2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
|
|
*
|
2014-06-20 12:37:15 +08:00
|
|
|
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/jiffies.h>
|
2011-05-23 04:47:17 +08:00
|
|
|
#include <linux/prefetch.h>
|
2011-05-28 04:14:23 +08:00
|
|
|
#include <linux/export.h>
|
2017-11-16 19:26:39 +08:00
|
|
|
#include <net/xfrm.h>
|
2010-04-01 23:28:24 +08:00
|
|
|
#include <net/ipv6.h>
|
|
|
|
#include <net/tcp.h>
|
2015-02-04 18:02:52 +08:00
|
|
|
#include <net/busy_poll.h>
|
2015-03-24 21:44:46 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
#include <scsi/fc/fc_fcoe.h>
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 23:28:24 +08:00
|
|
|
#include "cxgb4.h"
|
|
|
|
#include "t4_regs.h"
|
2015-01-05 19:00:43 +08:00
|
|
|
#include "t4_values.h"
|
2010-04-01 23:28:24 +08:00
|
|
|
#include "t4_msg.h"
|
|
|
|
#include "t4fw_api.h"
|
2017-07-04 19:16:20 +08:00
|
|
|
#include "cxgb4_ptp.h"
|
2017-11-16 19:26:39 +08:00
|
|
|
#include "cxgb4_uld.h"
|
2019-11-07 23:59:08 +08:00
|
|
|
#include "cxgb4_tc_mqprio.h"
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
#include "sched.h"
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Rx buffer size. We use largish buffers if possible but settle for single
|
|
|
|
* pages under memory shortage.
|
|
|
|
*/
|
|
|
|
#if PAGE_SHIFT >= 16
|
|
|
|
# define FL_PG_ORDER 0
|
|
|
|
#else
|
|
|
|
# define FL_PG_ORDER (16 - PAGE_SHIFT)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* RX_PULL_LEN should be <= RX_COPY_THRES */
|
|
|
|
#define RX_COPY_THRES 256
|
|
|
|
#define RX_PULL_LEN 128
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
|
|
|
|
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
|
|
|
|
*/
|
|
|
|
#define RX_PKT_SKB_LEN 512
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors we clean up at a time. Should be modest as
|
|
|
|
* freeing skbs isn't cheap and it happens while holding locks. We just need
|
|
|
|
* to free packets faster than they arrive, we eventually catch up and keep
|
2019-02-14 20:49:15 +08:00
|
|
|
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
|
|
|
|
* also match the CIDX Flush Threshold.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2019-02-14 20:49:15 +08:00
|
|
|
#define MAX_TX_RECLAIM 32
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Rx buffers we replenish at a time. Again keep this modest,
|
|
|
|
* allocating buffers isn't cheap either.
|
|
|
|
*/
|
|
|
|
#define MAX_RX_REFILL 16U
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Rx queue check timer. This timer is infrequent as it has
|
|
|
|
* something to do only when the system experiences severe memory shortage.
|
|
|
|
*/
|
|
|
|
#define RX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Tx queue check timer.
|
|
|
|
*/
|
|
|
|
#define TX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors to be reclaimed by the Tx timer.
|
|
|
|
*/
|
|
|
|
#define MAX_TIMER_TX_RECLAIM 100
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Timer index used when backing off due to memory shortage.
|
|
|
|
*/
|
|
|
|
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Suspension threshold for non-Ethernet Tx queues. We require enough room
|
|
|
|
* for a full sized WR.
|
|
|
|
*/
|
|
|
|
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
|
|
|
|
* into a WR.
|
|
|
|
*/
|
2015-04-15 04:32:30 +08:00
|
|
|
#define MAX_IMM_TX_PKT_LEN 256
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Max size of a WR sent through a control Tx queue.
|
|
|
|
*/
|
|
|
|
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
|
|
|
|
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
|
|
struct page *page;
|
|
|
|
dma_addr_t dma_addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2012-09-26 10:39:38 +08:00
|
|
|
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
|
|
|
|
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
|
|
|
|
* We could easily support more but there doesn't seem to be much need for
|
|
|
|
* that ...
|
|
|
|
*/
|
|
|
|
#define FL_MTU_SMALL 1500
|
|
|
|
#define FL_MTU_LARGE 9000
|
|
|
|
|
|
|
|
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
|
|
|
|
unsigned int mtu)
|
|
|
|
{
|
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
|
|
|
|
return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
|
|
|
|
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
|
|
|
|
* these to specify the buffer size as an index into the SGE Free List Buffer
|
|
|
|
* Size register array. We also use bit 4, when the buffer has been unmapped
|
|
|
|
* for DMA, but this is of course never sent to the hardware and is only used
|
|
|
|
* to prevent double unmappings. All of the above requires that the Free List
|
|
|
|
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
|
|
|
|
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
|
|
|
|
* Free List Buffer alignment is 32 bytes, this works out for us ...
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
|
|
|
enum {
|
2012-09-26 10:39:38 +08:00
|
|
|
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
|
|
|
|
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
|
|
|
|
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX We shouldn't depend on being able to use these indices.
|
|
|
|
* XXX Especially when some other Master PF has initialized the
|
|
|
|
* XXX adapter or we use the Firmware Configuration File. We
|
|
|
|
* XXX should really search through the Host Buffer Size register
|
|
|
|
* XXX array for the appropriately sized buffer indices.
|
|
|
|
*/
|
|
|
|
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
|
|
|
|
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
|
|
|
|
|
|
|
|
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
|
|
|
|
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
|
2010-04-01 23:28:24 +08:00
|
|
|
};
|
|
|
|
|
2014-09-26 02:53:55 +08:00
|
|
|
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
|
|
|
|
#define MIN_NAPI_WORK 1
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
|
|
|
|
{
|
|
|
|
return !(d->dma_addr & RX_UNMAPPED_BUF);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_avail - return the number of available slots in a Tx queue
|
|
|
|
* @q: the Tx queue
|
|
|
|
*
|
|
|
|
* Returns the number of descriptors in a Tx queue available to write new
|
|
|
|
* packets.
|
|
|
|
*/
|
|
|
|
static inline unsigned int txq_avail(const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
return q->size - 1 - q->in_use;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fl_cap - return the capacity of a free-buffer list
|
|
|
|
* @fl: the FL
|
|
|
|
*
|
|
|
|
* Returns the capacity of a free-buffer list. The capacity is less than
|
|
|
|
* the size because one descriptor needs to be left unpopulated, otherwise
|
|
|
|
* HW will think the FL is empty.
|
|
|
|
*/
|
|
|
|
static inline unsigned int fl_cap(const struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
return fl->size - 8; /* 1 descriptor = 8 buffers */
|
|
|
|
}
|
|
|
|
|
2015-04-15 04:32:31 +08:00
|
|
|
/**
|
|
|
|
* fl_starving - return whether a Free List is starving.
|
|
|
|
* @adapter: pointer to the adapter
|
|
|
|
* @fl: the Free List
|
|
|
|
*
|
|
|
|
* Tests specified Free List to see whether the number of buffers
|
|
|
|
* available to the hardware has falled below our "starvation"
|
|
|
|
* threshold.
|
|
|
|
*/
|
|
|
|
static inline bool fl_starving(const struct adapter *adapter,
|
|
|
|
const struct sge_fl *fl)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2015-04-15 04:32:31 +08:00
|
|
|
const struct sge *s = &adapter->sge;
|
|
|
|
|
|
|
|
return fl->avail - fl->pend_cred <= s->fl_starve_thres;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
dma_addr_t *addr)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto out_err;
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
|
|
|
|
for (fp = si->frags; fp < end; fp++) {
|
2011-10-20 07:01:46 +08:00
|
|
|
*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
|
|
|
|
DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto unwind;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
unwind:
|
|
|
|
while (fp-- > si->frags)
|
2011-10-19 05:00:24 +08:00
|
|
|
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
out_err:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
2017-11-16 19:26:39 +08:00
|
|
|
EXPORT_SYMBOL(cxgb4_map_skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
const dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
for (fp = si->frags; fp < end; fp++)
|
2011-10-19 05:00:24 +08:00
|
|
|
dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
|
|
|
* deferred_unmap_destructor - unmap a packet when it is freed
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* This is the packet destructor used for Tx packets that need to remain
|
|
|
|
* mapped until they are freed rather than until their Tx descriptors are
|
|
|
|
* freed.
|
|
|
|
*/
|
|
|
|
static void deferred_unmap_destructor(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_tx_desc - reclaims Tx descriptors and their buffers
|
2020-06-24 04:21:41 +08:00
|
|
|
* @adap: the adapter
|
2010-04-01 23:28:24 +08:00
|
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
|
|
* @n: the number of descriptors to reclaim
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
|
|
*/
|
2016-11-18 19:07:40 +08:00
|
|
|
void free_tx_desc(struct adapter *adap, struct sge_txq *q,
|
|
|
|
unsigned int n, bool unmap)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
unsigned int cidx = q->cidx;
|
2019-11-22 09:00:01 +08:00
|
|
|
struct tx_sw_desc *d;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
d = &q->sdesc[cidx];
|
|
|
|
while (n--) {
|
|
|
|
if (d->skb) { /* an SGL is present */
|
2019-11-22 09:00:01 +08:00
|
|
|
if (unmap && d->addr[0]) {
|
|
|
|
unmap_skb(adap->pdev_dev, d->skb, d->addr);
|
|
|
|
memset(d->addr, 0, sizeof(d->addr));
|
|
|
|
}
|
2014-03-16 07:29:49 +08:00
|
|
|
dev_consume_skb_any(d->skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
d->skb = NULL;
|
|
|
|
}
|
|
|
|
++d;
|
|
|
|
if (++cidx == q->size) {
|
|
|
|
cidx = 0;
|
|
|
|
d = q->sdesc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->cidx = cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the number of reclaimable descriptors in a Tx queue.
|
|
|
|
*/
|
|
|
|
static inline int reclaimable(const struct sge_txq *q)
|
|
|
|
{
|
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:29 +08:00
|
|
|
int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
|
2010-04-01 23:28:24 +08:00
|
|
|
hw_cidx -= q->cidx;
|
|
|
|
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2019-02-14 20:49:15 +08:00
|
|
|
* reclaim_completed_tx - reclaims completed TX Descriptors
|
2010-04-01 23:28:24 +08:00
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
2019-02-14 20:49:15 +08:00
|
|
|
* @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
|
2010-04-01 23:28:24 +08:00
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
2019-02-14 20:49:15 +08:00
|
|
|
* Reclaims Tx Descriptors that the SGE has indicated it has processed,
|
|
|
|
* and frees the associated buffers if possible. If @max == -1, then
|
|
|
|
* we'll use a defaiult maximum. Called with the TX Queue locked.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2019-02-14 20:49:15 +08:00
|
|
|
static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
|
|
|
|
int maxreclaim, bool unmap)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2019-02-14 20:49:15 +08:00
|
|
|
int reclaim = reclaimable(q);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
if (reclaim) {
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Limit the amount of clean up work we do at a time to keep
|
|
|
|
* the Tx lock hold time O(1).
|
|
|
|
*/
|
2019-02-14 20:49:15 +08:00
|
|
|
if (maxreclaim < 0)
|
|
|
|
maxreclaim = MAX_TX_RECLAIM;
|
|
|
|
if (reclaim > maxreclaim)
|
|
|
|
reclaim = maxreclaim;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
free_tx_desc(adap, q, reclaim, unmap);
|
|
|
|
q->in_use -= reclaim;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2019-02-14 20:49:15 +08:00
|
|
|
|
|
|
|
return reclaim;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
|
|
* queue locked.
|
|
|
|
*/
|
|
|
|
void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
|
|
|
|
bool unmap)
|
|
|
|
{
|
|
|
|
(void)reclaim_completed_tx(adap, q, -1, unmap);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2017-11-16 19:26:39 +08:00
|
|
|
EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
static inline int get_buf_size(struct adapter *adapter,
|
|
|
|
const struct rx_sw_desc *d)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
|
|
|
|
int buf_size;
|
|
|
|
|
|
|
|
switch (rx_buf_size_idx) {
|
|
|
|
case RX_SMALL_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE << s->fl_pg_order;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_SMALL_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2019-03-25 20:49:16 +08:00
|
|
|
BUG();
|
2012-09-26 10:39:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return buf_size;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list to free buffers from
|
|
|
|
* @n: how many buffers to free
|
|
|
|
*
|
|
|
|
* Release the next @n buffers on an SGE free-buffer Rx queue. The
|
|
|
|
* buffers must be made inaccessible to HW before calling this function.
|
|
|
|
*/
|
|
|
|
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
|
|
|
|
{
|
|
|
|
while (n--) {
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 10:39:38 +08:00
|
|
|
get_buf_size(adap, d),
|
|
|
|
PCI_DMA_FROMDEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
put_page(d->page);
|
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list
|
|
|
|
*
|
|
|
|
* Unmap the current buffer on an SGE free-buffer Rx queue. The
|
|
|
|
* buffer must be made inaccessible to HW before calling this function.
|
|
|
|
*
|
|
|
|
* This is similar to @free_rx_bufs above but does not free the buffer.
|
|
|
|
* Do note that the FL still loses any further access to the buffer.
|
|
|
|
*/
|
|
|
|
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 10:39:38 +08:00
|
|
|
get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
|
|
|
if (q->pend_cred >= 8) {
|
2015-06-02 16:29:39 +08:00
|
|
|
u32 val = adap->params.arch.sge_fl_db;
|
|
|
|
|
2015-01-05 19:00:43 +08:00
|
|
|
if (is_t4(adap->params.chip))
|
2015-06-02 16:29:39 +08:00
|
|
|
val |= PIDX_V(q->pend_cred / 8);
|
2015-01-05 19:00:43 +08:00
|
|
|
else
|
2015-06-02 16:29:39 +08:00
|
|
|
val |= PIDX_T5_V(q->pend_cred / 8);
|
2015-05-12 07:13:43 +08:00
|
|
|
|
|
|
|
/* Make sure all memory writes to the Free List queue are
|
|
|
|
* committed before we tell the hardware about them.
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
wmb();
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use
|
|
|
|
* the old doorbell mechanism; otherwise use the new BAR2
|
|
|
|
* mechanism.
|
2014-09-26 02:53:52 +08:00
|
|
|
*/
|
2014-12-03 22:02:53 +08:00
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 19:00:43 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
|
|
val | QID_V(q->cntxt_id));
|
2014-09-26 02:53:52 +08:00
|
|
|
} else {
|
2015-01-05 19:00:43 +08:00
|
|
|
writel(val | QID_V(q->bar2_qid),
|
2014-12-03 22:02:53 +08:00
|
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
2014-09-26 02:53:52 +08:00
|
|
|
|
|
|
|
/* This Write memory Barrier will force the write to
|
|
|
|
* the User Doorbell area to be flushed.
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
q->pend_cred &= 7;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
|
|
|
|
dma_addr_t mapping)
|
|
|
|
{
|
|
|
|
sd->page = pg;
|
|
|
|
sd->dma_addr = mapping; /* includes size low bits */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* refill_fl - refill an SGE Rx buffer ring
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the ring to refill
|
|
|
|
* @n: the number of new buffers to allocate
|
|
|
|
* @gfp: the gfp flags for the allocations
|
|
|
|
*
|
|
|
|
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
|
|
|
|
* allocated with the supplied gfp flags. The caller must assure that
|
|
|
|
* @n does not exceed the queue's capacity. If afterwards the queue is
|
|
|
|
* found critically low mark it as starving in the bitmap of starving FLs.
|
|
|
|
*
|
|
|
|
* Returns the number of buffers allocated.
|
|
|
|
*/
|
|
|
|
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct page *pg;
|
|
|
|
dma_addr_t mapping;
|
|
|
|
unsigned int cred = q->avail;
|
|
|
|
__be64 *d = &q->desc[q->pidx];
|
|
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
2015-04-15 04:32:32 +08:00
|
|
|
int node;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-05-28 01:00:23 +08:00
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
|
|
|
|
goto out;
|
|
|
|
#endif
|
|
|
|
|
2014-11-12 01:26:42 +08:00
|
|
|
gfp |= __GFP_NOWARN;
|
2015-04-15 04:32:32 +08:00
|
|
|
node = dev_to_node(adap->pdev_dev);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
if (s->fl_pg_order == 0)
|
|
|
|
goto alloc_small_pages;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Prefer large buffers
|
|
|
|
*/
|
|
|
|
while (n) {
|
2015-04-15 04:32:32 +08:00
|
|
|
pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->large_alloc_failed++;
|
|
|
|
break; /* fall back to single pages */
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0,
|
2012-09-26 10:39:38 +08:00
|
|
|
PAGE_SIZE << s->fl_pg_order,
|
2010-04-01 23:28:24 +08:00
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2012-09-26 10:39:38 +08:00
|
|
|
__free_pages(pg, s->fl_pg_order);
|
2015-12-08 12:39:16 +08:00
|
|
|
q->mapping_err++;
|
2010-04-01 23:28:24 +08:00
|
|
|
goto out; /* do not try small pages for this error */
|
|
|
|
}
|
2012-09-26 10:39:38 +08:00
|
|
|
mapping |= RX_LARGE_PG_BUF;
|
2010-04-01 23:28:24 +08:00
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
alloc_small_pages:
|
2010-04-01 23:28:24 +08:00
|
|
|
while (n--) {
|
2015-04-15 04:32:32 +08:00
|
|
|
pg = alloc_pages_node(node, gfp, 0);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->alloc_failed++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2011-11-22 18:57:41 +08:00
|
|
|
put_page(pg);
|
2015-12-08 12:39:16 +08:00
|
|
|
q->mapping_err++;
|
2010-04-01 23:28:24 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out: cred = q->avail - cred;
|
|
|
|
q->pend_cred += cred;
|
|
|
|
ring_fl_db(adap, q);
|
|
|
|
|
2015-04-15 04:32:31 +08:00
|
|
|
if (unlikely(fl_starving(adap, q))) {
|
2010-04-01 23:28:24 +08:00
|
|
|
smp_wmb();
|
2015-12-08 12:39:16 +08:00
|
|
|
q->low++;
|
2010-08-24 01:20:58 +08:00
|
|
|
set_bit(q->cntxt_id - adap->sge.egr_start,
|
|
|
|
adap->sge.starving_fl);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return cred;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
|
|
|
|
GFP_ATOMIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_ring - allocate resources for an SGE descriptor ring
|
|
|
|
* @dev: the PCI device's core device
|
|
|
|
* @nelem: the number of descriptors
|
|
|
|
* @elem_size: the size of each descriptor
|
|
|
|
* @sw_size: the size of the SW state associated with each ring element
|
|
|
|
* @phys: the physical address of the allocated ring
|
|
|
|
* @metadata: address of the array holding the SW state for the ring
|
|
|
|
* @stat_size: extra space in HW ring for status information
|
2010-12-15 05:36:55 +08:00
|
|
|
* @node: preferred node for memory allocations
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Allocates resources for an SGE descriptor ring, such as Tx queues,
|
|
|
|
* free buffer lists, or response queues. Each SGE ring requires
|
|
|
|
* space for its HW descriptors plus, optionally, space for the SW state
|
|
|
|
* associated with each HW entry (the metadata). The function returns
|
|
|
|
* three values: the virtual address for the HW ring (the return value
|
|
|
|
* of the function), the bus address of the HW ring, and the address
|
|
|
|
* of the SW ring.
|
|
|
|
*/
|
|
|
|
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
|
|
|
|
size_t sw_size, dma_addr_t *phys, void *metadata,
|
2010-12-15 05:36:55 +08:00
|
|
|
size_t stat_size, int node)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
size_t len = nelem * elem_size + stat_size;
|
|
|
|
void *s = NULL;
|
cross-tree: phase out dma_zalloc_coherent()
We already need to zero out memory for dma_alloc_coherent(), as such
using dma_zalloc_coherent() is superflous. Phase it out.
