OpenCloudOS-Kernel/tools/lib/bpf/libbpf.h

319 lines
11 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: LGPL-2.1 */
bpf tools: Introduce 'bpf' library and add bpf feature check This is the first patch of libbpf. The goal of libbpf is to create a standard way for accessing eBPF object files. This patch creates 'Makefile' and 'Build' for it, allows 'make' to build libbpf.a and libbpf.so, 'make install' to put them into proper directories. Most part of Makefile is borrowed from traceevent. Before building, it checks the existence of libelf in Makefile, and deny to build if not found. Instead of throwing an error if libelf not found, the error raises in a phony target "elfdep". This design is to ensure 'make clean' still workable even if libelf is not found. Because libbpf requires 'kern_version' field set for 'union bpf_attr' (bpfdep" is used for that dependency), Kernel BPF API is also checked by intruducing a new feature check 'bpf' into tools/build/feature, which checks the existence and version of linux/bpf.h. When building libbpf, it searches that file from include/uapi/linux in kernel source tree (controlled by FEATURE_CHECK_CFLAGS-bpf). Since it searches kernel source tree it reside, installing of newest kernel headers is not required, except we are trying to port these files to an old kernel. To avoid checking that file when perf building, the newly introduced 'bpf' feature check doesn't added into FEATURE_TESTS and FEATURE_DISPLAY by default in tools/build/Makefile.feature, but added into libbpf's specific. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Bcc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-4-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:13:51 +08:00
/*
* Common eBPF ELF object loading operations.
*
* Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
* Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
* Copyright (C) 2015 Huawei Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License (not later!)
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses>
bpf tools: Introduce 'bpf' library and add bpf feature check This is the first patch of libbpf. The goal of libbpf is to create a standard way for accessing eBPF object files. This patch creates 'Makefile' and 'Build' for it, allows 'make' to build libbpf.a and libbpf.so, 'make install' to put them into proper directories. Most part of Makefile is borrowed from traceevent. Before building, it checks the existence of libelf in Makefile, and deny to build if not found. Instead of throwing an error if libelf not found, the error raises in a phony target "elfdep". This design is to ensure 'make clean' still workable even if libelf is not found. Because libbpf requires 'kern_version' field set for 'union bpf_attr' (bpfdep" is used for that dependency), Kernel BPF API is also checked by intruducing a new feature check 'bpf' into tools/build/feature, which checks the existence and version of linux/bpf.h. When building libbpf, it searches that file from include/uapi/linux in kernel source tree (controlled by FEATURE_CHECK_CFLAGS-bpf). Since it searches kernel source tree it reside, installing of newest kernel headers is not required, except we are trying to port these files to an old kernel. To avoid checking that file when perf building, the newly introduced 'bpf' feature check doesn't added into FEATURE_TESTS and FEATURE_DISPLAY by default in tools/build/Makefile.feature, but added into libbpf's specific. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Bcc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-4-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:13:51 +08:00
*/
#ifndef __LIBBPF_LIBBPF_H
#define __LIBBPF_LIBBPF_H
bpf tools: Introduce 'bpf' library and add bpf feature check This is the first patch of libbpf. The goal of libbpf is to create a standard way for accessing eBPF object files. This patch creates 'Makefile' and 'Build' for it, allows 'make' to build libbpf.a and libbpf.so, 'make install' to put them into proper directories. Most part of Makefile is borrowed from traceevent. Before building, it checks the existence of libelf in Makefile, and deny to build if not found. Instead of throwing an error if libelf not found, the error raises in a phony target "elfdep". This design is to ensure 'make clean' still workable even if libelf is not found. Because libbpf requires 'kern_version' field set for 'union bpf_attr' (bpfdep" is used for that dependency), Kernel BPF API is also checked by intruducing a new feature check 'bpf' into tools/build/feature, which checks the existence and version of linux/bpf.h. When building libbpf, it searches that file from include/uapi/linux in kernel source tree (controlled by FEATURE_CHECK_CFLAGS-bpf). Since it searches kernel source tree it reside, installing of newest kernel headers is not required, except we are trying to port these files to an old kernel. To avoid checking that file when perf building, the newly introduced 'bpf' feature check doesn't added into FEATURE_TESTS and FEATURE_DISPLAY by default in tools/build/Makefile.feature, but added into libbpf's specific. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Bcc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-4-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:13:51 +08:00
