENET_RXF)
#define FCC_TX_EVENT (FCC_ENET_TXB)
#define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FCC_RX_EVENT;
fep->ev_tx = FCC_TX_EVENT;
fep->ev_err = FCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if (fep->ring_base)
dma_free_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
(void __force *)fep->ring_base, fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t __iomem *ep = fep->fcc.ep;
W32(ep, fen_gaddrh, 0);
W32(ep, fen_gaddrl, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t __iomem *ep = fep->fcc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16)mac[5] << 8) | mac[4];
taddrm = ((u16)mac[3] << 8) | mac[2];
taddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_taddrh, taddrh);
W16(ep, fen_taddrm, taddrm);
W16(ep, fen_taddrl, taddrl);
fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
fcc_enet_t __iomem *ep = fep->fcc.ep;
/* clear promiscuous always */
C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
W32(ep, fen_gaddrh, 0xffffffff);
W32(ep, fen_gaddrl, 0xffffffff);
}
/* read back */
fep->fcc.gaddrh = R32(ep, fen_gaddrh);
fep->fcc.gaddrl = R32(ep, fen_gaddrl);
}
static void set_multicast_list(struct net_device *dev)
{
struct netdev_hw_addr *ha;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
netdev_for_each_mc_addr(ha, dev)
set_multicast_one(dev, ha->addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fcc_t __iomem *fccp = fep->fcc.fccp;
fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
fcc_enet_t __iomem *ep = fep->fcc.ep;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
u16 paddrh, paddrm, paddrl;
const unsigned char *mac;
int i;
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
out_8((u8 __iomem *)ep + i, 0);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/* point to bds */
W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
W16(ep, fen_padptr, fpi->dpram_offset + 64);
/* fill with special symbol... */
memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
W32(ep, fen_genfcc.fcc_rbptr, 0);
W32(ep, fen_genfcc.fcc_tbptr, 0);
W32(ep, fen_genfcc.fcc_rcrc, 0);
W32(ep, fen_genfcc.fcc_tcrc, 0);
W16(ep, fen_genfcc.fcc_res1, 0);
W32(ep, fen_genfcc.fcc_res2, 0);
/* no CAM */
W32(ep, fen_camptr, 0);
/* Set CRC preset and mask */
W32(ep, fen_cmask, 0xdebb20e3);
W32(ep, fen_cpres, 0xffffffff);
W32(ep, fen_crcec, 0); /* CRC Error counter */
W32(ep, fen_alec, 0); /* alignment error counter */
W32(ep, fen_disfc, 0); /* discard frame counter */
W16(ep, fen_retlim, 15); /* Retry limit threshold */
W16(ep, fen_pper, 0); /* Normal persistence */
/* set group address */
W32(ep, fen_gaddrh, fep->fcc.gaddrh);
W32(ep, fen_gaddrl, fep->fcc.gaddrh);
/* Clear hash filter tables */
W32(ep, fen_iaddrh, 0);
W32(ep, fen_iaddrl, 0);
/* Clear the Out-of-sequence TxBD */
W16(ep, fen_tfcstat, 0);
W16(ep, fen_tfclen, 0);
W32(ep, fen_tfcptr, 0);
W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
/* set address */
mac = dev->dev_addr;
paddrh = ((u16)mac[5] << 8) | mac[4];
paddrm = ((u16)mac[3] << 8) | mac[2];
paddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_paddrh, paddrh);
W16(ep, fen_paddrm, paddrm);
W16(ep, fen_paddrl, paddrl);
W16(ep, fen_taddrh, 0);
W16(ep, fen_taddrm, 0);
W16(ep, fen_taddrl, 0);
W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON */
W32(ep, fen_octc, 0);
W32(ep, fen_colc, 0);
W32(ep, fen_broc, 0);
W32(ep, fen_mulc, 0);
W32(ep, fen_uspc, 0);
W32(ep, fen_frgc, 0);
W32(ep, fen_ospc, 0);
W32(ep, fen_jbrc, 0);
W32(ep, fen_p64c, 0);
W32(ep, fen_p65c, 0);
W32(ep, fen_p128c, 0);
W32(ep, fen_p256c, 0);
W32(ep, fen_p512c, 0);
W32(ep, fen_p1024c, 0);
W16(ep, fen_rfthr, 0); /* Suggested by manual */
W16(ep, fen_rfcnt, 0);
W16(ep, fen_cftype, 0);
fs_init_bds(dev);
/* adjust to speed (for RMII mode) */
if (fpi->use_rmii) {
if (fep->phydev->speed == 100)
C8(fcccp, fcc_gfemr, 0x20);
else
S8(fcccp, fcc_gfemr, 0x20);
}
fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* Enable interrupts we wish to service */
W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Set GFMR to enable Ethernet operating mode */
W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* set sync/delimiters */
W16(fccp, fcc_fdsr, 0xd555);
W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
if (fpi->use_rmii)
S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
/* adjust to duplex mode */
if (fep->phydev->duplex)
S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
else
C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
/* Restore multicast and promiscuous settings */
set_multicast_list(dev);
S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
/* stop ethernet */
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* clear interrupt mask */
W16(fccp, fcc_fccm, 0);
fs_cleanup_bds(dev);
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
S16(fccp, fcc_ftodr, 0x8000);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
return (u32)R16(fccp, fcc_fcce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
return -EINVAL;
memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
p = (char *)p + sizeof(fcc_t);
memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
p = (char *)p + sizeof(fcc_enet_t);
memcpy_fromio(p, fep->fcc.fcccp, 1);
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
}
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
static void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t __iomem *fccp = fep->fcc.fccp;
C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
udelay(10);
S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_fcc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};