This change was generated with the following Coccinelle SmPL patch:
@ replace_dma_zalloc_coherent @
expression dev, size, data, handle, flags;
@@
-dma_zalloc_coherent(dev, size, handle, flags)
+dma_alloc_coherent(dev, size, handle, flags)
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
[hch: re-ran the script on the latest tree]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-01-04 16:23:09 +08:00
|
|
|
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (!p)
|
|
|
|
return NULL;
|
|
|
|
if (sw_size) {
|
treewide: kzalloc_node() -> kcalloc_node()
The kzalloc_node() function has a 2-factor argument form, kcalloc_node(). This
patch replaces cases of:
kzalloc_node(a * b, gfp, node)
with:
kcalloc_node(a * b, gfp, node)
as well as handling cases of:
kzalloc_node(a * b * c, gfp, node)
with:
kzalloc_node(array3_size(a, b, c), gfp, node)
as it's slightly less ugly than:
kcalloc_node(array_size(a, b), c, gfp, node)
This does, however, attempt to ignore constant size factors like:
kzalloc_node(4 * 1024, gfp, node)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc_node(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc_node(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc_node(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc_node(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc_node
+ kcalloc_node
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc_node(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc_node(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc_node(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc_node(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc_node(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc_node(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc_node(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc_node(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc_node(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc_node(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc_node(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc_node(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc_node(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc_node(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc_node(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc_node(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc_node(C1 * C2 * C3, ...)
|
kzalloc_node(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc_node(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc_node(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc_node(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc_node(sizeof(THING) * C2, ...)
|
kzalloc_node(sizeof(TYPE) * C2, ...)
|
kzalloc_node(C1 * C2 * C3, ...)
|
kzalloc_node(C1 * C2, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc_node
+ kcalloc_node
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:04:20 +08:00
|
|
|
s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (!s) {
|
|
|
|
dma_free_coherent(dev, len, p, *phys);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (metadata)
|
|
|
|
*(void **)metadata = s;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
|
|
* @n: the number of SGL entries
|
|
|
|
*
|
|
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
|
|
* can hold the given number of entries.
|
|
|
|
*/
|
|
|
|
static inline unsigned int sgl_len(unsigned int n)
|
|
|
|
{
|
2015-04-15 04:32:33 +08:00
|
|
|
/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
|
|
|
|
* addresses. The DSGL Work Request starts off with a 32-bit DSGL
|
|
|
|
* ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
|
|
|
|
* repeated sequences of { Length[i], Length[i+1], Address[i],
|
|
|
|
* Address[i+1] } (this ensures that all addresses are on 64-bit
|
|
|
|
* boundaries). If N is even, then Length[N+1] should be set to 0 and
|
|
|
|
* Address[N+1] is omitted.
|
|
|
|
*
|
|
|
|
* The following calculation incorporates all of the above. It's
|
|
|
|
* somewhat hard to follow but, briefly: the "+2" accounts for the
|
|
|
|
* first two flits which include the DSGL header, Length0 and
|
|
|
|
* Address0; the "(3*(n-1))/2" covers the main body of list entries (3
|
|
|
|
* flits for every pair of the remaining N) +1 if (n-1) is odd; and
|
|
|
|
* finally the "+((n-1)&1)" adds the one remaining flit needed if
|
|
|
|
* (n-1) is odd ...
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
n--;
|
|
|
|
return (3 * n) / 2 + (n & 1) + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* flits_to_desc - returns the num of Tx descriptors for the given flits
|
|
|
|
* @n: the number of flits
|
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the supplied number
|
|
|
|
* of flits.
|
|
|
|
*/
|
|
|
|
static inline unsigned int flits_to_desc(unsigned int n)
|
|
|
|
{
|
|
|
|
BUG_ON(n > SGE_MAX_WR_LEN / 8);
|
|
|
|
return DIV_ROUND_UP(n, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_eth_imm - can an Ethernet packet be sent as immediate data?
|
|
|
|
* @skb: the packet
|
2020-06-24 04:21:41 +08:00
|
|
|
* @chip_ver: chip version
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Returns whether an Ethernet packet is small enough to fit as
|
2014-02-18 20:26:14 +08:00
|
|
|
* immediate data. Return value corresponds to headroom required.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2018-01-10 20:45:26 +08:00
|
|
|
static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2018-01-10 20:45:26 +08:00
|
|
|
int hdrlen = 0;
|
2014-02-18 20:26:14 +08:00
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
|
|
|
|
chip_ver > CHELSIO_T5) {
|
|
|
|
hdrlen = sizeof(struct cpl_tx_tnl_lso);
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt_core);
|
2019-11-22 09:00:02 +08:00
|
|
|
} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
|
|
|
|
return 0;
|
2018-01-10 20:45:26 +08:00
|
|
|
} else {
|
|
|
|
hdrlen = skb_shinfo(skb)->gso_size ?
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) : 0;
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt);
|
|
|
|
}
|
2014-02-18 20:26:14 +08:00
|
|
|
if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
|
|
|
|
return hdrlen;
|
|
|
|
return 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits - calculate the number of flits for a packet Tx WR
|
|
|
|
* @skb: the packet
|
2020-06-24 04:21:41 +08:00
|
|
|
* @chip_ver: chip version
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Returns the number of flits needed for a Tx WR for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
2018-01-10 20:45:26 +08:00
|
|
|
static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
|
|
|
|
unsigned int chip_ver)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
unsigned int flits;
|
2018-01-10 20:45:26 +08:00
|
|
|
int hdrlen = is_eth_imm(skb, chip_ver);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-04-15 04:32:33 +08:00
|
|
|
/* If the skb is small enough, we can pump it out as a work request
|
|
|
|
* with only immediate data. In that case we just have to have the
|
|
|
|
* TX Packet header plus the skb data in the Work Request.
|
|
|
|
*/
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (hdrlen)
|
|
|
|
return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-04-15 04:32:33 +08:00
|
|
|
/* Otherwise, we're going to have to construct a Scatter gather list
|
|
|
|
* of the skb body and fragments. We also include the flits necessary
|
|
|
|
* for the TX Packet Work Request and CPL. We always have a firmware
|
|
|
|
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
|
|
|
|
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
|
|
|
|
* message or, if we're doing a Large Send Offload, an LSO CPL message
|
|
|
|
* with an embedded TX Packet Write CPL message.
|
|
|
|
*/
|
2015-09-08 18:55:39 +08:00
|
|
|
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
|
2018-01-10 20:45:26 +08:00
|
|
|
if (skb_shinfo(skb)->gso_size) {
|
2019-11-22 09:00:02 +08:00
|
|
|
if (skb->encapsulation && chip_ver > CHELSIO_T5) {
|
2018-01-10 20:45:26 +08:00
|
|
|
hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
|
|
|
|
sizeof(struct cpl_tx_tnl_lso);
|
2019-11-22 09:00:02 +08:00
|
|
|
} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
|
|
|
|
u32 pkt_hdrlen;
|
|
|
|
|
|
|
|
pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
|
|
|
|
skb_headlen(skb));
|
|
|
|
hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
|
|
|
|
round_up(pkt_hdrlen, 16);
|
|
|
|
} else {
|
2018-01-10 20:45:26 +08:00
|
|
|
hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core);
|
2019-11-22 09:00:02 +08:00
|
|
|
}
|
2018-01-10 20:45:26 +08:00
|
|
|
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt_core);
|
|
|
|
flits += (hdrlen / sizeof(__be64));
|
|
|
|
} else {
|
2015-04-15 04:32:33 +08:00
|
|
|
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
2018-01-10 20:45:26 +08:00
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
return flits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
|
|
* @skb: the packet
|
2020-06-24 04:21:41 +08:00
|
|
|
* @chip_ver: chip version
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
2018-01-10 20:45:26 +08:00
|
|
|
static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
|
|
|
|
unsigned int chip_ver)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2018-01-10 20:45:26 +08:00
|
|
|
return flits_to_desc(calc_tx_flits(skb, chip_ver));
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2017-11-16 19:26:39 +08:00
|
|
|
* cxgb4_write_sgl - populate a scatter/gather list for a packet
|
2010-04-01 23:28:24 +08:00
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue we are writing into
|
|
|
|
* @sgl: starting location for writing the SGL
|
|
|
|
* @end: points right after the end of the SGL
|
|
|
|
* @start: start offset into skb main-body data to include in the SGL
|
|
|
|
* @addr: the list of bus addresses for the SGL elements
|
|
|
|
*
|
|
|
|
* Generates a gather list for the buffers that make up a packet.
|
|
|
|
* The caller must provide adequate space for the SGL that will be written.
|
|
|
|
* The SGL includes all of the packet's page fragments and the data in its
|
|
|
|
* main body except for the first @start bytes. @sgl must be 16-byte
|
|
|
|
* aligned and within a Tx descriptor with available space. @end points
|
|
|
|
* right after the end of the SGL but does not account for any potential
|
|
|
|
* wrap around, i.e., @end > @sgl.
|
|
|
|
*/
|
2017-11-16 19:26:39 +08:00
|
|
|
void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
|
|
|
|
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
|
|
|
|
const dma_addr_t *addr)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
unsigned int i, len;
|
|
|
|
struct ulptx_sge_pair *to;
|
|
|
|
const struct skb_shared_info *si = skb_shinfo(skb);
|
|
|
|
unsigned int nfrags = si->nr_frags;
|
|
|
|
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
|
|
|
|
|
|
|
|
len = skb_headlen(skb) - start;
|
|
|
|
if (likely(len)) {
|
|
|
|
sgl->len0 = htonl(len);
|
|
|
|
sgl->addr0 = cpu_to_be64(addr[0] + start);
|
|
|
|
nfrags++;
|
|
|
|
} else {
|
2011-10-19 05:00:24 +08:00
|
|
|
sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
|
2010-04-01 23:28:24 +08:00
|
|
|
sgl->addr0 = cpu_to_be64(addr[1]);
|
|
|
|
}
|
|
|
|
|
2015-01-09 13:38:16 +08:00
|
|
|
sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
|
|
|
|
ULPTX_NSGE_V(nfrags));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (likely(--nfrags == 0))
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Most of the complexity below deals with the possibility we hit the
|
|
|
|
* end of the queue in the middle of writing the SGL. For this case
|
|
|
|
* only we create the SGL in a temporary buffer and then copy it.
|
|
|
|
*/
|
|
|
|
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
|
|
|
|
|
|
|
|
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
|
2011-10-19 05:00:24 +08:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
|
|
|
to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
|
2010-04-01 23:28:24 +08:00
|
|
|
to->addr[0] = cpu_to_be64(addr[i]);
|
|
|
|
to->addr[1] = cpu_to_be64(addr[++i]);
|
|
|
|
}
|
|
|
|
if (nfrags) {
|
2011-10-19 05:00:24 +08:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
2010-04-01 23:28:24 +08:00
|
|
|
to->len[1] = cpu_to_be32(0);
|
|
|
|
to->addr[0] = cpu_to_be64(addr[i + 1]);
|
|
|
|
}
|
|
|
|
if (unlikely((u8 *)end > (u8 *)q->stat)) {
|
|
|
|
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
|
|
|
|
|
|
|
|
if (likely(part0))
|
|
|
|
memcpy(sgl->sge, buf, part0);
|
|
|
|
part1 = (u8 *)end - (u8 *)q->stat;
|
|
|
|
memcpy(q->desc, (u8 *)buf + part0, part1);
|
|
|
|
end = (void *)q->desc + part1;
|
|
|
|
}
|
|
|
|
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
|
2012-06-04 20:44:16 +08:00
|
|
|
*end = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2017-11-16 19:26:39 +08:00
|
|
|
EXPORT_SYMBOL(cxgb4_write_sgl);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
/* This function copies 64 byte coalesced work request to
|
|
|
|
* memory mapped BAR2 space. For coalesced WR SGE fetches
|
|
|
|
* data from the FIFO instead of from Host.
|
2013-03-14 13:08:51 +08:00
|
|
|
*/
|
2014-12-03 22:02:53 +08:00
|
|
|
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
|
2013-03-14 13:08:51 +08:00
|
|
|
{
|
2014-12-03 22:02:53 +08:00
|
|
|
int count = 8;
|
2013-03-14 13:08:51 +08:00
|
|
|
|
|
|
|
while (count) {
|
|
|
|
writeq(*src, dst);
|
|
|
|
src++;
|
|
|
|
dst++;
|
|
|
|
count--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
2017-11-16 19:26:39 +08:00
|
|
|
* cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
|
2010-04-01 23:28:24 +08:00
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue
|
|
|
|
* @n: number of new descriptors to give to HW
|
|
|
|
*
|
|
|
|
* Ring the doorbel for a Tx queue.
|
|
|
|
*/
|
2017-11-16 19:26:39 +08:00
|
|
|
inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2015-05-12 07:13:43 +08:00
|
|
|
/* Make sure that all writes to the TX Descriptors are committed
|
|
|
|
* before we tell the hardware about them.
|
|
|
|
*/
|
|
|
|
wmb();
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 19:00:43 +08:00
|
|
|
u32 val = PIDX_V(n);
|
2014-09-26 02:53:52 +08:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/* For T4 we need to participate in the Doorbell Recovery
|
|
|
|
* mechanism.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&q->db_lock, flags);
|
|
|
|
if (!q->db_disabled)
|
2015-01-05 19:00:43 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
|
|
QID_V(q->cntxt_id) | val);
|
2014-09-26 02:53:52 +08:00
|
|
|
else
|
|
|
|
q->db_pidx_inc += n;
|
|
|
|
q->db_pidx = q->pidx;
|
|
|
|
spin_unlock_irqrestore(&q->db_lock, flags);
|
|
|
|
} else {
|
2015-01-05 19:00:43 +08:00
|
|
|
u32 val = PIDX_T5_V(n);
|
2014-09-26 02:53:52 +08:00
|
|
|
|
|
|
|
/* T4 and later chips share the same PIDX field offset within
|
|
|
|
* the doorbell, but T5 and later shrank the field in order to
|
|
|
|
* gain a bit for Doorbell Priority. The field was absurdly
|
|
|
|
* large in the first place (14 bits) so we just use the T5
|
|
|
|
* and later limits and warn if a Queue ID is too large.
|
|
|
|
*/
|
2015-01-05 19:00:43 +08:00
|
|
|
WARN_ON(val & DBPRIO_F);
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
/* If we're only writing a single TX Descriptor and we can use
|
|
|
|
* Inferred QID registers, we can use the Write Combining
|
|
|
|
* Gather Buffer; otherwise we use the simple doorbell.
|
2014-09-26 02:53:52 +08:00
|
|
|
*/
|
2014-12-03 22:02:53 +08:00
|
|
|
if (n == 1 && q->bar2_qid == 0) {
|
2014-09-26 02:53:52 +08:00
|
|
|
int index = (q->pidx
|
|
|
|
? (q->pidx - 1)
|
|
|
|
: (q->size - 1));
|
2014-12-03 22:02:53 +08:00
|
|
|
u64 *wr = (u64 *)&q->desc[index];
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
cxgb_pio_copy((u64 __iomem *)
|
|
|
|
(q->bar2_addr + SGE_UDB_WCDOORBELL),
|
|
|
|
wr);
|
2013-03-14 13:08:51 +08:00
|
|
|
} else {
|
2015-01-05 19:00:43 +08:00
|
|
|
writel(val | QID_V(q->bar2_qid),
|
2014-12-03 22:02:53 +08:00
|
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
2013-03-14 13:08:51 +08:00
|
|
|
}
|
2014-09-26 02:53:52 +08:00
|
|
|
|
|
|
|
/* This Write Memory Barrier will force the write to the User
|
|
|
|
* Doorbell area to be flushed. This is needed to prevent
|
|
|
|
* writes on different CPUs for the same queue from hitting
|
|
|
|
* the adapter out of order. This is required when some Work
|
|
|
|
* Requests take the Write Combine Gather Buffer path (user
|
|
|
|
* doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
|
|
|
|
* take the traditional path where we simply increment the
|
|
|
|
* PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
|
|
|
|
* hardware DMA read the actual Work Request.