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <sys/types.h> // for size_t
#include <linux/bpf.h>
bpf tools: Improve libbpf error reporting In this patch, a series of libbpf specific error numbers and libbpf_strerror() are introduced to help reporting errors. Functions are updated to pass correct the error number through the CHECK_ERR() macro. All users of bpf_object__open{_buffer}() and bpf_program__title() in perf are modified accordingly. In addition, due to the error codes changing, bpf__strerror_load() is also modified to use them. bpf__strerror_head() is also changed accordingly so it can parse libbpf errors. bpf_loader_strerror() is introduced for that purpose, and will be improved by the following patch. load_program() is improved not to dump log buffer if it is empty. log buffer is also used to deduce whether the error was caused by an invalid program or other problem. v1 -> v2: - Using macro for error code. - Fetch error message based on array index, eliminate for-loop. - Use log buffer to detect the reason of failure. 3 new error code are introduced to replace LIBBPF_ERRNO__LOAD. In v1: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_kversion_nomatch_program.o ls event syntax error: './test_kversion_nomatch_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_big_program.o ls event syntax error: './test_big_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP In v2: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Kernel verifier blocks program loading SKIP # perf record -e ./test_kversion_nomatch_program.o event syntax error: './test_kversion_nomatch_program.o' \___ Incorrect kernel version SKIP (Will be further improved by following patches) # perf record -e ./test_big_program.o event syntax error: './test_big_program.o' \___ Program too big SKIP Signed-off-by: Wang Nan <wangnan0@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1446817783-86722-2-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-06 21:49:37 +08:00
enum libbpf_errno {
__LIBBPF_ERRNO__START = 4000,
/* Something wrong in libelf */
LIBBPF_ERRNO__LIBELF = __LIBBPF_ERRNO__START,
LIBBPF_ERRNO__FORMAT, /* BPF object format invalid */
LIBBPF_ERRNO__KVERSION, /* Incorrect or no 'version' section */
LIBBPF_ERRNO__ENDIAN, /* Endian mismatch */
bpf tools: Improve libbpf error reporting In this patch, a series of libbpf specific error numbers and libbpf_strerror() are introduced to help reporting errors. Functions are updated to pass correct the error number through the CHECK_ERR() macro. All users of bpf_object__open{_buffer}() and bpf_program__title() in perf are modified accordingly. In addition, due to the error codes changing, bpf__strerror_load() is also modified to use them. bpf__strerror_head() is also changed accordingly so it can parse libbpf errors. bpf_loader_strerror() is introduced for that purpose, and will be improved by the following patch. load_program() is improved not to dump log buffer if it is empty. log buffer is also used to deduce whether the error was caused by an invalid program or other problem. v1 -> v2: - Using macro for error code. - Fetch error message based on array index, eliminate for-loop. - Use log buffer to detect the reason of failure. 3 new error code are introduced to replace LIBBPF_ERRNO__LOAD. In v1: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_kversion_nomatch_program.o ls event syntax error: './test_kversion_nomatch_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_big_program.o ls event syntax error: './test_big_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP In v2: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Kernel verifier blocks program loading SKIP # perf record -e ./test_kversion_nomatch_program.o event syntax error: './test_kversion_nomatch_program.o' \___ Incorrect kernel version SKIP (Will be further improved by following patches) # perf record -e ./test_big_program.o event syntax error: './test_big_program.o' \___ Program too big SKIP Signed-off-by: Wang Nan <wangnan0@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1446817783-86722-2-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-06 21:49:37 +08:00
LIBBPF_ERRNO__INTERNAL, /* Internal error in libbpf */
LIBBPF_ERRNO__RELOC, /* Relocation failed */
LIBBPF_ERRNO__LOAD, /* Load program failure for unknown reason */
LIBBPF_ERRNO__VERIFY, /* Kernel verifier blocks program loading */