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2017-11-16 19:26:39 +08:00
|
|
|
EXPORT_SYMBOL(cxgb4_ring_tx_db);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/**
|
2017-11-16 19:26:39 +08:00
|
|
|
* cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
|
2010-04-01 23:28:24 +08:00
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue where the packet will be inlined
|
|
|
|
* @pos: starting position in the Tx queue where to inline the packet
|
|
|
|
*
|
|
|
|
* Inline a packet's contents directly into Tx descriptors, starting at
|
|
|
|
* the given position within the Tx DMA ring.
|
|
|
|
* Most of the complexity of this operation is dealing with wrap arounds
|
|
|
|
* in the middle of the packet we want to inline.
|
|
|
|
*/
|
2017-11-16 19:26:39 +08:00
|
|
|
void cxgb4_inline_tx_skb(const struct sk_buff *skb,
|
|
|
|
const struct sge_txq *q, void *pos)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
int left = (void *)q->stat - pos;
|
2018-04-01 00:11:55 +08:00
|
|
|
u64 *p;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (likely(skb->len <= left)) {
|
|
|
|
if (likely(!skb->data_len))
|
|
|
|
skb_copy_from_linear_data(skb, pos, skb->len);
|
|
|
|
else
|
|
|
|
skb_copy_bits(skb, 0, pos, skb->len);
|
|
|
|
pos += skb->len;
|
|
|
|
} else {
|
|
|
|
skb_copy_bits(skb, 0, pos, left);
|
|
|
|
skb_copy_bits(skb, left, q->desc, skb->len - left);
|
|
|
|
pos = (void *)q->desc + (skb->len - left);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8)
|
|
|
|
*p = 0;
|
|
|
|
}
|
2017-11-16 19:26:39 +08:00
|
|
|
EXPORT_SYMBOL(cxgb4_inline_tx_skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-12-08 12:39:15 +08:00
|
|
|
static void *inline_tx_skb_header(const struct sk_buff *skb,
|
|
|
|
const struct sge_txq *q, void *pos,
|
|
|
|
int length)
|
|
|
|
{
|
|
|
|
u64 *p;
|
|
|
|
int left = (void *)q->stat - pos;
|
|
|
|
|
|
|
|
if (likely(length <= left)) {
|
|
|
|
memcpy(pos, skb->data, length);
|
|
|
|
pos += length;
|
|
|
|
} else {
|
|
|
|
memcpy(pos, skb->data, left);
|
|
|
|
memcpy(q->desc, skb->data + left, length - left);
|
|
|
|
pos = (void *)q->desc + (length - left);
|
|
|
|
}
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8) {
|
|
|
|
*p = 0;
|
|
|
|
return p + 1;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Figure out what HW csum a packet wants and return the appropriate control
|
|
|
|
* bits.
|
|
|
|
*/
|
2015-06-02 16:29:39 +08:00
|
|
|
static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
int csum_type;
|
2018-05-11 21:05:33 +08:00
|
|
|
bool inner_hdr_csum = false;
|
|
|
|
u16 proto, ver;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2018-05-11 21:05:33 +08:00
|
|
|
if (skb->encapsulation &&
|
|
|
|
(CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
|
|
|
|
inner_hdr_csum = true;
|
|
|
|
|
|
|
|
if (inner_hdr_csum) {
|
|
|
|
ver = inner_ip_hdr(skb)->version;
|
|
|
|
proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
|
|
|
|
inner_ipv6_hdr(skb)->nexthdr;
|
|
|
|
} else {
|
|
|
|
ver = ip_hdr(skb)->version;
|
|
|
|
proto = (ver == 4) ? ip_hdr(skb)->protocol :
|
|
|
|
ipv6_hdr(skb)->nexthdr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ver == 4) {
|
|
|
|
if (proto == IPPROTO_TCP)
|
2010-04-01 23:28:24 +08:00
|
|
|
csum_type = TX_CSUM_TCPIP;
|
2018-05-11 21:05:33 +08:00
|
|
|
else if (proto == IPPROTO_UDP)
|
2010-04-01 23:28:24 +08:00
|
|
|
csum_type = TX_CSUM_UDPIP;
|
|
|
|
else {
|
|
|
|
nocsum: /*
|
|
|
|
* unknown protocol, disable HW csum
|
|
|
|
* and hope a bad packet is detected
|
|
|
|
*/
|
2015-05-12 07:13:43 +08:00
|
|
|
return TXPKT_L4CSUM_DIS_F;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* this doesn't work with extension headers
|
|
|
|
*/
|
2018-05-11 21:05:33 +08:00
|
|
|
if (proto == IPPROTO_TCP)
|
2010-04-01 23:28:24 +08:00
|
|
|
csum_type = TX_CSUM_TCPIP6;
|
2018-05-11 21:05:33 +08:00
|
|
|
else if (proto == IPPROTO_UDP)
|
2010-04-01 23:28:24 +08:00
|
|
|
csum_type = TX_CSUM_UDPIP6;
|
|
|
|
else
|
|
|
|
goto nocsum;
|
|
|
|
}
|
|
|
|
|
2015-06-02 16:29:39 +08:00
|
|
|
if (likely(csum_type >= TX_CSUM_TCPIP)) {
|
2018-05-11 21:05:33 +08:00
|
|
|
int eth_hdr_len, l4_len;
|
|
|
|
u64 hdr_len;
|
|
|
|
|
|
|
|
if (inner_hdr_csum) {
|
|
|
|
/* This allows checksum offload for all encapsulated
|
|
|
|
* packets like GRE etc..
|
|
|
|
*/
|
|
|
|
l4_len = skb_inner_network_header_len(skb);
|
|
|
|
eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
|
|
|
|
} else {
|
|
|
|
l4_len = skb_network_header_len(skb);
|
|
|
|
eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
}
|
|
|
|
hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
|
2015-06-02 16:29:39 +08:00
|
|
|
|
|
|
|
if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
|
|
|
|
hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
|
|
else
|
|
|
|
hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
|
|
return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
|
|
|
|
} else {
|
2010-04-01 23:28:24 +08:00
|
|
|
int start = skb_transport_offset(skb);
|
|
|
|
|
2015-05-12 07:13:43 +08:00
|
|
|
return TXPKT_CSUM_TYPE_V(csum_type) |
|
|
|
|
TXPKT_CSUM_START_V(start) |
|
|
|
|
TXPKT_CSUM_LOC_V(start + skb->csum_offset);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void eth_txq_stop(struct sge_eth_txq *q)
|
|
|
|
{
|
|
|
|
netif_tx_stop_queue(q->txq);
|
|
|
|
q->q.stops++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void txq_advance(struct sge_txq *q, unsigned int n)
|
|
|
|
{
|
|
|
|
q->in_use += n;
|
|
|
|
q->pidx += n;
|
|
|
|
if (q->pidx >= q->size)
|
|
|
|
q->pidx -= q->size;
|
|
|
|
}
|
|
|
|
|
2015-03-24 21:44:46 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
static inline int
|
|
|
|
cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
|
|
|
|
const struct port_info *pi, u64 *cntrl)
|
|
|
|
{
|
|
|
|
const struct cxgb_fcoe *fcoe = &pi->fcoe;
|
|
|
|
|
|
|
|
if (!(fcoe->flags & CXGB_FCOE_ENABLED))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (skb->protocol != htons(ETH_P_FCOE))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb->mac_len = sizeof(struct ethhdr);
|
|
|
|
|
|
|
|
skb_set_network_header(skb, skb->mac_len);
|
|
|
|
skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
|
|
|
|
|
|
|
|
if (!cxgb_fcoe_sof_eof_supported(adap, skb))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
/* FC CRC offload */
|
2015-05-12 07:13:43 +08:00
|
|
|
*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
|
|
|
|
TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
|
|
|
|
TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
|
|
|
|
TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
|
|
|
|
TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
|
2015-03-24 21:44:46 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
/* Returns tunnel type if hardware supports offloading of the same.
|
|
|
|
* It is called only for T5 and onwards.
|
|
|
|
*/
|
|
|
|
enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
u8 l4_hdr = 0;
|
|
|
|
enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
|
|
|
|
struct port_info *pi = netdev_priv(skb->dev);
|
|
|
|
struct adapter *adapter = pi->adapter;
|
|
|
|
|
|
|
|
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
|
|
|
|
skb->inner_protocol != htons(ETH_P_TEB))
|
|
|
|
return tnl_type;
|
|
|
|
|
|
|
|
switch (vlan_get_protocol(skb)) {
|
|
|
|
case htons(ETH_P_IP):
|
|
|
|
l4_hdr = ip_hdr(skb)->protocol;
|
|
|
|
break;
|
|
|
|
case htons(ETH_P_IPV6):
|
|
|
|
l4_hdr = ipv6_hdr(skb)->nexthdr;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return tnl_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (l4_hdr) {
|
|
|
|
case IPPROTO_UDP:
|
|
|
|
if (adapter->vxlan_port == udp_hdr(skb)->dest)
|
|
|
|
tnl_type = TX_TNL_TYPE_VXLAN;
|
2018-01-22 21:18:26 +08:00
|
|
|
else if (adapter->geneve_port == udp_hdr(skb)->dest)
|
|
|
|
tnl_type = TX_TNL_TYPE_GENEVE;
|
2018-01-10 20:45:26 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return tnl_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
return tnl_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void t6_fill_tnl_lso(struct sk_buff *skb,
|
|
|
|
struct cpl_tx_tnl_lso *tnl_lso,
|
|
|
|
enum cpl_tx_tnl_lso_type tnl_type)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
int in_eth_xtra_len;
|
|
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
const struct skb_shared_info *ssi = skb_shinfo(skb);
|
|
|
|
bool v6 = (ip_hdr(skb)->version == 6);
|
|
|
|
|
|
|
|
val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
|
|
|
|
CPL_TX_TNL_LSO_FIRST_F |
|
|
|
|
CPL_TX_TNL_LSO_LAST_F |
|
|
|
|
(v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
|
|
|
|
CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
|
|
|
|
CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
|
|
|
|
(v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
|
|
|
|
CPL_TX_TNL_LSO_IPLENSETOUT_F |
|
|
|
|
(v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
|
|
|
|
tnl_lso->op_to_IpIdSplitOut = htonl(val);
|
|
|
|
|
|
|
|
tnl_lso->IpIdOffsetOut = 0;
|
|
|
|
|
|
|
|
/* Get the tunnel header length */
|
|
|
|
val = skb_inner_mac_header(skb) - skb_mac_header(skb);
|
|
|
|
in_eth_xtra_len = skb_inner_network_header(skb) -
|
|
|
|
skb_inner_mac_header(skb) - ETH_HLEN;
|
|
|
|
|
|
|
|
switch (tnl_type) {
|
|
|
|
case TX_TNL_TYPE_VXLAN:
|
2018-01-22 21:18:26 +08:00
|
|
|
case TX_TNL_TYPE_GENEVE:
|
2018-01-10 20:45:26 +08:00
|
|
|
tnl_lso->UdpLenSetOut_to_TnlHdrLen =
|
|
|
|
htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
|
|
|
|
CPL_TX_TNL_LSO_UDPLENSETOUT_F);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
|
|
|
|
htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
|
|
|
|
CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
|
|
|
|
|
|
|
|
tnl_lso->r1 = 0;
|
|
|
|
|
|
|
|
val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
|
|
|
|
CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
|
|
|
|
CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
|
|
|
|
CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
|
|
|
|
tnl_lso->Flow_to_TcpHdrLen = htonl(val);
|
|
|
|
|
|
|
|
tnl_lso->IpIdOffset = htons(0);
|
|
|
|
|
|
|
|
tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
|
|
|
|
tnl_lso->TCPSeqOffset = htonl(0);
|
|
|
|
tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
|
|
|
|
struct cpl_tx_pkt_lso_core *lso)
|
|
|
|
{
|
|
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
|
|
const struct skb_shared_info *ssi;
|
|
|
|
bool ipv6 = false;
|
|
|
|
|
|
|
|
ssi = skb_shinfo(skb);
|
|
|
|
if (ssi->gso_type & SKB_GSO_TCPV6)
|
|
|
|
ipv6 = true;
|
|
|
|
|
|
|
|
lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
|
|
|
|
LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
|
|
|
|
LSO_IPV6_V(ipv6) |
|
|
|
|
LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
|
|
|
|
LSO_IPHDR_LEN_V(l3hdr_len / 4) |
|
|
|
|
LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
|
|
|
|
lso->ipid_ofst = htons(0);
|
|
|
|
lso->mss = htons(ssi->gso_size);
|
|
|
|
lso->seqno_offset = htonl(0);
|
|
|
|
if (is_t4(adap->params.chip))
|
|
|
|
lso->len = htonl(skb->len);
|
|
|
|
else
|
|
|
|
lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
|
|
|
|
|
|
|
|
return (void *)(lso + 1);
|
|
|
|
}
|
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/**
|
|
|
|
* t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
|
|
|
|
* @adap: the adapter
|
|
|
|
* @eq: the Ethernet TX Queue
|
|
|
|
* @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
|
|
|
|
*
|
|
|
|
* We're typically called here to update the state of an Ethernet TX
|
|
|
|
* Queue with respect to the hardware's progress in consuming the TX
|
|
|
|
* Work Requests that we've put on that Egress Queue. This happens
|
|
|
|
* when we get Egress Queue Update messages and also prophylactically
|
|
|
|
* in regular timer-based Ethernet TX Queue maintenance.
|
|
|
|
*/
|
|
|
|
int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
|
|
|
|
int maxreclaim)
|
|
|
|
{
|
2020-03-20 01:38:10 +08:00
|
|
|
unsigned int reclaimed, hw_cidx;
|
2019-02-14 20:49:15 +08:00
|
|
|
struct sge_txq *q = &eq->q;
|
2020-03-20 01:38:10 +08:00
|
|
|
int hw_in_use;
|
2019-02-14 20:49:15 +08:00
|
|
|
|
|
|
|
if (!q->in_use || !__netif_tx_trylock(eq->txq))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Reclaim pending completed TX Descriptors. */
|
|
|
|
reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
|
|
|
|
|
2020-03-20 01:38:10 +08:00
|
|
|
hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
|
|
|
|
hw_in_use = q->pidx - hw_cidx;
|
|
|
|
if (hw_in_use < 0)
|
|
|
|
hw_in_use += q->size;
|
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/* If the TX Queue is currently stopped and there's now more than half
|
|
|
|
* the queue available, restart it. Otherwise bail out since the rest
|
|
|
|
* of what we want do here is with the possibility of shipping any
|
|
|
|
* currently buffered Coalesced TX Work Request.
|
|
|
|
*/
|
2020-03-20 01:38:10 +08:00
|
|
|
if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
|
2019-02-14 20:49:15 +08:00
|
|
|
netif_tx_wake_queue(eq->txq);
|
|
|
|
eq->q.restarts++;
|
|
|
|
}
|
|
|
|
|
|
|
|
__netif_tx_unlock(eq->txq);
|
|
|
|
return reclaimed;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
static inline int cxgb4_validate_skb(struct sk_buff *skb,
|
|
|
|
struct net_device *dev,
|
|
|
|
u32 min_pkt_len)
|
|
|
|
{
|
|
|
|
u32 max_pkt_len;
|
|
|
|
|
|
|
|
/* The chip min packet length is 10 octets but some firmware
|
|
|
|
* commands have a minimum packet length requirement. So, play
|
|
|
|
* safe and reject anything shorter than @min_pkt_len.
|
|
|
|
*/
|
|
|
|
if (unlikely(skb->len < min_pkt_len))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Discard the packet if the length is greater than mtu */
|
|
|
|
max_pkt_len = ETH_HLEN + dev->mtu;
|
|
|
|
|
|
|
|
if (skb_vlan_tagged(skb))
|
|
|
|
max_pkt_len += VLAN_HLEN;
|
|
|
|
|
|
|
|
if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-11-22 09:00:02 +08:00
|
|
|
static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
|
|
|
|
u32 hdr_len)
|
|
|
|
{
|
|
|
|
wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
|
|
|
|
wr->u.udpseg.ethlen = skb_network_offset(skb);
|
|
|
|
wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
|
|
|
|
wr->u.udpseg.udplen = sizeof(struct udphdr);
|
|
|
|
wr->u.udpseg.rtplen = 0;
|
|
|
|
wr->u.udpseg.r4 = 0;
|
|
|
|
if (skb_shinfo(skb)->gso_size)
|
|
|
|
wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
|
|
|
|
else
|
|
|
|
wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
|
|
|
|
wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
|
|
|
|
wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
|
|
|
|
|
|
|
|
return (void *)(wr + 1);
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
2018-06-26 19:40:25 +08:00
|
|
|
* cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
|
2010-04-01 23:28:24 +08:00
|
|
|
* @skb: the packet
|
|
|
|
* @dev: the egress net device
|
|
|
|
*
|
|
|
|
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
|
|
|
|
*/
|
2018-06-26 19:40:25 +08:00
|
|
|
static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2019-11-07 23:59:06 +08:00
|
|
|
enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
|
|
|
|
bool ptp_enabled = is_ptp_enabled(skb, dev);
|
2019-11-22 09:00:01 +08:00
|
|
|
unsigned int last_desc, flits, ndesc;
|
2019-11-22 09:00:02 +08:00
|
|
|
u32 wr_mid, ctrl0, op, sgl_off = 0;
|
2019-11-07 23:59:06 +08:00
|
|
|
const struct skb_shared_info *ssi;
|
2019-11-22 09:00:02 +08:00
|
|
|
int len, qidx, credits, ret, left;
|
2019-11-22 09:00:01 +08:00
|
|
|
struct tx_sw_desc *sgl_sdesc;
|
2019-11-22 09:00:02 +08:00
|
|
|
struct fw_eth_tx_eo_wr *eowr;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct fw_eth_tx_pkt_wr *wr;
|
|
|
|
struct cpl_tx_pkt_core *cpl;
|
2019-11-07 23:59:06 +08:00
|
|
|
const struct port_info *pi;
|
2014-02-18 20:26:14 +08:00
|
|
|
bool immediate = false;
|
2019-11-07 23:59:06 +08:00
|
|
|
u64 cntrl, *end, *sgl;
|
|
|
|
struct sge_eth_txq *q;
|
2018-01-10 20:45:26 +08:00
|
|
|
unsigned int chip_ver;
|
2019-11-07 23:59:06 +08:00
|
|
|
struct adapter *adap;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
|
|
|
|
if (ret)
|
2015-05-05 17:29:56 +08:00
|
|
|
goto out_free;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
pi = netdev_priv(dev);
|
|
|
|
adap = pi->adapter;
|
2017-11-16 19:26:39 +08:00
|
|
|
ssi = skb_shinfo(skb);
|
|
|
|
#ifdef CONFIG_CHELSIO_IPSEC_INLINE
|
|
|
|
if (xfrm_offload(skb) && !ssi->gso_size)
|
|
|
|
return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
|
|
|
|
#endif /* CHELSIO_IPSEC_INLINE */
|
|
|
|
|
2020-03-07 22:36:05 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_TLS_DEVICE
|
|
|
|
if (skb->decrypted)
|
|
|
|
return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
|
|
|
|
#endif /* CHELSIO_TLS_DEVICE */
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
qidx = skb_get_queue_mapping(skb);
|
2017-07-04 19:16:20 +08:00
|
|
|
if (ptp_enabled) {
|
|
|
|
if (!(adap->ptp_tx_skb)) {
|
|
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
|
|
adap->ptp_tx_skb = skb_get(skb);
|
|
|
|
} else {
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
q = &adap->sge.ptptxq;
|
|
|
|
} else {
|
|
|
|
q = &adap->sge.ethtxq[qidx + pi->first_qset];
|
|
|
|
}
|
|
|
|
skb_tx_timestamp(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
reclaim_completed_tx(adap, &q->q, -1, true);
|
2015-05-12 07:13:43 +08:00
|
|
|
cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
|
2015-03-24 21:44:46 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
2019-11-07 23:59:06 +08:00
|
|
|
ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
|
2020-06-24 04:21:32 +08:00
|
|
|
if (unlikely(ret == -EOPNOTSUPP))
|
2015-03-24 21:44:46 +08:00
|
|
|
goto out_free;
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
|
|
flits = calc_tx_flits(skb, chip_ver);
|
2010-04-01 23:28:24 +08:00
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
|
|
|
|
if (unlikely(credits < 0)) {
|
|
|
|
eth_txq_stop(q);
|
|
|
|
dev_err(adap->pdev_dev,
|
|
|
|
"%s: Tx ring %u full while queue awake!\n",
|
|
|
|
dev->name, qidx);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
|
|
}
|
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
if (is_eth_imm(skb, chip_ver))
|
2014-02-18 20:26:14 +08:00
|
|
|
immediate = true;
|
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
if (skb->encapsulation && chip_ver > CHELSIO_T5)
|
|
|
|
tnl_type = cxgb_encap_offload_supported(skb);
|
|
|
|
|
2019-11-22 09:00:01 +08:00
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
sgl_sdesc = &q->q.sdesc[last_desc];
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (!immediate &&
|
2019-11-22 09:00:01 +08:00
|
|
|
unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
|
|
|
|
memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
|
2010-04-01 23:28:24 +08:00
|
|
|
q->mapping_err++;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
2014-11-07 12:05:25 +08:00
|
|
|
wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
|
2019-02-14 20:49:15 +08:00
|
|
|
/* After we're done injecting the Work Request for this
|
|
|
|
* packet, we'll be below our "stop threshold" so stop the TX
|
|
|
|
* Queue now and schedule a request for an SGE Egress Queue
|
|
|
|
* Update message. The queue will get started later on when
|
|
|
|
* the firmware processes this Work Request and sends us an
|
|
|
|
* Egress Queue Status Update message indicating that space
|
|
|
|
* has opened up.
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
eth_txq_stop(q);
|
2020-03-20 01:38:09 +08:00
|
|
|
wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
wr = (void *)&q->q.desc[q->q.pidx];
|
2019-11-22 09:00:02 +08:00
|
|
|
eowr = (void *)&q->q.desc[q->q.pidx];
|
2010-04-01 23:28:24 +08:00
|
|
|
wr->equiq_to_len16 = htonl(wr_mid);
|
|
|
|
wr->r3 = cpu_to_be64(0);
|
2019-11-22 09:00:02 +08:00
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
|
|
|
|
end = (u64 *)eowr + flits;
|
|
|
|
else
|
|
|
|
end = (u64 *)wr + flits;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
len = immediate ? skb->len : 0;
|
2018-05-21 14:56:36 +08:00
|
|
|
len += sizeof(*cpl);
|
2019-11-22 09:00:02 +08:00
|
|
|
if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
|
2018-05-21 14:56:36 +08:00
|
|
|
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
|
2018-01-10 20:45:26 +08:00
|
|
|
struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
if (tnl_type)
|
|
|
|
len += sizeof(*tnl_lso);
|
2014-10-09 08:18:45 +08:00
|
|
|
else
|
2018-01-10 20:45:26 +08:00
|
|
|
len += sizeof(*lso);
|
2015-06-02 16:29:39 +08:00
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
|
|
|
|
FW_WR_IMMDLEN_V(len));
|
|
|
|
if (tnl_type) {
|
|
|
|
struct iphdr *iph = ip_hdr(skb);
|
2015-06-02 16:29:39 +08:00
|
|
|
|
2018-01-10 20:45:26 +08:00
|
|
|
t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
|
|
|
|
cpl = (void *)(tnl_lso + 1);
|
|
|
|
/* Driver is expected to compute partial checksum that
|
|
|
|
* does not include the IP Total Length.
|
|
|
|
*/
|
|
|
|
if (iph->version == 4) {
|
|
|
|
iph->check = 0;
|
|
|
|
iph->tot_len = 0;
|
2020-06-24 04:21:38 +08:00
|
|
|
iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
|
2018-01-10 20:45:26 +08:00
|
|
|
}
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
|
|
cntrl = hwcsum(adap->params.chip, skb);
|
|
|
|
} else {
|
2019-11-07 23:59:08 +08:00
|
|
|
cpl = write_tso_wr(adap, skb, lso);
|
|
|
|
cntrl = hwcsum(adap->params.chip, skb);
|
2018-01-10 20:45:26 +08:00
|
|
|
}
|
2018-05-11 21:05:33 +08:00
|
|
|
sgl = (u64 *)(cpl + 1); /* sgl start here */
|
2010-04-01 23:28:24 +08:00
|
|
|
q->tso++;
|
|
|
|
q->tx_cso += ssi->gso_segs;
|
2019-11-22 09:00:02 +08:00
|
|
|
} else if (ssi->gso_size) {
|
|
|
|
u64 *start;
|
|
|
|
u32 hdrlen;
|
|
|
|
|
|
|
|
hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
|
|
|
|
len += hdrlen;
|
|
|
|
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
|
|
|
|
FW_ETH_TX_EO_WR_IMMDLEN_V(len));
|
|
|
|
cpl = write_eo_udp_wr(skb, eowr, hdrlen);
|
|
|
|
cntrl = hwcsum(adap->params.chip, skb);
|
|
|
|
|
|
|
|
start = (u64 *)(cpl + 1);
|
|
|
|
sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
|
|
|
|
hdrlen);
|
|
|
|
if (unlikely(start > sgl)) {
|
|
|
|
left = (u8 *)end - (u8 *)q->q.stat;
|
|
|
|
end = (void *)q->q.desc + left;
|
|
|
|
}
|
|
|
|
sgl_off = hdrlen;
|
|
|
|
q->uso++;
|
|
|
|
q->tx_cso += ssi->gso_segs;
|
2010-04-01 23:28:24 +08:00
|
|
|
} else {
|
2017-07-04 19:16:20 +08:00
|
|
|
if (ptp_enabled)
|
|
|
|
op = FW_PTP_TX_PKT_WR;
|
|
|
|
else
|
|
|
|
op = FW_ETH_TX_PKT_WR;
|
|
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(op) |
|
2014-11-07 12:05:25 +08:00
|
|
|
FW_WR_IMMDLEN_V(len));
|
2010-04-01 23:28:24 +08:00
|
|
|
cpl = (void *)(wr + 1);
|
2018-05-11 21:05:33 +08:00
|
|
|
sgl = (u64 *)(cpl + 1);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
2015-06-02 16:29:39 +08:00
|
|
|
cntrl = hwcsum(adap->params.chip, skb) |
|
|
|
|
TXPKT_IPCSUM_DIS_F;
|
2010-04-01 23:28:24 +08:00
|
|
|
q->tx_cso++;
|
2015-03-24 21:44:46 +08:00
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2019-11-22 09:00:02 +08:00
|
|
|
if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
|
|
|
|
/* If current position is already at the end of the
|
|
|
|
* txq, reset the current to point to start of the queue
|
|
|
|
* and update the end ptr as well.
|
|
|
|
*/
|
|
|
|
left = (u8 *)end - (u8 *)q->q.stat;
|
|
|
|
end = (void *)q->q.desc + left;
|
|
|
|
sgl = (void *)q->q.desc;
|
|
|
|
}
|
|
|
|
|
2015-01-14 00:13:44 +08:00
|
|
|
if (skb_vlan_tag_present(skb)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
q->vlan_ins++;
|
2015-05-12 07:13:43 +08:00
|
|
|
cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
|
2015-03-24 21:44:46 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
if (skb->protocol == htons(ETH_P_FCOE))
|
2015-05-12 07:13:43 +08:00
|
|
|
cntrl |= TXPKT_VLAN_V(
|
2015-03-24 21:44:46 +08:00
|
|
|
((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2015-07-18 04:12:33 +08:00
|
|
|
ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
|
|
|
|
TXPKT_PF_V(adap->pf);
|
2017-07-04 19:16:20 +08:00
|
|
|
if (ptp_enabled)
|
|
|
|
ctrl0 |= TXPKT_TSTAMP_F;
|
2015-07-18 04:12:33 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
|
|
if (is_t4(adap->params.chip))
|
|
|
|
ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
|
|
|
|
else
|
|
|
|
ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
|
|
|
|
#endif
|
|
|
|
cpl->ctrl0 = htonl(ctrl0);
|
2010-04-01 23:28:24 +08:00
|
|
|
cpl->pack = htons(0);
|
|
|
|
cpl->len = htons(skb->len);
|
|
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
|
2014-02-18 20:26:14 +08:00
|
|
|
if (immediate) {
|
2018-05-11 21:05:33 +08:00
|
|
|
cxgb4_inline_tx_skb(skb, &q->q, sgl);
|
2014-03-16 07:29:49 +08:00
|
|
|
dev_consume_skb_any(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
} else {
|
2019-11-22 09:00:02 +08:00
|
|
|
cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
|
2019-11-22 09:00:01 +08:00
|
|
|
sgl_sdesc->addr);
|
2010-04-01 23:28:24 +08:00
|
|
|
skb_orphan(skb);
|
2019-11-22 09:00:01 +08:00
|
|
|
sgl_sdesc->skb = skb;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_ring_tx_db(adap, &q->q, ndesc);
|
2010-04-01 23:28:24 +08:00
|
|
|
return NETDEV_TX_OK;
|
2019-11-07 23:59:06 +08:00
|
|
|
|
|
|
|
out_free:
|
|
|
|
dev_kfree_skb_any(skb);
|
|
|
|
return NETDEV_TX_OK;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2018-06-26 19:40:25 +08:00
|
|
|
/* Constants ... */
|
|
|
|
enum {
|
|
|
|
/* Egress Queue sizes, producer and consumer indices are all in units
|
|
|
|
* of Egress Context Units bytes. Note that as far as the hardware is
|
|
|
|
* concerned, the free list is an Egress Queue (the host produces free
|
|
|
|
* buffers which the hardware consumes) and free list entries are
|
|
|
|
* 64-bit PCI DMA addresses.
|
|
|
|
*/
|
|
|
|
EQ_UNIT = SGE_EQ_IDXSIZE,
|
|
|
|
FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
|
|
|
|
TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
|
|
|
|
|
|
|
|
T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an Ethernet packet is small enough to fit completely as
|
|
|
|
* immediate data.
|
|
|
|
*/
|
|
|
|
static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
|
|
|
|
* which does not accommodate immediate data. We could dike out all
|
|
|
|
* of the support code for immediate data but that would tie our hands
|
|
|
|
* too much if we ever want to enhace the firmware. It would also
|
|
|
|
* create more differences between the PF and VF Drivers.
|
|
|
|
*/
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for a TX Work Request for the
|
|
|
|
* given Ethernet packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
|
|
|
static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits;
|
|
|
|
|
|
|
|
/* If the skb is small enough, we can pump it out as a work request
|
|
|
|
* with only immediate data. In that case we just have to have the
|
|
|
|
* TX Packet header plus the skb data in the Work Request.
|
|
|
|
*/
|
|
|
|
if (t4vf_is_eth_imm(skb))
|
|
|
|
return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
|
|
|
|
sizeof(__be64));
|
|
|
|
|
|
|
|
/* Otherwise, we're going to have to construct a Scatter gather list
|
|
|
|
* of the skb body and fragments. We also include the flits necessary
|
|
|
|
* for the TX Packet Work Request and CPL. We always have a firmware
|
|
|
|
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
|
|
|
|
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
|
|
|
|
* message or, if we're doing a Large Send Offload, an LSO CPL message
|
|
|
|
* with an embedded TX Packet Write CPL message.
|
|
|
|
*/
|
|
|
|
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
|
|
|
|
if (skb_shinfo(skb)->gso_size)
|
|
|
|
flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
|
|
|
else
|
|
|
|
flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
|
|
|
return flits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
|
|
|
|
* @skb: the packet
|
|
|
|
* @dev: the egress net device
|
|
|
|
*
|
|
|
|
* Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
|
|
|
|
*/
|
|
|
|
static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
|
|
|
|
struct net_device *dev)
|
|
|
|
{
|
2019-11-22 09:00:01 +08:00
|
|
|
unsigned int last_desc, flits, ndesc;
|
2018-06-26 19:40:25 +08:00
|
|
|
const struct skb_shared_info *ssi;
|
|
|
|
struct fw_eth_tx_pkt_vm_wr *wr;
|
2019-11-22 09:00:01 +08:00
|
|
|
struct tx_sw_desc *sgl_sdesc;
|
2018-06-26 19:40:25 +08:00
|
|
|
struct cpl_tx_pkt_core *cpl;
|
|
|
|
const struct port_info *pi;
|
|
|
|
struct sge_eth_txq *txq;
|
|
|
|
struct adapter *adapter;
|
2019-11-07 23:59:06 +08:00
|
|
|
int qidx, credits, ret;
|
|
|
|
size_t fw_hdr_copy_len;
|
2018-06-26 19:40:25 +08:00
|
|
|
u64 cntrl, *end;
|
|
|
|
u32 wr_mid;
|
|
|
|
|
|
|
|
/* The chip minimum packet length is 10 octets but the firmware
|
|
|
|
* command that we are using requires that we copy the Ethernet header
|
|
|
|
* (including the VLAN tag) into the header so we reject anything
|
|
|
|
* smaller than that ...
|
|
|
|
*/
|
2019-11-07 23:59:06 +08:00
|
|
|
fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
|
|
|
|
sizeof(wr->ethtype) + sizeof(wr->vlantci);
|
|
|
|
ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
|
|
|
|
if (ret)
|
2018-06-26 19:40:25 +08:00
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
/* Figure out which TX Queue we're going to use. */
|
|
|
|
pi = netdev_priv(dev);
|
|
|
|
adapter = pi->adapter;
|
|
|
|
qidx = skb_get_queue_mapping(skb);
|
|
|
|
WARN_ON(qidx >= pi->nqsets);
|
|
|
|
txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
|
|
|
|
|
|
|
|
/* Take this opportunity to reclaim any TX Descriptors whose DMA
|
|
|
|
* transfers have completed.
|
|
|
|
*/
|
2019-02-14 20:49:15 +08:00
|
|
|
reclaim_completed_tx(adapter, &txq->q, -1, true);
|
2018-06-26 19:40:25 +08:00
|
|
|
|
|
|
|
/* Calculate the number of flits and TX Descriptors we're going to
|
|
|
|
* need along with how many TX Descriptors will be left over after
|
|
|
|
* we inject our Work Request.
|
|
|
|
*/
|
|
|
|
flits = t4vf_calc_tx_flits(skb);
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&txq->q) - ndesc;
|
|
|
|
|
|
|
|
if (unlikely(credits < 0)) {
|
|
|
|
/* Not enough room for this packet's Work Request. Stop the
|
|
|
|
* TX Queue and return a "busy" condition. The queue will get
|
|
|
|
* started later on when the firmware informs us that space
|
|
|
|
* has opened up.
|
|
|
|
*/
|
|
|
|
eth_txq_stop(txq);
|
|
|
|
dev_err(adapter->pdev_dev,
|
|
|
|
"%s: TX ring %u full while queue awake!\n",
|
|
|
|
dev->name, qidx);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
|
|
}
|
|
|
|
|
2019-11-22 09:00:01 +08:00
|
|
|
last_desc = txq->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= txq->q.size)
|
|
|
|
last_desc -= txq->q.size;
|
|
|
|
sgl_sdesc = &txq->q.sdesc[last_desc];
|
|
|
|
|
2018-06-26 19:40:25 +08:00
|
|
|
if (!t4vf_is_eth_imm(skb) &&
|
2019-11-22 09:00:01 +08:00
|
|
|
unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
|
|
|
|
sgl_sdesc->addr) < 0)) {
|
2018-06-26 19:40:25 +08:00
|
|
|
/* We need to map the skb into PCI DMA space (because it can't
|
|
|
|
* be in-lined directly into the Work Request) and the mapping
|
|
|
|
* operation failed. Record the error and drop the packet.
|
|
|
|
*/
|
2019-11-22 09:00:01 +08:00
|
|
|
memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
|
2018-06-26 19:40:25 +08:00
|
|
|
txq->mapping_err++;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
|
|
|
|
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
|
|
|
|
/* After we're done injecting the Work Request for this
|
|
|
|
* packet, we'll be below our "stop threshold" so stop the TX
|
|
|
|
* Queue now and schedule a request for an SGE Egress Queue
|
|
|
|
* Update message. The queue will get started later on when
|
|
|
|
* the firmware processes this Work Request and sends us an
|
|
|
|
* Egress Queue Status Update message indicating that space
|
|
|
|
* has opened up.
|
|
|
|
*/
|
|
|
|
eth_txq_stop(txq);
|
2020-03-20 01:38:09 +08:00
|
|
|
wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
|
2018-06-26 19:40:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Start filling in our Work Request. Note that we do _not_ handle
|
|
|
|
* the WR Header wrapping around the TX Descriptor Ring. If our
|
|
|
|
* maximum header size ever exceeds one TX Descriptor, we'll need to
|
|
|
|
* do something else here.
|
|
|
|
*/
|
|
|
|
WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
|
|
|
|
wr = (void *)&txq->q.desc[txq->q.pidx];
|
|
|
|
wr->equiq_to_len16 = cpu_to_be32(wr_mid);
|
|
|
|
wr->r3[0] = cpu_to_be32(0);
|
|
|
|
wr->r3[1] = cpu_to_be32(0);
|
|
|
|
skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
|
|
|
|
end = (u64 *)wr + flits;
|
|
|
|
|
|
|
|
/* If this is a Large Send Offload packet we'll put in an LSO CPL
|
|
|
|
* message with an encapsulated TX Packet CPL message. Otherwise we
|
|
|
|
* just use a TX Packet CPL message.
|
|
|
|
*/
|
|
|
|
ssi = skb_shinfo(skb);
|
|
|
|
if (ssi->gso_size) {
|
|
|
|
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
|
|
|
|
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
|
|
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
|
|
|
|
wr->op_immdlen =
|
|
|
|
cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
|
|
|
|
FW_WR_IMMDLEN_V(sizeof(*lso) +
|
|
|
|
sizeof(*cpl)));
|
|
|
|
/* Fill in the LSO CPL message. */
|
|
|
|
lso->lso_ctrl =
|
|
|
|
cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
|
|
|
|
LSO_FIRST_SLICE_F |
|
|
|
|
LSO_LAST_SLICE_F |
|
|
|
|
LSO_IPV6_V(v6) |
|
|
|
|
LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
|
|
|
|
LSO_IPHDR_LEN_V(l3hdr_len / 4) |
|
|
|
|
LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
|
|
|
|
lso->ipid_ofst = cpu_to_be16(0);
|
|
|
|
lso->mss = cpu_to_be16(ssi->gso_size);
|
|
|
|
lso->seqno_offset = cpu_to_be32(0);
|
|
|
|
if (is_t4(adapter->params.chip))
|
|
|
|
lso->len = cpu_to_be32(skb->len);
|
|
|
|
else
|
|
|
|
lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
|
|
|
|
|
|
|
|
/* Set up TX Packet CPL pointer, control word and perform
|
|
|
|
* accounting.