LIBBPF_ERRNO__PROG2BIG, /* Program too big */
LIBBPF_ERRNO__KVER, /* Incorrect kernel version */
LIBBPF_ERRNO__PROGTYPE, /* Kernel doesn't support this program type */
LIBBPF_ERRNO__WRNGPID, /* Wrong pid in netlink message */
LIBBPF_ERRNO__INVSEQ, /* Invalid netlink sequence */
LIBBPF_ERRNO__NLPARSE, /* netlink parsing error */
bpf tools: Improve libbpf error reporting In this patch, a series of libbpf specific error numbers and libbpf_strerror() are introduced to help reporting errors. Functions are updated to pass correct the error number through the CHECK_ERR() macro. All users of bpf_object__open{_buffer}() and bpf_program__title() in perf are modified accordingly. In addition, due to the error codes changing, bpf__strerror_load() is also modified to use them. bpf__strerror_head() is also changed accordingly so it can parse libbpf errors. bpf_loader_strerror() is introduced for that purpose, and will be improved by the following patch. load_program() is improved not to dump log buffer if it is empty. log buffer is also used to deduce whether the error was caused by an invalid program or other problem. v1 -> v2: - Using macro for error code. - Fetch error message based on array index, eliminate for-loop. - Use log buffer to detect the reason of failure. 3 new error code are introduced to replace LIBBPF_ERRNO__LOAD. In v1: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_kversion_nomatch_program.o ls event syntax error: './test_kversion_nomatch_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP # perf record -e ./test_big_program.o ls event syntax error: './test_big_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP In v2: # perf record -e ./test_ill_program.o ls event syntax error: './test_ill_program.o' \___ Kernel verifier blocks program loading SKIP # perf record -e ./test_kversion_nomatch_program.o event syntax error: './test_kversion_nomatch_program.o' \___ Incorrect kernel version SKIP (Will be further improved by following patches) # perf record -e ./test_big_program.o event syntax error: './test_big_program.o' \___ Program too big SKIP Signed-off-by: Wang Nan <wangnan0@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1446817783-86722-2-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-06 21:49:37 +08:00
__LIBBPF_ERRNO__END,
};
int libbpf_strerror(int err, char *buf, size_t size);
/*
* __printf is defined in include/linux/compiler-gcc.h. However,
* it would be better if libbpf.h didn't depend on Linux header files.
* So instead of __printf, here we use gcc attribute directly.
*/
typedef int (*libbpf_print_fn_t)(const char *, ...)
__attribute__((format(printf, 1, 2)));
void libbpf_set_print(libbpf_print_fn_t warn,
libbpf_print_fn_t info,
libbpf_print_fn_t debug);
/* Hide internal to user */
struct bpf_object;
struct bpf_object_open_attr {
const char *file;
enum bpf_prog_type prog_type;
};
struct bpf_object *bpf_object__open(const char *path);
struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr);
struct bpf_object *bpf_object__open_buffer(void *obj_buf,
size_t obj_buf_sz,
const char *name);
int bpf_object__pin(struct bpf_object *object, const char *path);
void bpf_object__close(struct bpf_object *object);
/* Load/unload object into/from kernel */
int bpf_object__load(struct bpf_object *obj);
int bpf_object__unload(struct bpf_object *obj);
const char *bpf_object__name(struct bpf_object *obj);
unsigned int bpf_object__kversion(struct bpf_object *obj);
int bpf_object__btf_fd(const struct bpf_object *obj);
struct bpf_program *
bpf_object__find_program_by_title(struct bpf_object *obj, const char *title);
struct bpf_object *bpf_object__next(struct bpf_object *prev);
#define bpf_object__for_each_safe(pos, tmp) \
for ((pos) = bpf_object__next(NULL), \
(tmp) = bpf_object__next(pos); \
(pos) != NULL; \
(pos) = (tmp), (tmp) = bpf_object__next(tmp))
typedef void (*bpf_object_clear_priv_t)(struct bpf_object *, void *);
int bpf_object__set_priv(struct bpf_object *obj, void *priv,
bpf_object_clear_priv_t clear_priv);
void *bpf_object__priv(struct bpf_object *prog);
int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
enum bpf_attach_type *expected_attach_type);
int libbpf_attach_type_by_name(const char *name,
enum bpf_attach_type *attach_type);
/* Accessors of bpf_program */
struct bpf_program;
struct bpf_program *bpf_program__next(struct bpf_program *prog,
struct bpf_object *obj);
#define bpf_object__for_each_program(pos, obj) \
for ((pos) = bpf_program__next(NULL, (obj)); \
(pos) != NULL; \
(pos) = bpf_program__next((pos), (obj)))
typedef void (*bpf_program_clear_priv_t)(struct bpf_program *,
void *);
int bpf_program__set_priv(struct bpf_program *prog, void *priv,
bpf_program_clear_priv_t clear_priv);
void *bpf_program__priv(struct bpf_program *prog);
void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex);