|
|
|
|
*/
|
|
|
|
cpl = (void *)(lso + 1);
|
|
|
|
|
|
|
|
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
|
|
|
|
cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
|
|
else
|
|
|
|
cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
|
|
|
|
|
|
cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
|
|
|
|
TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
|
|
|
|
TXPKT_IPHDR_LEN_V(l3hdr_len);
|
|
|
|
txq->tso++;
|
|
|
|
txq->tx_cso += ssi->gso_segs;
|
|
|
|
} else {
|
|
|
|
int len;
|
|
|
|
|
|
|
|
len = (t4vf_is_eth_imm(skb)
|
|
|
|
? skb->len + sizeof(*cpl)
|
|
|
|
: sizeof(*cpl));
|
|
|
|
wr->op_immdlen =
|
|
|
|
cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
|
|
|
|
FW_WR_IMMDLEN_V(len));
|
|
|
|
|
|
|
|
/* Set up TX Packet CPL pointer, control word and perform
|
|
|
|
* accounting.
|
|
|
|
*/
|
|
|
|
cpl = (void *)(wr + 1);
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
|
|
cntrl = hwcsum(adapter->params.chip, skb) |
|
|
|
|
TXPKT_IPCSUM_DIS_F;
|
|
|
|
txq->tx_cso++;
|
|
|
|
} else {
|
|
|
|
cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If there's a VLAN tag present, add that to the list of things to
|
|
|
|
* do in this Work Request.
|
|
|
|
*/
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
|
|
txq->vlan_ins++;
|
|
|
|
cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill in the TX Packet CPL message header. */
|
|
|
|
cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
|
|
|
|
TXPKT_INTF_V(pi->port_id) |
|
|
|
|
TXPKT_PF_V(0));
|
|
|
|
cpl->pack = cpu_to_be16(0);
|
|
|
|
cpl->len = cpu_to_be16(skb->len);
|
|
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
|
|
|
|
/* Fill in the body of the TX Packet CPL message with either in-lined
|
|
|
|
* data or a Scatter/Gather List.
|
|
|
|
*/
|
|
|
|
if (t4vf_is_eth_imm(skb)) {
|
|
|
|
/* In-line the packet's data and free the skb since we don't
|
|
|
|
* need it any longer.
|
|
|
|
*/
|
|
|
|
cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
|
|
|
|
dev_consume_skb_any(skb);
|
|
|
|
} else {
|
|
|
|
/* Write the skb's Scatter/Gather list into the TX Packet CPL
|
|
|
|
* message and retain a pointer to the skb so we can free it
|
|
|
|
* later when its DMA completes. (We store the skb pointer
|
|
|
|
* in the Software Descriptor corresponding to the last TX
|
|
|
|
* Descriptor used by the Work Request.)
|
|
|
|
*
|
|
|
|
* The retained skb will be freed when the corresponding TX
|
|
|
|
* Descriptors are reclaimed after their DMAs complete.
|
|
|
|
* However, this could take quite a while since, in general,
|
|
|
|
* the hardware is set up to be lazy about sending DMA
|
|
|
|
* completion notifications to us and we mostly perform TX
|
|
|
|
* reclaims in the transmit routine.
|
|
|
|
*
|
|
|
|
* This is good for performamce but means that we rely on new
|
|
|
|
* TX packets arriving to run the destructors of completed
|
|
|
|
* packets, which open up space in their sockets' send queues.
|
|
|
|
* Sometimes we do not get such new packets causing TX to
|
|
|
|
* stall. A single UDP transmitter is a good example of this
|
|
|
|
* situation. We have a clean up timer that periodically
|
|
|
|
* reclaims completed packets but it doesn't run often enough
|
|
|
|
* (nor do we want it to) to prevent lengthy stalls. A
|
|
|
|
* solution to this problem is to run the destructor early,
|
|
|
|
* after the packet is queued but before it's DMAd. A con is
|
|
|
|
* that we lie to socket memory accounting, but the amount of
|
|
|
|
* extra memory is reasonable (limited by the number of TX
|
|
|
|
* descriptors), the packets do actually get freed quickly by
|
|
|
|
* new packets almost always, and for protocols like TCP that
|
|
|
|
* wait for acks to really free up the data the extra memory
|
|
|
|
* is even less. On the positive side we run the destructors
|
|
|
|
* on the sending CPU rather than on a potentially different
|
|
|
|
* completing CPU, usually a good thing.
|
|
|
|
*
|
|
|
|
* Run the destructor before telling the DMA engine about the
|
|
|
|
* packet to make sure it doesn't complete and get freed
|
|
|
|
* prematurely.
|
|
|
|
*/
|
|
|
|
struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
|
|
|
|
struct sge_txq *tq = &txq->q;
|
|
|
|
|
|
|
|
/* If the Work Request header was an exact multiple of our TX
|
|
|
|
* Descriptor length, then it's possible that the starting SGL
|
|
|
|
* pointer lines up exactly with the end of our TX Descriptor
|
|
|
|
* ring. If that's the case, wrap around to the beginning
|
|
|
|
* here ...
|
|
|
|
*/
|
|
|
|
if (unlikely((void *)sgl == (void *)tq->stat)) {
|
|
|
|
sgl = (void *)tq->desc;
|
|
|
|
end = (void *)((void *)tq->desc +
|
|
|
|
((void *)end - (void *)tq->stat));
|
|
|
|
}
|
|
|
|
|
2019-11-22 09:00:01 +08:00
|
|
|
cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
|
2018-06-26 19:40:25 +08:00
|
|
|
skb_orphan(skb);
|
2019-11-22 09:00:01 +08:00
|
|
|
sgl_sdesc->skb = skb;
|
2018-06-26 19:40:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Advance our internal TX Queue state, tell the hardware about
|
|
|
|
* the new TX descriptors and return success.
|
|
|
|
*/
|
|
|
|
txq_advance(&txq->q, ndesc);
|
|
|
|
|
|
|
|
cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
|
|
|
|
out_free:
|
|
|
|
/* An error of some sort happened. Free the TX skb and tell the
|
|
|
|
* OS that we've "dealt" with the packet ...
|
|
|
|
*/
|
|
|
|
dev_kfree_skb_any(skb);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
/**
|
|
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
|
|
* @q: the SGE control Tx queue
|
|
|
|
*
|
|
|
|
* This is a variant of cxgb4_reclaim_completed_tx() that is used
|
|
|
|
* for Tx queues that send only immediate data (presently just
|
|
|
|
* the control queues) and thus do not have any sk_buffs to release.
|
|
|
|
*/
|
|
|
|
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
|
|
|
|
{
|
|
|
|
int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
|
|
|
|
int reclaim = hw_cidx - q->cidx;
|
|
|
|
|
|
|
|
if (reclaim < 0)
|
|
|
|
reclaim += q->size;
|
|
|
|
|
|
|
|
q->in_use -= reclaim;
|
|
|
|
q->cidx = hw_cidx;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
|
|
|
|
{
|
|
|
|
u32 val = *idx + n;
|
|
|
|
|
|
|
|
if (val >= max)
|
|
|
|
val -= max;
|
|
|
|
|
|
|
|
*idx = val;
|
|
|
|
}
|
|
|
|
|
|
|
|
void cxgb4_eosw_txq_free_desc(struct adapter *adap,
|
|
|
|
struct sge_eosw_txq *eosw_txq, u32 ndesc)
|
|
|
|
{
|
2019-11-22 09:00:01 +08:00
|
|
|
struct tx_sw_desc *d;
|
2019-11-07 23:59:06 +08:00
|
|
|
|
|
|
|
d = &eosw_txq->desc[eosw_txq->last_cidx];
|
|
|
|
while (ndesc--) {
|
|
|
|
if (d->skb) {
|
|
|
|
if (d->addr[0]) {
|
|
|
|
unmap_skb(adap->pdev_dev, d->skb, d->addr);
|
|
|
|
memset(d->addr, 0, sizeof(d->addr));
|
|
|
|
}
|
|
|
|
dev_consume_skb_any(d->skb);
|
|
|
|
d->skb = NULL;
|
|
|
|
}
|
|
|
|
eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
|
|
|
|
eosw_txq->ndesc);
|
|
|
|
d = &eosw_txq->desc[eosw_txq->last_cidx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
|
|
|
|
{
|
|
|
|
eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
|
|
|
|
eosw_txq->inuse += n;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
if (eosw_txq->inuse == eosw_txq->ndesc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
eosw_txq->desc[eosw_txq->pidx].skb = skb;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
|
|
|
|
{
|
|
|
|
return eosw_txq->desc[eosw_txq->last_pidx].skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
|
|
|
|
struct sk_buff *skb, u32 hdr_len)
|
|
|
|
{
|
|
|
|
u8 flits, nsgl = 0;
|
|
|
|
u32 wrlen;
|
|
|
|
|
|
|
|
wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
|
2019-11-22 09:00:02 +08:00
|
|
|
if (skb_shinfo(skb)->gso_size &&
|
|
|
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
|
2019-11-07 23:59:08 +08:00
|
|
|
wrlen += sizeof(struct cpl_tx_pkt_lso_core);
|
|
|
|
|
|
|
|
wrlen += roundup(hdr_len, 16);
|
|
|
|
|
|
|
|
/* Packet headers + WR + CPLs */
|
|
|
|
flits = DIV_ROUND_UP(wrlen, 8);
|
|
|
|
|
2019-11-22 09:00:02 +08:00
|
|
|
if (skb_shinfo(skb)->nr_frags > 0) {
|
|
|
|
if (skb_headlen(skb) - hdr_len)
|
|
|
|
nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
|
|
|
|
else
|
|
|
|
nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
|
|
|
|
} else if (skb->len - hdr_len) {
|
2019-11-07 23:59:08 +08:00
|
|
|
nsgl = sgl_len(1);
|
2019-11-22 09:00:02 +08:00
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
|
|
|
|
return flits + nsgl;
|
|
|
|
}
|
|
|
|
|
2020-05-16 01:11:03 +08:00
|
|
|
static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
|
|
|
|
struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
|
|
|
|
u32 hdr_len, u32 wrlen)
|
2019-11-07 23:59:08 +08:00
|
|
|
{
|
|
|
|
const struct skb_shared_info *ssi = skb_shinfo(skb);
|
|
|
|
struct cpl_tx_pkt_core *cpl;
|
|
|
|
u32 immd_len, wrlen16;
|
|
|
|
bool compl = false;
|
2019-11-22 09:00:02 +08:00
|
|
|
u8 ver, proto;
|
|
|
|
|
|
|
|
ver = ip_hdr(skb)->version;
|
|
|
|
proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
|
2019-11-07 23:59:08 +08:00
|
|
|
|
|
|
|
wrlen16 = DIV_ROUND_UP(wrlen, 16);
|
|
|
|
immd_len = sizeof(struct cpl_tx_pkt_core);
|
2019-11-22 09:00:02 +08:00
|
|
|
if (skb_shinfo(skb)->gso_size &&
|
|
|
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
|
|
|
|
immd_len += sizeof(struct cpl_tx_pkt_lso_core);
|
2019-11-07 23:59:08 +08:00
|
|
|
immd_len += hdr_len;
|
|
|
|
|
|
|
|
if (!eosw_txq->ncompl ||
|
2020-05-16 01:11:03 +08:00
|
|
|
(eosw_txq->last_compl + wrlen16) >=
|
|
|
|
(adap->params.ofldq_wr_cred / 2)) {
|
2019-11-07 23:59:08 +08:00
|
|
|
compl = true;
|
|
|
|
eosw_txq->ncompl++;
|
|
|
|
eosw_txq->last_compl = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
|
|
|
|
FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
|
|
|
|
FW_WR_COMPL_V(compl));
|
|
|
|
wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
|
|
|
|
FW_WR_FLOWID_V(eosw_txq->hwtid));
|
|
|
|
wr->r3 = 0;
|
2019-11-22 09:00:02 +08:00
|
|
|
if (proto == IPPROTO_UDP) {
|
|
|
|
cpl = write_eo_udp_wr(skb, wr, hdr_len);
|
2019-11-07 23:59:08 +08:00
|
|
|
} else {
|
2019-11-22 09:00:02 +08:00
|
|
|
wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
|
|
|
|
wr->u.tcpseg.ethlen = skb_network_offset(skb);
|
|
|
|
wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
|
|
|
|
wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
|
|
|
|
wr->u.tcpseg.tsclk_tsoff = 0;
|
|
|
|
wr->u.tcpseg.r4 = 0;
|
|
|
|
wr->u.tcpseg.r5 = 0;
|
|
|
|
wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
|
|
|
|
|
|
|
|
if (ssi->gso_size) {
|
|
|
|
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
|
|
|
|
|
|
|
|
wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
|
|
|
|
cpl = write_tso_wr(adap, skb, lso);
|
|
|
|
} else {
|
|
|
|
wr->u.tcpseg.mss = cpu_to_be16(0xffff);
|
|
|
|
cpl = (void *)(wr + 1);
|
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
eosw_txq->cred -= wrlen16;
|
|
|
|
eosw_txq->last_compl += wrlen16;
|
|
|
|
return cpl;
|
|
|
|
}
|
|
|
|
|
2020-05-16 01:11:03 +08:00
|
|
|
static int ethofld_hard_xmit(struct net_device *dev,
|
|
|
|
struct sge_eosw_txq *eosw_txq)
|
2019-11-07 23:59:08 +08:00
|
|
|
{
|
|
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
u32 wrlen, wrlen16, hdr_len, data_len;
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
enum sge_eosw_state next_state;
|
2019-11-07 23:59:08 +08:00
|
|
|
u64 cntrl, *start, *end, *sgl;
|
|
|
|
struct sge_eohw_txq *eohw_txq;
|
|
|
|
struct cpl_tx_pkt_core *cpl;
|
|
|
|
struct fw_eth_tx_eo_wr *wr;
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
bool skip_eotx_wr = false;
|
2019-11-22 09:00:01 +08:00
|
|
|
struct tx_sw_desc *d;
|
2019-11-07 23:59:08 +08:00
|
|
|
struct sk_buff *skb;
|
2020-05-16 01:11:03 +08:00
|
|
|
int left, ret = 0;
|
2019-11-07 23:59:08 +08:00
|
|
|
u8 flits, ndesc;
|
|
|
|
|
|
|
|
eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
|
|
|
|
spin_lock(&eohw_txq->lock);
|
|
|
|
reclaim_completed_tx_imm(&eohw_txq->q);
|
|
|
|
|
|
|
|
d = &eosw_txq->desc[eosw_txq->last_pidx];
|
|
|
|
skb = d->skb;
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
|
|
|
|
wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
|
|
|
|
eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
|
|
|
|
hdr_len = skb->len;
|
|
|
|
data_len = 0;
|
|
|
|
flits = DIV_ROUND_UP(hdr_len, 8);
|
|
|
|
if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
|
|
|
|
next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
|
|
|
|
else
|
|
|
|
next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
|
|
|
|
skip_eotx_wr = true;
|
|
|
|
} else {
|
|
|
|
hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
|
|
|
|
data_len = skb->len - hdr_len;
|
|
|
|
flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
|
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
wrlen = flits * 8;
|
|
|
|
wrlen16 = DIV_ROUND_UP(wrlen, 16);
|
|
|
|
|
2020-05-16 01:11:03 +08:00
|
|
|
left = txq_avail(&eohw_txq->q) - ndesc;
|
|
|
|
|
|
|
|
/* If there are no descriptors left in hardware queues or no
|
|
|
|
* CPL credits left in software queues, then wait for them
|
|
|
|
* to come back and retry again. Note that we always request
|
|
|
|
* for credits update via interrupt for every half credits
|
|
|
|
* consumed. So, the interrupt will eventually restore the
|
|
|
|
* credits and invoke the Tx path again.
|
2019-11-07 23:59:08 +08:00
|
|
|
*/
|
2020-05-16 01:11:03 +08:00
|
|
|
if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
|
|
|
|
ret = -ENOMEM;
|
2019-11-07 23:59:08 +08:00
|
|
|
goto out_unlock;
|
2020-05-16 01:11:03 +08:00
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
if (unlikely(skip_eotx_wr)) {
|
|
|
|
start = (u64 *)wr;
|
|
|
|
eosw_txq->state = next_state;
|
2020-04-30 02:52:19 +08:00
|
|
|
eosw_txq->cred -= wrlen16;
|
|
|
|
eosw_txq->ncompl++;
|
|
|
|
eosw_txq->last_compl = 0;
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
goto write_wr_headers;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
|
|
|
|
cntrl = hwcsum(adap->params.chip, skb);
|
|
|
|
if (skb_vlan_tag_present(skb))
|
|
|
|
cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
|
|
|
|
|
|
|
|
cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
|
|
|
|
TXPKT_INTF_V(pi->tx_chan) |
|
|
|
|
TXPKT_PF_V(adap->pf));
|
|
|
|
cpl->pack = 0;
|
|
|
|
cpl->len = cpu_to_be16(skb->len);
|
|
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
|
|
|
|
start = (u64 *)(cpl + 1);
|
|
|
|
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
write_wr_headers:
|
2019-11-07 23:59:08 +08:00
|
|
|
sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
|
|
|
|
hdr_len);
|
|
|
|
if (data_len) {
|
2020-05-16 01:11:03 +08:00
|
|
|
ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
|
|
|
|
if (unlikely(ret)) {
|
2019-11-07 23:59:08 +08:00
|
|
|
memset(d->addr, 0, sizeof(d->addr));
|
|
|
|
eohw_txq->mapping_err++;
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
end = (u64 *)wr + flits;
|
|
|
|
if (unlikely(start > sgl)) {
|
|
|
|
left = (u8 *)end - (u8 *)eohw_txq->q.stat;
|
|
|
|
end = (void *)eohw_txq->q.desc + left;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
|
|
|
|
/* If current position is already at the end of the
|
|
|
|
* txq, reset the current to point to start of the queue
|
|
|
|
* and update the end ptr as well.