const char *bpf_program__title(struct bpf_program *prog, bool needs_copy);
int bpf_program__load(struct bpf_program *prog, char *license,
__u32 kern_version);
int bpf_program__fd(struct bpf_program *prog);
int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
int instance);
int bpf_program__pin(struct bpf_program *prog, const char *path);
void bpf_program__unload(struct bpf_program *prog);
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
struct bpf_insn;
/*
* Libbpf allows callers to adjust BPF programs before being loaded
* into kernel. One program in an object file can be transformed into
* multiple variants to be attached to different hooks.
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
*
* bpf_program_prep_t, bpf_program__set_prep and bpf_program__nth_fd
* form an API for this purpose.
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
*
* - bpf_program_prep_t:
* Defines a 'preprocessor', which is a caller defined function
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
* passed to libbpf through bpf_program__set_prep(), and will be
* called before program is loaded. The processor should adjust
* the program one time for each instance according to the instance id
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
* passed to it.
*
* - bpf_program__set_prep:
* Attaches a preprocessor to a BPF program. The number of instances
* that should be created is also passed through this function.
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
*
* - bpf_program__nth_fd:
* After the program is loaded, get resulting FD of a given instance
* of the BPF program.
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
*
* If bpf_program__set_prep() is not used, the program would be loaded
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
* without adjustment during bpf_object__load(). The program has only
* one instance. In this case bpf_program__fd(prog) is equal to
* bpf_program__nth_fd(prog, 0).
*/
struct bpf_prog_prep_result {
/*
* If not NULL, load new instruction array.
* If set to NULL, don't load this instance.
*/
struct bpf_insn *new_insn_ptr;
int new_insn_cnt;
/* If not NULL, result FD is written to it. */
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
int *pfd;
};
/*
* Parameters of bpf_program_prep_t:
* - prog: The bpf_program being loaded.
* - n: Index of instance being generated.
* - insns: BPF instructions array.
* - insns_cnt:Number of instructions in insns.
* - res: Output parameter, result of transformation.
*
* Return value:
* - Zero: pre-processing success.
* - Non-zero: pre-processing error, stop loading.
bpf tools: Load a program with different instances using preprocessor This patch is a preparation for BPF prologue support which allows generating a series of BPF bytecode for fetching kernel data before calling program code. With the newly introduced multiple instances support, perf is able to create different prologues for different kprobe points. Before this patch, a bpf_program can be loaded into kernel only once, and get the only resulting fd. What this patch does is to allow creating and loading different variants of one bpf_program, then fetching their fds. Here we describe the basic idea in this patch. The detailed description of the newly introduced APIs can be found in comments in the patch body. The key of this patch is the new mechanism in bpf_program__load(). Instead of loading BPF program into kernel directly, it calls a 'pre-processor' to generate program instances which would be finally loaded into the kernel based on the original code. To enable the generation of multiple instances, libbpf passes an index to the pre-processor so it know which instance is being loaded. Pre-processor should be called from libbpf's user (perf) using bpf_program__set_prep(). The number of instances and the relationship between indices and the target instance should be clear when calling bpf_program__set_prep(). To retrieve a fd for a specific instance of a program, bpf_program__nth_fd() is introduced. It returns the resulting fd according to index. Signed-off-by: He Kuang <hekuang@huawei.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: He Kuang <hekuang@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1447675815-166222-8-git-send-email-wangnan0@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> [ Enclosed multi-line if/else blocks with {}, (*func_ptr)() -> func_ptr() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-16 20:10:09 +08:00
*/
typedef int (*bpf_program_prep_t)(struct bpf_program *prog, int n,
struct bpf_insn *insns, int insns_cnt,
struct bpf_prog_prep_result *res);
int bpf_program__set_prep(struct bpf_program *prog, int nr_instance,
bpf_program_prep_t prep);
int bpf_program__nth_fd(struct bpf_program *prog, int n);
/*
* Adjust type of BPF program. Default is kprobe.
*/
int bpf_program__set_socket_filter(struct bpf_program *prog);
int bpf_program__set_tracepoint(struct bpf_program *prog);
int bpf_program__set_raw_tracepoint(struct bpf_program *prog);
int bpf_program__set_kprobe(struct bpf_program *prog);
int bpf_program__set_sched_cls(struct bpf_program *prog);
int bpf_program__set_sched_act(struct bpf_program *prog);
int bpf_program__set_xdp(struct bpf_program *prog);
int bpf_program__set_perf_event(struct bpf_program *prog);
void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type);
void bpf_program__set_expected_attach_type(struct bpf_program *prog,
enum bpf_attach_type type);
bool bpf_program__is_socket_filter(struct bpf_program *prog);
bool bpf_program__is_tracepoint(struct bpf_program *prog);
bool bpf_program__is_raw_tracepoint(struct bpf_program *prog);
bool bpf_program__is_kprobe(struct bpf_program *prog);
bool bpf_program__is_sched_cls(struct bpf_program *prog);
bool bpf_program__is_sched_act(struct bpf_program *prog);
bool bpf_program__is_xdp(struct bpf_program *prog);
bool bpf_program__is_perf_event(struct bpf_program *prog);
bpf tools: Record map accessing instructions for each program This patch records the indices of instructions which are needed to be relocated. That information is saved in the 'reloc_desc' field in 'struct bpf_program'. In the loading phase (this patch takes effect in the opening phase), the collected instructions will be replaced by map loading instructions. Since we are going to close the ELF file and clear all data at the end of the 'opening' phase, the ELF information will no longer be valid in the 'loading' phase. We have to locate the instructions before maps are loaded, instead of directly modifying the instruction. 'struct bpf_map_def' is introduced in this patch to let us know how many maps are defined in the object. This is the third part of map relocation. The principle of map relocation is described in commit message of 'bpf tools: Collect symbol table from SHT_SYMTAB section'. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-15-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:14:02 +08:00
/*
* No need for __attribute__((packed)), all members of 'bpf_map_def'
* are all aligned. In addition, using __attribute__((packed))
* would trigger a -Wpacked warning message, and lead to an error
* if -Werror is set.
bpf tools: Record map accessing instructions for each program This patch records the indices of instructions which are needed to be relocated. That information is saved in the 'reloc_desc' field in 'struct bpf_program'. In the loading phase (this patch takes effect in the opening phase), the collected instructions will be replaced by map loading instructions. Since we are going to close the ELF file and clear all data at the end of the 'opening' phase, the ELF information will no longer be valid in the 'loading' phase. We have to locate the instructions before maps are loaded, instead of directly modifying the instruction. 'struct bpf_map_def' is introduced in this patch to let us know how many maps are defined in the object. This is the third part of map relocation. The principle of map relocation is described in commit message of 'bpf tools: Collect symbol table from SHT_SYMTAB section'. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-15-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:14:02 +08:00
*/
struct bpf_map_def {
unsigned int type;
unsigned int key_size;
unsigned int value_size;
unsigned int max_entries;
unsigned int map_flags;
bpf tools: Record map accessing instructions for each program This patch records the indices of instructions which are needed to be relocated. That information is saved in the 'reloc_desc' field in 'struct bpf_program'. In the loading phase (this patch takes effect in the opening phase), the collected instructions will be replaced by map loading instructions. Since we are going to close the ELF file and clear all data at the end of the 'opening' phase, the ELF information will no longer be valid in the 'loading' phase. We have to locate the instructions before maps are loaded, instead of directly modifying the instruction. 'struct bpf_map_def' is introduced in this patch to let us know how many maps are defined in the object. This is the third part of map relocation. The principle of map relocation is described in commit message of 'bpf tools: Collect symbol table from SHT_SYMTAB section'. Signed-off-by: Wang Nan <wangnan0@huawei.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-15-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 10:14:02 +08:00
};
/*
* The 'struct bpf_map' in include/linux/bpf.h is internal to the kernel,
* so no need to worry about a name clash.