|
|
|
|
*/
|
|
|
|
left = (u8 *)end - (u8 *)eohw_txq->q.stat;
|
|
|
|
|
|
|
|
end = (void *)eohw_txq->q.desc + left;
|
|
|
|
sgl = (void *)eohw_txq->q.desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
|
|
|
|
d->addr);
|
|
|
|
}
|
|
|
|
|
2019-11-22 09:00:03 +08:00
|
|
|
if (skb_shinfo(skb)->gso_size) {
|
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
|
|
|
|
eohw_txq->uso++;
|
|
|
|
else
|
|
|
|
eohw_txq->tso++;
|
|
|
|
eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
|
|
|
|
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
|
|
eohw_txq->tx_cso++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (skb_vlan_tag_present(skb))
|
|
|
|
eohw_txq->vlan_ins++;
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
txq_advance(&eohw_txq->q, ndesc);
|
|
|
|
cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
|
|
|
|
eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
|
|
|
|
|
|
|
|
out_unlock:
|
|
|
|
spin_unlock(&eohw_txq->lock);
|
2020-05-16 01:11:03 +08:00
|
|
|
return ret;
|
2019-11-07 23:59:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
2020-05-16 01:11:03 +08:00
|
|
|
int pktcount, ret;
|
2019-11-07 23:59:08 +08:00
|
|
|
|
|
|
|
switch (eosw_txq->state) {
|
|
|
|
case CXGB4_EO_STATE_ACTIVE:
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
|
|
|
|
case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
|
2019-11-07 23:59:08 +08:00
|
|
|
pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
|
|
|
|
if (pktcount < 0)
|
|
|
|
pktcount += eosw_txq->ndesc;
|
|
|
|
break;
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
|
|
|
|
case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
|
2019-11-07 23:59:08 +08:00
|
|
|
case CXGB4_EO_STATE_CLOSED:
|
|
|
|
default:
|
|
|
|
return;
|
2019-11-19 15:30:56 +08:00
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
|
|
|
|
while (pktcount--) {
|
|
|
|
skb = eosw_txq_peek(eosw_txq);
|
|
|
|
if (!skb) {
|
|
|
|
eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
|
|
|
|
eosw_txq->ndesc);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2020-05-16 01:11:03 +08:00
|
|
|
ret = ethofld_hard_xmit(dev, eosw_txq);
|
|
|
|
if (ret)
|
|
|
|
break;
|
2019-11-07 23:59:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
|
|
|
|
struct net_device *dev)
|
|
|
|
{
|
2019-11-07 23:59:08 +08:00
|
|
|
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
|
|
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
struct sge_eosw_txq *eosw_txq;
|
|
|
|
u32 qid;
|
2019-11-07 23:59:06 +08:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
|
|
|
|
if (ret)
|
|
|
|
goto out_free;
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
|
|
|
|
qid = skb_get_queue_mapping(skb) - pi->nqsets;
|
|
|
|
eosw_txq = &tc_port_mqprio->eosw_txq[qid];
|
|
|
|
spin_lock_bh(&eosw_txq->lock);
|
|
|
|
if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
ret = eosw_txq_enqueue(eosw_txq, skb);
|
|
|
|
if (ret)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
/* SKB is queued for processing until credits are available.
|
|
|
|
* So, call the destructor now and we'll free the skb later
|
|
|
|
* after it has been successfully transmitted.
|
|
|
|
*/
|
|
|
|
skb_orphan(skb);
|
|
|
|
|
|
|
|
eosw_txq_advance(eosw_txq, 1);
|
|
|
|
ethofld_xmit(dev, eosw_txq);
|
|
|
|
spin_unlock_bh(&eosw_txq->lock);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
|
|
|
|
out_unlock:
|
|
|
|
spin_unlock_bh(&eosw_txq->lock);
|
2019-11-07 23:59:06 +08:00
|
|
|
out_free:
|
|
|
|
dev_kfree_skb_any(skb);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
2018-06-26 19:40:25 +08:00
|
|
|
netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
|
{
|
|
|
|
struct port_info *pi = netdev_priv(dev);
|
2019-11-07 23:59:06 +08:00
|
|
|
u16 qid = skb_get_queue_mapping(skb);
|
2018-06-26 19:40:25 +08:00
|
|
|
|
|
|
|
if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
|
|
|
|
return cxgb4_vf_eth_xmit(skb, dev);
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
if (unlikely(qid >= pi->nqsets))
|
|
|
|
return cxgb4_ethofld_xmit(skb, dev);
|
|
|
|
|
2020-06-24 04:21:32 +08:00
|
|
|
if (is_ptp_enabled(skb, dev)) {
|
|
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
netdev_tx_t ret;
|
|
|
|
|
|
|
|
spin_lock(&adap->ptp_lock);
|
|
|
|
ret = cxgb4_eth_xmit(skb, dev);
|
|
|
|
spin_unlock(&adap->ptp_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-06-26 19:40:25 +08:00
|
|
|
return cxgb4_eth_xmit(skb, dev);
|
|
|
|
}
|
|
|
|
|
2020-04-30 02:52:19 +08:00
|
|
|
static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
|
|
|
|
{
|
|
|
|
int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
|
|
|
|
int pidx = eosw_txq->pidx;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
if (!pktcount)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (pktcount < 0)
|
|
|
|
pktcount += eosw_txq->ndesc;
|
|
|
|
|
|
|
|
while (pktcount--) {
|
|
|
|
pidx--;
|
|
|
|
if (pidx < 0)
|
|
|
|
pidx += eosw_txq->ndesc;
|
|
|
|
|
|
|
|
skb = eosw_txq->desc[pidx].skb;
|
|
|
|
if (skb) {
|
|
|
|
dev_consume_skb_any(skb);
|
|
|
|
eosw_txq->desc[pidx].skb = NULL;
|
|
|
|
eosw_txq->inuse--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
eosw_txq->pidx = eosw_txq->last_pidx + 1;
|
|
|
|
}
|
|
|
|
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
/**
|
|
|
|
* cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
|
2020-06-24 04:21:41 +08:00
|
|
|
* @dev: netdevice
|
|
|
|
* @eotid: ETHOFLD tid to bind/unbind
|
|
|
|
* @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
*
|
|
|
|
* Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
|
|
|
|
* If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
|
|
|
|
* a traffic class.
|
|
|
|
*/
|
|
|
|
int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
|
|
|
|
{
|
|
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
enum sge_eosw_state next_state;
|
|
|
|
struct sge_eosw_txq *eosw_txq;
|
|
|
|
u32 len, len16, nparams = 6;
|
|
|
|
struct fw_flowc_wr *flowc;
|
|
|
|
struct eotid_entry *entry;
|
|
|
|
struct sge_ofld_rxq *rxq;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
int ret = 0;
|
|
|
|
|
2020-06-20 02:01:49 +08:00
|
|
|
len = struct_size(flowc, mnemval, nparams);
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
len16 = DIV_ROUND_UP(len, 16);
|
|
|
|
|
|
|
|
entry = cxgb4_lookup_eotid(&adap->tids, eotid);
|
|
|
|
if (!entry)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
eosw_txq = (struct sge_eosw_txq *)entry->data;
|
|
|
|
if (!eosw_txq)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
skb = alloc_skb(len, GFP_KERNEL);
|
|
|
|
if (!skb)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock_bh(&eosw_txq->lock);
|
|
|
|
if (tc != FW_SCHED_CLS_NONE) {
|
|
|
|
if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
|
|
|
|
} else {
|
|
|
|
if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
|
|
|
|
}
|
|
|
|
|
|
|
|
flowc = __skb_put(skb, len);
|
|
|
|
memset(flowc, 0, len);
|
|
|
|
|
|
|
|
rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
|
|
|
|
flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
|
|
|
|
FW_WR_FLOWID_V(eosw_txq->hwtid));
|
|
|
|
flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
|
|
|
|
FW_FLOWC_WR_NPARAMS_V(nparams) |
|
|
|
|
FW_WR_COMPL_V(1));
|
|
|
|
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
|
|
|
|
flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
|
|
|
|
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
|
|
|
|
flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
|
|
|
|
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
|
|
|
|
flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
|
|
|
|
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
|
|
|
|
flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
|
|
|
|
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
|
|
|
|
flowc->mnemval[4].val = cpu_to_be32(tc);
|
|
|
|
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
|
|
|
|
flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
|
|
|
|
FW_FLOWC_MNEM_EOSTATE_CLOSING :
|
|
|
|
FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
|
|
|
|
|
2020-04-30 02:52:19 +08:00
|
|
|
/* Free up any pending skbs to ensure there's room for
|
|
|
|
* termination FLOWC.
|
|
|
|
*/
|
|
|
|
if (tc == FW_SCHED_CLS_NONE)
|
|
|
|
eosw_txq_flush_pending_skbs(eosw_txq);
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
|
|
|
|
ret = eosw_txq_enqueue(eosw_txq, skb);
|
|
|
|
if (ret) {
|
|
|
|
dev_consume_skb_any(skb);
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
eosw_txq->state = next_state;
|
|
|
|
eosw_txq->flowc_idx = eosw_txq->pidx;
|
|
|
|
eosw_txq_advance(eosw_txq, 1);
|
|
|
|
ethofld_xmit(dev, eosw_txq);
|
|
|
|
|
|
|
|
out_unlock:
|
|
|
|
spin_unlock_bh(&eosw_txq->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
|
|
|
* is_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as a WR with immediate data.
|
|
|
|
*/
|
|
|
|
static inline int is_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->len <= MAX_CTRL_WR_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrlq_check_stop - check if a control queue is full and should stop
|
|
|
|
* @q: the queue
|
|
|
|
* @wr: most recent WR written to the queue
|
|
|
|
*
|
|
|
|
* Check if a control queue has become full and should be stopped.
|
|
|
|
* We clean up control queue descriptors very lazily, only when we are out.
|
|
|
|
* If the queue is still full after reclaiming any completed descriptors
|
|
|
|
* we suspend it and have the last WR wake it up.
|
|
|
|
*/
|
|
|
|
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
|
|
|
|
{
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
2014-11-07 12:05:25 +08:00
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
2010-04-01 23:28:24 +08:00
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
|
|
* @q: the control queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
|
|
* a control queue must fit entirely as immediate data.
|
|
|
|
*/
|
|
|
|
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int ndesc;
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
|
|
|
|
if (unlikely(!is_imm(skb))) {
|
|
|
|
WARN_ON(1);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
|
|
|
|
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
|
|
|
|
if (unlikely(q->full)) {
|
|
|
|
skb->priority = ndesc; /* save for restart */
|
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_CN;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_inline_tx_skb(skb, &q->q, wr);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
kfree_skb(skb);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ctrlq - restart a suspended control queue
|
|
|
|
* @data: the control queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
|
|
*/
|
|
|
|
static void restart_ctrlq(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int written = 0;
|
|
|
|
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
|
|
|
|
|
|
|
|
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
unsigned int ndesc = skb->priority; /* previously saved */
|
|
|
|
|
2015-08-12 19:25:07 +08:00
|
|
|
written += ndesc;
|
|
|
|
/* Write descriptors and free skbs outside the lock to limit
|
2010-04-01 23:28:24 +08:00
|
|
|
* wait times. q->full is still set so new skbs will be queued.
|
|
|
|
*/
|
2015-08-12 19:25:07 +08:00
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
|
|
txq_advance(&q->q, ndesc);
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_inline_tx_skb(skb, &q->q, wr);
|
2010-04-01 23:28:24 +08:00
|
|
|
kfree_skb(skb);
|
|
|
|
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
|
|
unsigned long old = q->q.stops;
|
|
|
|
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
if (q->q.stops != old) { /* suspended anew */
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
goto ringdb;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (written > 16) {
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, written);
|
2010-04-01 23:28:24 +08:00
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
q->full = 0;
|
2017-11-16 19:26:39 +08:00
|
|
|
ringdb:
|
|
|
|
if (written)
|
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, written);
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_mgmt_tx - send a management message
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet containing the management message
|
|
|
|
*
|
|
|
|
* Send a management message through control queue 0.
|
|
|
|
*/
|
|
|
|
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ofld_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as an offload WR with immediate
|
|
|
|
* data. We currently use the same limit as for Ethernet packets.
|
|
|
|
*/
|
|
|
|
static inline int is_ofld_imm(const struct sk_buff *skb)
|
|
|
|
{
|
2017-10-08 16:07:23 +08:00
|
|
|
struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
|
|
|
|
unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
|
|
|
|
|
|
|
|
if (opcode == FW_CRYPTO_LOOKASIDE_WR)
|
|
|
|
return skb->len <= SGE_MAX_WR_LEN;
|
|
|
|
else
|
|
|
|
return skb->len <= MAX_IMM_TX_PKT_LEN;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits_ofld - calculate # of flits for an offload packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for the given offload packet.
|
|
|
|
* These packets are already fully constructed and no additional headers
|
|
|
|
* will be added.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits, cnt;
|
|
|
|
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
return DIV_ROUND_UP(skb->len, 8);
|
|
|
|
|
|
|
|
flits = skb_transport_offset(skb) / 8U; /* headers */
|
|
|
|
cnt = skb_shinfo(skb)->nr_frags;
|
2013-06-04 06:11:16 +08:00
|
|
|
if (skb_tail_pointer(skb) != skb_transport_header(skb))
|
2010-04-01 23:28:24 +08:00
|
|
|
cnt++;
|
|
|
|
return flits + sgl_len(cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
|
|
|
|
* @q: the queue to stop
|
|
|
|
*
|
|
|
|
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
|
|
|
|
* inability to map packets. A periodic timer attempts to restart
|
|
|
|
* queues so marked.
|
|
|
|
*/
|
2016-11-18 19:07:40 +08:00
|
|
|
static void txq_stop_maperr(struct sge_uld_txq *q)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
q->mapping_err++;
|
|
|
|
q->q.stops++;
|
2010-08-24 01:20:58 +08:00
|
|
|
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
|
|
|
|
q->adap->sge.txq_maperr);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofldtxq_stop - stop an offload Tx queue that has become full
|
|
|
|
* @q: the queue to stop
|
2018-04-01 00:11:55 +08:00
|
|
|
* @wr: the Work Request causing the queue to become full
|
2010-04-01 23:28:24 +08:00
|
|
|
*
|
|
|
|
* Stops an offload Tx queue that has become full and modifies the packet
|
|
|
|
* being written to request a wakeup.
|
|
|
|
*/
|
2018-04-01 00:11:55 +08:00
|
|
|
static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2014-11-07 12:05:25 +08:00
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
2010-04-01 23:28:24 +08:00
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-12-08 12:39:14 +08:00
|
|
|
* service_ofldq - service/restart a suspended offload queue
|
2010-04-01 23:28:24 +08:00
|
|
|
* @q: the offload queue
|
|
|
|
*
|
2015-12-08 12:39:14 +08:00
|
|
|
* Services an offload Tx queue by moving packets from its Pending Send
|
|
|
|
* Queue to the Hardware TX ring. The function starts and ends with the
|
|
|
|
* Send Queue locked, but drops the lock while putting the skb at the
|
|
|
|
* head of the Send Queue onto the Hardware TX Ring. Dropping the lock
|
|
|
|
* allows more skbs to be added to the Send Queue by other threads.
|
|
|
|
* The packet being processed at the head of the Pending Send Queue is
|
|
|
|
* left on the queue in case we experience DMA Mapping errors, etc.
|
|
|
|
* and need to give up and restart later.
|
|
|
|
*
|
|
|
|
* service_ofldq() can be thought of as a task which opportunistically
|
|
|
|
* uses other threads execution contexts. We use the Offload Queue
|
|
|
|
* boolean "service_ofldq_running" to make sure that only one instance
|
|
|
|
* is ever running at a time ...
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2016-11-18 19:07:40 +08:00
|
|
|
static void service_ofldq(struct sge_uld_txq *q)
|
2020-04-30 06:57:22 +08:00
|
|
|
__must_hold(&q->sendq.lock)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2015-12-08 12:39:15 +08:00
|
|
|
u64 *pos, *before, *end;
|
2010-04-01 23:28:24 +08:00
|
|
|
int credits;
|
|
|
|
struct sk_buff *skb;
|
2015-12-08 12:39:15 +08:00
|
|
|
struct sge_txq *txq;
|
|
|
|
unsigned int left;
|
2010-04-01 23:28:24 +08:00
|
|
|
unsigned int written = 0;
|
|
|
|
unsigned int flits, ndesc;
|
|
|
|
|
2015-12-08 12:39:14 +08:00
|
|
|
/* If another thread is currently in service_ofldq() processing the
|
|
|
|
* Pending Send Queue then there's nothing to do. Otherwise, flag
|
|
|
|
* that we're doing the work and continue. Examining/modifying
|
|
|
|
* the Offload Queue boolean "service_ofldq_running" must be done
|
|
|
|
* while holding the Pending Send Queue Lock.
|
|
|
|
*/
|
|
|
|
if (q->service_ofldq_running)
|
|
|
|
return;
|
|
|
|
q->service_ofldq_running = true;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
|
2015-12-08 12:39:14 +08:00
|
|
|
/* We drop the lock while we're working with the skb at the
|
|
|
|
* head of the Pending Send Queue. This allows more skbs to
|
|
|
|
* be added to the Pending Send Queue while we're working on
|
|
|
|
* this one. We don't need to lock to guard the TX Ring
|
|
|
|
* updates because only one thread of execution is ever
|
|
|
|
* allowed into service_ofldq() at a time.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
flits = skb->priority; /* previously saved */
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
BUG_ON(credits < 0);
|
|
|
|
if (unlikely(credits < TXQ_STOP_THRES))
|
2018-04-01 00:11:55 +08:00
|
|
|
ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
pos = (u64 *)&q->q.desc[q->q.pidx];
|
|
|
|
if (is_ofld_imm(skb))
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_inline_tx_skb(skb, &q->q, pos);
|
|
|
|
else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
|
|
|
|
(dma_addr_t *)skb->head)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
txq_stop_maperr(q);
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
int last_desc, hdr_len = skb_transport_offset(skb);
|
|
|
|
|
2015-12-08 12:39:15 +08:00
|
|
|
/* The WR headers may not fit within one descriptor.
|
|
|
|
* So we need to deal with wrap-around here.
|
|
|
|
*/
|
|
|
|
before = (u64 *)pos;
|
|
|
|
end = (u64 *)pos + flits;
|
|
|
|
txq = &q->q;
|
|
|
|
pos = (void *)inline_tx_skb_header(skb, &q->q,
|
|
|
|
(void *)pos,
|
|
|
|
hdr_len);
|
|
|
|
if (before > (u64 *)pos) {
|
|
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
|
|
end = (void *)txq->desc + left;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If current position is already at the end of the
|
|
|
|
* ofld queue, reset the current to point to
|
|
|
|
* start of the queue and update the end ptr as well.
|
|
|
|
*/
|
|
|
|
if (pos == (u64 *)txq->stat) {
|
|
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
|
|
end = (void *)txq->desc + left;
|
|
|
|
pos = (void *)txq->desc;
|
|
|
|
}
|
|
|
|
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_write_sgl(skb, &q->q, (void *)pos,
|
|
|
|
end, hdr_len,
|
|
|
|
(dma_addr_t *)skb->head);
|
2010-04-01 23:28:24 +08:00
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
|
|
skb->dev = q->adap->port[0];
|
|
|
|
skb->destructor = deferred_unmap_destructor;
|
|
|
|
#endif
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
written += ndesc;
|
|
|
|
if (unlikely(written > 32)) {
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, written);
|
2010-04-01 23:28:24 +08:00
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
|
2015-12-08 12:39:14 +08:00
|
|
|
/* Reacquire the Pending Send Queue Lock so we can unlink the
|
|
|
|
* skb we've just successfully transferred to the TX Ring and
|
|
|
|
* loop for the next skb which may be at the head of the
|
|
|
|
* Pending Send Queue.