*/
struct bpf_map;
struct bpf_map *
bpf_object__find_map_by_name(struct bpf_object *obj, const char *name);
/*
* Get bpf_map through the offset of corresponding struct bpf_map_def
* in the BPF object file.
*/
struct bpf_map *
bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset);
struct bpf_map *
bpf_map__next(struct bpf_map *map, struct bpf_object *obj);
#define bpf_map__for_each(pos, obj) \
for ((pos) = bpf_map__next(NULL, (obj)); \
(pos) != NULL; \
(pos) = bpf_map__next((pos), (obj)))
int bpf_map__fd(struct bpf_map *map);
const struct bpf_map_def *bpf_map__def(struct bpf_map *map);
const char *bpf_map__name(struct bpf_map *map);
__u32 bpf_map__btf_key_type_id(const struct bpf_map *map);
__u32 bpf_map__btf_value_type_id(const struct bpf_map *map);
typedef void (*bpf_map_clear_priv_t)(struct bpf_map *, void *);
int bpf_map__set_priv(struct bpf_map *map, void *priv,
bpf_map_clear_priv_t clear_priv);
void *bpf_map__priv(struct bpf_map *map);
int bpf_map__reuse_fd(struct bpf_map *map, int fd);
bool bpf_map__is_offload_neutral(struct bpf_map *map);
void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex);
int bpf_map__pin(struct bpf_map *map, const char *path);
long libbpf_get_error(const void *ptr);
struct bpf_prog_load_attr {
const char *file;
enum bpf_prog_type prog_type;
enum bpf_attach_type expected_attach_type;
int ifindex;
};
int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
struct bpf_object **pobj, int *prog_fd);
int bpf_prog_load(const char *file, enum bpf_prog_type type,
struct bpf_object **pobj, int *prog_fd);
int bpf_set_link_xdp_fd(int ifindex, int fd, __u32 flags);
enum bpf_perf_event_ret {
LIBBPF_PERF_EVENT_DONE = 0,
LIBBPF_PERF_EVENT_ERROR = -1,
LIBBPF_PERF_EVENT_CONT = -2,
};
typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(void *event,
void *priv);
int bpf_perf_event_read_simple(void *mem, unsigned long size,
unsigned long page_size,
void **buf, size_t *buf_len,
bpf_perf_event_print_t fn, void *priv);
struct nlattr;
typedef int (*libbpf_dump_nlmsg_t)(void *cookie, void *msg, struct nlattr **tb);
int libbpf_netlink_open(unsigned int *nl_pid);
int libbpf_nl_get_link(int sock, unsigned int nl_pid,
libbpf_dump_nlmsg_t dump_link_nlmsg, void *cookie);
int libbpf_nl_get_class(int sock, unsigned int nl_pid, int ifindex,
libbpf_dump_nlmsg_t dump_class_nlmsg, void *cookie);
int libbpf_nl_get_qdisc(int sock, unsigned int nl_pid, int ifindex,
libbpf_dump_nlmsg_t dump_qdisc_nlmsg, void *cookie);
int libbpf_nl_get_filter(int sock, unsigned int nl_pid, int ifindex, int handle,
libbpf_dump_nlmsg_t dump_filter_nlmsg, void *cookie);
#endif /* __LIBBPF_LIBBPF_H */