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
__skb_unlink(skb, &q->sendq);
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
kfree_skb(skb);
|
|
|
|
}
|
|
|
|
if (likely(written))
|
2017-11-16 19:26:39 +08:00
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, written);
|
2015-12-08 12:39:14 +08:00
|
|
|
|
|
|
|
/*Indicate that no thread is processing the Pending Send Queue
|
|
|
|
* currently.
|
|
|
|
*/
|
|
|
|
q->service_ofldq_running = false;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofld_xmit - send a packet through an offload queue
|
|
|
|
* @q: the Tx offload queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send an offload packet through an SGE offload queue.
|
|
|
|
*/
|
2016-11-18 19:07:40 +08:00
|
|
|
static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
|
|
|
|
spin_lock(&q->sendq.lock);
|
2015-12-08 12:39:14 +08:00
|
|
|
|
|
|
|
/* Queue the new skb onto the Offload Queue's Pending Send Queue. If
|
|
|
|
* that results in this new skb being the only one on the queue, start
|
|
|
|
* servicing it. If there are other skbs already on the list, then
|
|
|
|
* either the queue is currently being processed or it's been stopped
|
|
|
|
* for some reason and it'll be restarted at a later time. Restart
|
|
|
|
* paths are triggered by events like experiencing a DMA Mapping Error
|
|
|
|
* or filling the Hardware TX Ring.
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
if (q->sendq.qlen == 1)
|
|
|
|
service_ofldq(q);
|
2015-12-08 12:39:14 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ofldq - restart a suspended offload queue
|
|
|
|
* @data: the offload queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
|
|
*/
|
|
|
|
static void restart_ofldq(unsigned long data)
|
|
|
|
{
|
2016-11-18 19:07:40 +08:00
|
|
|
struct sge_uld_txq *q = (struct sge_uld_txq *)data;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
q->full = 0; /* the queue actually is completely empty now */
|
|
|
|
service_ofldq(q);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* skb_txq - return the Tx queue an offload packet should use
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the Tx queue an offload packet should use as indicated by bits
|
|
|
|
* 1-15 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int skb_txq(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping >> 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an offload packet should use an OFLD or a CTRL
|
|
|
|
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping & 1;
|
|
|
|
}
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
|
|
|
|
unsigned int tx_uld_type)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2016-11-18 19:07:40 +08:00
|
|
|
struct sge_uld_txq_info *txq_info;
|
|
|
|
struct sge_uld_txq *txq;
|
2010-04-01 23:28:24 +08:00
|
|
|
unsigned int idx = skb_txq(skb);
|
|
|
|
|
2014-02-18 20:26:11 +08:00
|
|
|
if (unlikely(is_ctrl_pkt(skb))) {
|
|
|
|
/* Single ctrl queue is a requirement for LE workaround path */
|
|
|
|
if (adap->tids.nsftids)
|
|
|
|
idx = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
|
2014-02-18 20:26:11 +08:00
|
|
|
}
|
2017-02-02 15:13:29 +08:00
|
|
|
|
|
|
|
txq_info = adap->sge.uld_txq_info[tx_uld_type];
|
|
|
|
if (unlikely(!txq_info)) {
|
|
|
|
WARN_ON(true);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
|
|
|
|
txq = &txq_info->uldtxq[idx];
|
2016-11-18 19:07:40 +08:00
|
|
|
return ofld_xmit(txq, skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_ofld_send - send an offload packet
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. We use the packet queue_mapping to select the
|
|
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
|
|
* should be sent as regular or control, bits 1-15 select the queue.
|
|
|
|
*/
|
|
|
|
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
2016-11-18 19:07:40 +08:00
|
|
|
ret = uld_send(adap, skb, CXGB4_TX_OFLD);
|
2010-04-01 23:28:24 +08:00
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_ofld_send - send an offload packet
|
|
|
|
* @dev: the net device
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. This is an exported version of @t4_ofld_send,
|
|
|
|
* intended for ULDs.
|
|
|
|
*/
|
|
|
|
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return t4_ofld_send(netdev2adap(dev), skb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_ofld_send);
|
|
|
|
|
2018-04-01 00:11:55 +08:00
|
|
|
static void *inline_tx_header(const void *src,
|
|
|
|
const struct sge_txq *q,
|
|
|
|
void *pos, int length)
|
|
|
|
{
|
|
|
|
int left = (void *)q->stat - pos;
|
|
|
|
u64 *p;
|
|
|
|
|
|
|
|
if (likely(length <= left)) {
|
|
|
|
memcpy(pos, src, length);
|
|
|
|
pos += length;
|
|
|
|
} else {
|
|
|
|
memcpy(pos, src, left);
|
|
|
|
memcpy(q->desc, src + left, length - left);
|
|
|
|
pos = (void *)q->desc + (length - left);
|
|
|
|
}
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8) {
|
|
|
|
*p = 0;
|
|
|
|
return p + 1;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofld_xmit_direct - copy a WR into offload queue
|
|
|
|
* @q: the Tx offload queue
|
|
|
|
* @src: location of WR
|
|
|
|
* @len: WR length
|
|
|
|
*
|
|
|
|
* Copy an immediate WR into an uncontended SGE offload queue.
|
|
|
|
*/
|
|
|
|
static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
unsigned int ndesc;
|
|
|
|
int credits;
|
|
|
|
u64 *pos;
|
|
|
|
|
|
|
|
/* Use the lower limit as the cut-off */
|
|
|
|
if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
|
|
|
|
WARN_ON(1);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Don't return NET_XMIT_CN here as the current
|
|
|
|
* implementation doesn't queue the request
|
|
|
|
* using an skb when the following conditions not met
|
|
|
|
*/
|
|
|
|
if (!spin_trylock(&q->sendq.lock))
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
|
|
|
|
if (q->full || !skb_queue_empty(&q->sendq) ||
|
|
|
|
q->service_ofldq_running) {
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
pos = (u64 *)&q->q.desc[q->q.pidx];
|
|
|
|
|
|
|
|
/* ofldtxq_stop modifies WR header in-situ */
|
|
|
|
inline_tx_header(src, &q->q, pos, len);
|
|
|
|
if (unlikely(credits < TXQ_STOP_THRES))
|
|
|
|
ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
|
|
|
|
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
|
|
|
|
const void *src, unsigned int len)
|
|
|
|
{
|
|
|
|
struct sge_uld_txq_info *txq_info;
|
|
|
|
struct sge_uld_txq *txq;
|
|
|
|
struct adapter *adap;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
adap = netdev2adap(dev);
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
|
|
|
|
if (unlikely(!txq_info)) {
|
|
|
|
WARN_ON(true);
|
|
|
|
local_bh_enable();
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
txq = &txq_info->uldtxq[idx];
|
|
|
|
|
|
|
|
ret = ofld_xmit_direct(txq, src, len);
|
|
|
|
local_bh_enable();
|
|
|
|
return net_xmit_eval(ret);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_immdata_send);
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
/**
|
|
|
|
* t4_crypto_send - send crypto packet
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends crypto packet. We use the packet queue_mapping to select the
|
|
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
|
|
* should be sent as regular or control, bits 1-15 select the queue.
|
|
|
|
*/
|
|
|
|
static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_crypto_send - send crypto packet
|
|
|
|
* @dev: the net device
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends crypto packet. This is an exported version of @t4_crypto_send,
|
|
|
|
* intended for ULDs.
|
|
|
|
*/
|
|
|
|
int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return t4_crypto_send(netdev2adap(dev), skb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_crypto_send);
|
|
|
|
|
2011-10-20 07:01:46 +08:00
|
|
|
static inline void copy_frags(struct sk_buff *skb,
|
2010-04-01 23:28:24 +08:00
|
|
|
const struct pkt_gl *gl, unsigned int offset)
|
|
|
|
{
|
2011-10-20 07:01:46 +08:00
|
|
|
int i;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* usually there's just one frag */
|
2011-10-20 07:01:46 +08:00
|
|
|
__skb_fill_page_desc(skb, 0, gl->frags[0].page,
|
|
|
|
gl->frags[0].offset + offset,
|
|
|
|
gl->frags[0].size - offset);
|
|
|
|
skb_shinfo(skb)->nr_frags = gl->nfrags;
|
|
|
|
for (i = 1; i < gl->nfrags; i++)
|
|
|
|
__skb_fill_page_desc(skb, i, gl->frags[i].page,
|
|
|
|
gl->frags[i].offset,
|
|
|
|
gl->frags[i].size);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* get a reference to the last page, we don't own it */
|
2011-10-20 07:01:46 +08:00
|
|
|
get_page(gl->frags[gl->nfrags - 1].page);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
* @skb_len: size of sk_buff main body if it carries fragments
|
|
|
|
* @pull_len: amount of data to move to the sk_buff's main body
|
|
|
|
*
|
|
|
|
* Builds an sk_buff from the given packet gather list. Returns the
|
|
|
|
* sk_buff or %NULL if sk_buff allocation failed.
|
|
|
|
*/
|
|
|
|
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
|
|
|
|
unsigned int skb_len, unsigned int pull_len)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
|
|
|
|
* size, which is expected since buffers are at least PAGE_SIZEd.
|
|
|
|
* In this case packets up to RX_COPY_THRES have only one fragment.
|
|
|
|
*/
|
|
|
|
if (gl->tot_len <= RX_COPY_THRES) {
|
|
|
|
skb = dev_alloc_skb(gl->tot_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, gl->tot_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
|
|
|
|
} else {
|
|
|
|
skb = dev_alloc_skb(skb_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, pull_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, pull_len);
|
|
|
|
|
2011-10-20 07:01:46 +08:00
|
|
|
copy_frags(skb, gl, pull_len);
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->len = gl->tot_len;
|
|
|
|
skb->data_len = skb->len - pull_len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
}
|
|
|
|
out: return skb;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_pktgl_free - free a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
*
|
|
|
|
* Releases the pages of a packet gather list. We do not own the last
|
|
|
|
* page on the list and do not free it.
|
|
|
|
*/
|
2010-04-21 16:59:17 +08:00
|
|
|
static void t4_pktgl_free(const struct pkt_gl *gl)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
int n;
|
2011-10-20 07:01:46 +08:00
|
|
|
const struct page_frag *p;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
|
|
|
|
put_page(p->page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an MPS trace packet. Give it an unused protocol number so it won't
|
|
|
|
* be delivered to anyone and send it to the stack for capture.
|
|
|
|
*/
|
|
|
|
static noinline int handle_trace_pkt(struct adapter *adap,
|
|
|
|
const struct pkt_gl *gl)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-12-03 19:35:56 +08:00
|
|
|
if (is_t4(adap->params.chip))
|
2013-03-14 13:08:49 +08:00
|
|
|
__skb_pull(skb, sizeof(struct cpl_trace_pkt));
|
|
|
|
else
|
|
|
|
__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb->protocol = htons(0xffff);
|
|
|
|
skb->dev = adap->port[0];
|
|
|
|
netif_receive_skb(skb);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-09-28 12:56:53 +08:00
|
|
|
/**
|
|
|
|
* cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
|
|
|
|
* @adap: the adapter
|
|
|
|
* @hwtstamps: time stamp structure to update
|
|
|
|
* @sgetstamp: 60bit iqe timestamp
|
|
|
|
*
|
|
|
|
* Every ingress queue entry has the 60-bit timestamp, convert that timestamp
|
|
|
|
* which is in Core Clock ticks into ktime_t and assign it
|
|
|
|
**/
|
|
|
|
static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
|
|
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
|
|
u64 sgetstamp)
|
|
|
|
{
|
|
|
|
u64 ns;
|
|
|
|
u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
|
|
|
|
|
|
|
|
ns = div_u64(tmp, adap->params.vpd.cclk);
|
|
|
|
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
|
2018-05-11 21:05:33 +08:00
|
|
|
const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct adapter *adapter = rxq->rspq.adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2015-09-28 12:56:53 +08:00
|
|
|
struct port_info *pi;
|
2010-04-01 23:28:24 +08:00
|
|
|
int ret;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = napi_get_frags(&rxq->rspq.napi);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
copy_frags(skb, gl, s->pktshift);
|
2018-05-11 21:05:33 +08:00
|
|
|
if (tnl_hdr_len)
|
|
|
|
skb->csum_level = 1;
|
2012-09-26 10:39:38 +08:00
|
|
|
skb->len = gl->tot_len - s->pktshift;
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->data_len = skb->len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb_record_rx_queue(skb, rxq->rspq.idx);
|
2015-09-28 12:56:53 +08:00
|
|
|
pi = netdev_priv(skb->dev);
|
|
|
|
if (pi->rxtstamp)
|
|
|
|
cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
|
|
|
|
gl->sgetstamp);
|
2010-04-28 07:22:42 +08:00
|
|
|
if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
|
2013-12-18 15:23:29 +08:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 10:04:30 +08:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.vlan_ex++;
|
|
|
|
}
|
|
|
|
ret = napi_gro_frags(&rxq->rspq.napi);
|
2010-10-21 19:29:56 +08:00
|
|
|
if (ret == GRO_HELD)
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.lro_pkts++;
|
|
|
|
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
|
|
|
|
rxq->stats.lro_merged++;
|
|
|
|
rxq->stats.pkts++;
|
|
|
|
rxq->stats.rx_cso++;
|
|
|
|
}
|
|
|
|
|
2017-07-04 19:16:20 +08:00
|
|
|
enum {
|
|
|
|
RX_NON_PTP_PKT = 0,
|
|
|
|
RX_PTP_PKT_SUC = 1,
|
|
|
|
RX_PTP_PKT_ERR = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_systim_to_hwstamp - read hardware time stamp
|
2020-06-24 04:21:41 +08:00
|
|
|
* @adapter: the adapter
|
2017-07-04 19:16:20 +08:00
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Read Time Stamp from MPS packet and insert in skb which
|
|
|
|
* is forwarded to PTP application
|
|
|
|
*/
|
|
|
|
static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct skb_shared_hwtstamps *hwtstamps;
|
|
|
|
struct cpl_rx_mps_pkt *cpl = NULL;
|
|
|
|
unsigned char *data;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
cpl = (struct cpl_rx_mps_pkt *)skb->data;
|
|
|
|
if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
|
|
|
|
X_CPL_RX_MPS_PKT_TYPE_PTP))
|
|
|
|
return RX_PTP_PKT_ERR;
|
|
|
|
|
|
|
|
data = skb->data + sizeof(*cpl);
|
|
|
|
skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
|
|
|
|
offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
|
|
|
|
if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
|
|
|
|
return RX_PTP_PKT_ERR;
|
|
|
|
|
|
|
|
hwtstamps = skb_hwtstamps(skb);
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
2020-06-24 04:21:33 +08:00
|
|
|
hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
|
2017-07-04 19:16:20 +08:00
|
|
|
|
|
|
|
return RX_PTP_PKT_SUC;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_rx_hststamp - Recv PTP Event Message
|
2020-06-24 04:21:41 +08:00
|
|
|
* @adapter: the adapter
|
2017-07-04 19:16:20 +08:00
|
|
|
* @rsp: the response queue descriptor holding the RX_PKT message
|
2020-06-24 04:21:41 +08:00
|
|
|
* @rxq: the response queue holding the RX_PKT message
|
2017-07-04 19:16:20 +08:00
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* PTP enabled and MPS packet, read HW timestamp
|
|
|
|
*/
|
|
|
|
static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
|
|
|
|
struct sge_eth_rxq *rxq, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
|
|
|
|
!is_t4(adapter->params.chip))) {
|
|
|
|
ret = t4_systim_to_hwstamp(adapter, skb);
|
|
|
|
if (ret == RX_PTP_PKT_ERR) {
|
|
|
|
kfree_skb(skb);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return RX_NON_PTP_PKT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_tx_hststamp - Loopback PTP Transmit Event Message
|
2020-06-24 04:21:41 +08:00
|
|
|
* @adapter: the adapter
|
2017-07-04 19:16:20 +08:00
|
|
|
* @skb: the packet
|
|
|
|
* @dev: the ingress net device
|
|
|
|
*
|
|
|
|
* Read hardware timestamp for the loopback PTP Tx event message
|
|
|
|
*/
|
|
|
|
static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
|
|
|
|
struct net_device *dev)
|
|
|
|
{
|
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
|
|
|
|
cxgb4_ptp_read_hwstamp(adapter, pi);
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/**
|
|
|
|
* t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
|
|
|
|
* @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
|
|
|
|
* @rsp: Response Entry pointer into Response Queue
|
|
|
|
* @gl: Gather List pointer
|
|
|
|
*
|
|
|
|
* For adapters which support the SGE Doorbell Queue Timer facility,
|
|
|
|
* we configure the Ethernet TX Queues to send CIDX Updates to the
|
|
|
|
* Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
|
|
|
|
* messages. This adds a small load to PCIe Link RX bandwidth and,
|
|
|
|
* potentially, higher CPU Interrupt load, but allows us to respond
|
|
|
|
* much more quickly to the CIDX Updates. This is important for
|
|
|
|
* Upper Layer Software which isn't willing to have a large amount
|
|
|
|
* of TX Data outstanding before receiving DMA Completions.
|
|
|
|
*/
|
|
|
|
static void t4_tx_completion_handler(struct sge_rspq *rspq,
|
|
|
|
const __be64 *rsp,
|
|
|
|
const struct pkt_gl *gl)
|
|
|
|
{
|
|
|
|
u8 opcode = ((const struct rss_header *)rsp)->opcode;
|
|
|
|
struct port_info *pi = netdev_priv(rspq->netdev);
|
|
|
|
struct adapter *adapter = rspq->adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
struct sge_eth_txq *txq;
|
|
|
|
|
|
|
|
/* skip RSS header */
|
|
|
|
rsp++;
|
|
|
|
|
|
|
|
/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
|
|
|
|
*/
|
|
|
|
if (unlikely(opcode == CPL_FW4_MSG &&
|
|
|
|
((const struct cpl_fw4_msg *)rsp)->type ==
|
|
|
|
FW_TYPE_RSSCPL)) {
|
|
|
|
rsp++;
|
|
|
|
opcode = ((const struct rss_header *)rsp)->opcode;
|
|
|
|
rsp++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
|
|
|
|
pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
|
|
|
|
__func__, opcode);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
txq = &s->ethtxq[pi->first_qset + rspq->idx];
|
|
|
|
t4_sge_eth_txq_egress_update(adapter, txq, -1);
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
|
|
|
* t4_ethrx_handler - process an ingress ethernet packet
|
|
|
|
* @q: the response queue that received the packet
|
|
|
|
* @rsp: the response queue descriptor holding the RX_PKT message
|
|
|
|
* @si: the gather list of packet fragments
|
|
|
|
*
|
|
|
|
* Process an ingress ethernet packet and deliver it to the stack.
|
|
|
|
*/
|
|
|
|
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
|
|
const struct pkt_gl *si)
|
|
|
|
{
|
|
|
|
bool csum_ok;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
const struct cpl_rx_pkt *pkt;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2017-07-04 19:16:20 +08:00
|
|
|
struct adapter *adapter = q->adap;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &q->adap->sge;
|
2013-12-03 19:35:56 +08:00
|
|
|
int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
|
2013-03-14 13:08:49 +08:00
|
|
|
CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
|
2018-05-11 21:05:33 +08:00
|
|
|
u16 err_vec, tnl_hdr_len = 0;
|
2015-03-24 21:44:46 +08:00
|
|
|
struct port_info *pi;
|
2017-07-04 19:16:20 +08:00
|
|
|
int ret = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/* If we're looking at TX Queue CIDX Update, handle that separately
|
|
|
|
* and return.
|
|
|
|
*/
|
|
|
|
if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
|
|
|
|
(*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
|
|
|
|
t4_tx_completion_handler(q, rsp, si);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-03-14 13:08:49 +08:00
|
|
|
if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
|
2010-04-01 23:28:24 +08:00
|
|
|
return handle_trace_pkt(q->adap, si);
|
|
|
|
|
2010-04-28 07:22:42 +08:00
|
|
|
pkt = (const struct cpl_rx_pkt *)rsp;
|
2017-01-04 21:34:20 +08:00
|
|
|
/* Compressed error vector is enabled for T6 only */
|
2018-05-11 21:05:33 +08:00
|
|
|
if (q->adap->params.tp.rx_pkt_encap) {
|
2017-01-04 21:34:20 +08:00
|
|
|
err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
|
2018-05-11 21:05:33 +08:00
|
|
|
tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
|
|
|
|
} else {
|
2017-01-04 21:34:20 +08:00
|
|
|
err_vec = be16_to_cpu(pkt->err_vec);
|
2018-05-11 21:05:33 +08:00
|
|
|
}
|
2017-01-04 21:34:20 +08:00
|
|
|
|
|
|
|
csum_ok = pkt->csum_calc && !err_vec &&
|
2014-05-07 20:31:03 +08:00
|
|
|
(q->netdev->features & NETIF_F_RXCSUM);
|
2018-09-14 17:16:04 +08:00
|
|
|
|
|
|
|
if (err_vec)
|
|
|
|
rxq->stats.bad_rx_pkts++;
|
|
|
|
|
2018-05-11 21:05:33 +08:00
|
|
|
if (((pkt->l2info & htonl(RXF_TCP_F)) ||
|
|
|
|
tnl_hdr_len) &&
|
2010-04-01 23:28:24 +08:00
|
|
|
(q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
|
2018-05-11 21:05:33 +08:00
|
|
|
do_gro(rxq, si, pkt, tnl_hdr_len);
|
2010-04-01 23:28:24 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(si);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return 0;
|
|
|
|
}
|
2017-07-04 19:16:20 +08:00
|
|
|
pi = netdev_priv(q->netdev);
|
|
|
|
|
|
|
|
/* Handle PTP Event Rx packet */
|
|
|
|
if (unlikely(pi->ptp_enable)) {
|
|
|
|
ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
|
|
|
|
if (ret == RX_PTP_PKT_ERR)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (likely(!ret))
|
|
|
|
__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
|
|
|
|
|
|
|
|
/* Handle the PTP Event Tx Loopback packet */
|
|
|
|
if (unlikely(pi->ptp_enable && !ret &&
|
|
|
|
(pkt->l2info & htonl(RXF_UDP_F)) &&
|
|
|
|
cxgb4_ptp_is_ptp_rx(skb))) {
|
|
|
|
if (!t4_tx_hststamp(adapter, skb, q->netdev))
|
|
|
|
return 0;
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
skb->protocol = eth_type_trans(skb, q->netdev);
|
|
|
|
skb_record_rx_queue(skb, q->idx);
|
2010-04-28 07:22:42 +08:00
|
|
|
if (skb->dev->features & NETIF_F_RXHASH)
|
2013-12-18 15:23:29 +08:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-28 07:22:42 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.pkts++;
|
|
|
|
|
2015-09-28 12:56:53 +08:00
|
|
|
if (pi->rxtstamp)
|
|
|
|
cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
|
|
|
|
si->sgetstamp);
|
2015-01-09 13:38:16 +08:00
|
|
|
if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
|
2010-08-02 21:19:17 +08:00
|
|
|
if (!pkt->ip_frag) {
|
2010-04-01 23:28:24 +08:00
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
2010-08-02 21:19:17 +08:00
|
|
|
rxq->stats.rx_cso++;
|
2015-01-09 13:38:16 +08:00
|
|
|
} else if (pkt->l2info & htonl(RXF_IP_F)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
__sum16 c = (__force __sum16)pkt->csum;
|
|
|
|
skb->csum = csum_unfold(c);
|
2018-05-11 21:05:33 +08:00
|
|
|
|
|
|
|
if (tnl_hdr_len) {
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb->csum_level = 1;
|
|
|
|
} else {
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
|
|
}
|
2010-08-02 21:19:17 +08:00
|
|
|
rxq->stats.rx_cso++;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2015-03-24 21:44:46 +08:00
|
|
|
} else {
|
2010-09-03 04:07:41 +08:00
|
|
|
skb_checksum_none_assert(skb);
|
2015-03-24 21:44:46 +08:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
|
|
|
|
RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
|
|
|
|
|
|
|
|
if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
|
|
|
|
if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
|
|
|
|
(pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
|
2017-01-04 21:34:20 +08:00
|
|
|
if (q->adap->params.tp.rx_pkt_encap)
|
|
|
|
csum_ok = err_vec &
|
|
|
|
T6_COMPR_RXERR_SUM_F;
|
|
|
|
else
|
|
|
|
csum_ok = err_vec & RXERR_CSUM_F;
|
|
|
|
if (!csum_ok)
|
2015-03-24 21:44:46 +08:00
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef CPL_RX_PKT_FLAGS
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 10:04:30 +08:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq->stats.vlan_ex++;
|
2010-10-21 19:29:56 +08:00
|
|
|
}
|
2015-02-04 18:02:52 +08:00
|
|
|
skb_mark_napi_id(skb, &q->napi);
|
2010-10-21 19:29:56 +08:00
|
|
|
netif_receive_skb(skb);
|
2010-04-01 23:28:24 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restore_rx_bufs - put back a packet's Rx buffers
|
|
|
|
* @si: the packet gather list
|
|
|
|
* @q: the SGE free list
|
|
|
|
* @frags: number of FL buffers to restore
|
|
|
|
*
|
|
|
|
* Puts back on an FL the Rx buffers associated with @si. The buffers
|
|
|
|
* have already been unmapped and are left unmapped, we mark them so to
|
|
|
|
* prevent further unmapping attempts.
|
|
|
|
*
|
|
|
|
* This function undoes a series of @unmap_rx_buf calls when we find out
|
|
|
|
* that the current packet can't be processed right away afterall and we
|
|
|
|
* need to come back to it later. This is a very rare event and there's
|
|
|
|
* no effort to make this particularly efficient.
|
|
|
|
*/
|
|
|
|
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
|
|
|
|
int frags)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d;
|
|
|
|
|
|
|
|
while (frags--) {
|
|
|
|
if (q->cidx == 0)
|
|
|
|
q->cidx = q->size - 1;
|
|
|
|
else
|
|
|
|
q->cidx--;
|
|
|
|
d = &q->sdesc[q->cidx];
|
|
|
|
d->page = si->frags[frags].page;
|
|
|
|
d->dma_addr |= RX_UNMAPPED_BUF;
|
|
|
|
q->avail++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_new_response - check if a response is newly written
|
|
|
|
* @r: the response descriptor
|
|
|
|
* @q: the response queue
|
|
|
|
*
|
|
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
|
|
* response.
|
|
|
|
*/
|
|
|
|
static inline bool is_new_response(const struct rsp_ctrl *r,
|
|
|
|
const struct sge_rspq *q)
|
|
|
|
{
|
2015-05-12 07:13:43 +08:00
|
|
|
return (r->type_gen >> RSPD_GEN_S) == q->gen;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rspq_next - advance to the next entry in a response queue
|
|
|
|
* @q: the queue
|
|
|
|
*
|
|
|
|
* Updates the state of a response queue to advance it to the next entry.
|
|
|
|
*/
|
|
|
|
static inline void rspq_next(struct sge_rspq *q)
|
|
|
|
{
|
|
|
|
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
|
|
|
|
if (unlikely(++q->cidx == q->size)) {
|
|
|
|
q->cidx = 0;
|
|
|
|
q->gen ^= 1;
|
|
|
|
q->cur_desc = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* process_responses - process responses from an SGE response queue
|
|
|
|
* @q: the ingress queue to process
|
|
|
|
* @budget: how many responses can be processed in this round
|
|
|
|
*
|
|
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
|
|
* Responses include received packets as well as control messages from FW
|
|
|
|
* or HW.
|
|
|
|
*
|
|
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
|
|
* long delay to help recovery.
|
|
|
|
*/
|
|
|
|
static int process_responses(struct sge_rspq *q, int budget)
|
|
|
|
{
|
|
|
|
int ret, rsp_type;
|
|
|
|
int budget_left = budget;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2012-09-26 10:39:38 +08:00
|
|
|
struct adapter *adapter = q->adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
while (likely(budget_left)) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
2016-02-15 01:32:41 +08:00
|
|
|
if (!is_new_response(rc, q)) {
|
|
|
|
if (q->flush_handler)
|
|
|
|
q->flush_handler(q);
|
2010-04-01 23:28:24 +08:00
|
|
|
break;
|
2016-02-15 01:32:41 +08:00
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-04-09 09:49:29 +08:00
|
|
|
dma_rmb();
|
2015-05-12 07:13:43 +08:00
|
|
|
rsp_type = RSPD_TYPE_G(rc->type_gen);
|
|
|
|
if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
|
2011-10-20 07:01:46 +08:00
|
|
|
struct page_frag *fp;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct pkt_gl si;
|
|
|
|
const struct rx_sw_desc *rsd;
|
|
|
|
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
|
|
|
|
|
2015-05-12 07:13:43 +08:00
|
|
|
if (len & RSPD_NEWBUF_F) {
|
2010-04-01 23:28:24 +08:00
|
|
|
if (likely(q->offset > 0)) {
|
|
|
|
free_rx_bufs(q->adap, &rxq->fl, 1);
|
|
|
|
q->offset = 0;
|
|
|
|
}
|
2015-05-12 07:13:43 +08:00
|
|
|
len = RSPD_LEN_G(len);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
si.tot_len = len;
|
|
|
|
|
|
|
|
/* gather packet fragments */
|
|
|
|
for (frags = 0, fp = si.frags; ; frags++, fp++) {
|
|
|
|
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
|
2012-09-26 10:39:38 +08:00
|
|
|
bufsz = get_buf_size(adapter, rsd);
|
2010-04-01 23:28:24 +08:00
|
|
|
fp->page = rsd->page;
|
2011-10-20 07:01:46 +08:00
|
|
|
fp->offset = q->offset;
|
|
|
|
fp->size = min(bufsz, len);
|
|
|
|
len -= fp->size;
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!len)
|
|
|
|
break;
|
|
|
|
unmap_rx_buf(q->adap, &rxq->fl);
|
|
|
|
}
|
|
|
|
|
2015-09-28 12:56:53 +08:00
|
|
|
si.sgetstamp = SGE_TIMESTAMP_G(
|
|
|
|
be64_to_cpu(rc->last_flit));
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* Last buffer remains mapped so explicitly make it
|
|
|
|
* coherent for CPU access.
|
|
|
|
*/
|
|
|
|
dma_sync_single_for_cpu(q->adap->pdev_dev,
|
|
|
|
get_buf_addr(rsd),
|
2011-10-20 07:01:46 +08:00
|
|
|
fp->size, DMA_FROM_DEVICE);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
si.va = page_address(si.frags[0].page) +
|
2011-10-20 07:01:46 +08:00
|
|
|
si.frags[0].offset;
|
2010-04-01 23:28:24 +08:00
|
|
|
prefetch(si.va);
|
|
|
|
|
|
|
|
si.nfrags = frags + 1;
|
|
|
|
ret = q->handler(q, q->cur_desc, &si);
|
|
|
|
if (likely(ret == 0))
|
2012-09-26 10:39:38 +08:00
|
|
|
q->offset += ALIGN(fp->size, s->fl_align);
|
2010-04-01 23:28:24 +08:00
|
|
|
else
|
|
|
|
restore_rx_bufs(&si, &rxq->fl, frags);
|
2015-05-12 07:13:43 +08:00
|
|
|
} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
ret = q->handler(q, q->cur_desc, NULL);
|
|
|
|
} else {
|
|
|
|
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(ret)) {
|
|
|
|
/* couldn't process descriptor, back off for recovery */
|
2015-05-12 07:13:43 +08:00
|
|
|
q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
|
2010-04-01 23:28:24 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
budget_left--;
|
|
|
|
}
|
|
|
|
|
2016-03-01 19:49:32 +08:00
|
|
|
if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
|
2010-04-01 23:28:24 +08:00
|
|
|
__refill_fl(q->adap, &rxq->fl);
|
|
|
|
return budget - budget_left;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* napi_rx_handler - the NAPI handler for Rx processing
|
|
|
|
* @napi: the napi instance
|
|
|
|
* @budget: how many packets we can process in this round
|
|
|
|
*
|
|
|
|
* Handler for new data events when using NAPI. This does not need any
|
|
|
|
* locking or protection from interrupts as data interrupts are off at
|
|
|
|
* this point and other adapter interrupts do not interfere (the latter
|
|
|
|
* in not a concern at all with MSI-X as non-data interrupts then have
|
|
|
|
* a separate handler).
|
|
|
|
*/
|
|
|
|
static int napi_rx_handler(struct napi_struct *napi, int budget)
|
|
|
|
{
|
|
|
|
unsigned int params;
|
|
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
2015-02-04 18:02:52 +08:00
|
|
|
int work_done;
|
2014-09-26 02:53:52 +08:00
|
|
|
u32 val;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-02-04 18:02:52 +08:00
|
|
|
work_done = process_responses(q, budget);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (likely(work_done < budget)) {
|
2014-09-26 02:53:55 +08:00
|
|
|
int timer_index;
|
|
|
|
|
2015-12-23 13:59:56 +08:00
|
|
|
napi_complete_done(napi, work_done);
|
2015-05-12 07:13:43 +08:00
|
|
|
timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
|
2014-09-26 02:53:55 +08:00
|
|
|
|
|
|
|
if (q->adaptive_rx) {
|
|
|
|
if (work_done > max(timer_pkt_quota[timer_index],
|
|
|
|
MIN_NAPI_WORK))
|
|
|
|
timer_index = (timer_index + 1);
|
|
|
|
else
|
|
|
|
timer_index = timer_index - 1;
|
|
|
|
|
|
|
|
timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
|
2015-05-12 07:13:43 +08:00
|
|
|
q->next_intr_params =
|
|
|
|
QINTR_TIMER_IDX_V(timer_index) |
|
|
|
|
QINTR_CNT_EN_V(0);
|
2014-09-26 02:53:55 +08:00
|
|
|
params = q->next_intr_params;
|
|
|
|
} else {
|
|
|
|
params = q->next_intr_params;
|
|
|
|
q->next_intr_params = q->intr_params;
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
} else
|
2015-05-12 07:13:43 +08:00
|
|
|
params = QINTR_TIMER_IDX_V(7);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-01-05 19:00:43 +08:00
|
|
|
val = CIDXINC_V(work_done) | SEINTARM_V(params);
|
2014-12-03 22:02:53 +08:00
|
|
|
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 19:00:43 +08:00
|
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
|
|
|
|
val | INGRESSQID_V((u32)q->cntxt_id));
|
2014-09-26 02:53:52 +08:00
|
|
|
} else {
|
2015-01-05 19:00:43 +08:00
|
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
2014-12-03 22:02:53 +08:00
|
|
|
q->bar2_addr + SGE_UDB_GTS);
|
2014-09-26 02:53:52 +08:00
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
return work_done;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:06 +08:00
|
|
|
void cxgb4_ethofld_restart(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
|
|
|
|
int pktcount;
|
|
|
|
|
|
|
|
spin_lock(&eosw_txq->lock);
|
|
|
|
pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
|
|
|
|
if (pktcount < 0)
|
|
|
|
pktcount += eosw_txq->ndesc;
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
if (pktcount) {
|
2019-11-07 23:59:06 +08:00
|
|
|
cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
|
|
|
|
eosw_txq, pktcount);
|
2019-11-07 23:59:08 +08:00
|
|
|
eosw_txq->inuse -= pktcount;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* There may be some packets waiting for completions. So,
|
|
|
|
* attempt to send these packets now.
|
|
|
|
*/
|
|
|
|
ethofld_xmit(eosw_txq->netdev, eosw_txq);
|
2019-11-07 23:59:06 +08:00
|
|
|
spin_unlock(&eosw_txq->lock);
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:08 +08:00
|
|
|
/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
|
|
|
|
* @q: the response queue that received the packet
|
|
|
|
* @rsp: the response queue descriptor holding the CPL message
|
|
|
|
* @si: the gather list of packet fragments
|
|
|
|
*
|
|
|
|
* Process a ETHOFLD Tx completion. Increment the cidx here, but
|
|
|
|
* free up the descriptors in a tasklet later.
|
|
|
|
*/
|
|
|
|
int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
|
|
const struct pkt_gl *si)
|
|
|
|
{
|
|
|
|
u8 opcode = ((const struct rss_header *)rsp)->opcode;
|
|
|
|
|
|
|
|
/* skip RSS header */
|
|
|
|
rsp++;
|
|
|
|
|
|
|
|
if (opcode == CPL_FW4_ACK) {
|
|
|
|
const struct cpl_fw4_ack *cpl;
|
|
|
|
struct sge_eosw_txq *eosw_txq;
|
|
|
|
struct eotid_entry *entry;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
u32 hdr_len, eotid;
|
|
|
|
u8 flits, wrlen16;
|
|
|
|
int credits;
|
|
|
|
|
|
|
|
cpl = (const struct cpl_fw4_ack *)rsp;
|
|
|
|
eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
|
|
|
|
q->adap->tids.eotid_base;
|
|
|
|
entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
|
|
|
|
if (!entry)
|
|
|
|
goto out_done;
|
|
|
|
|
|
|
|
eosw_txq = (struct sge_eosw_txq *)entry->data;
|
|
|
|
if (!eosw_txq)
|
|
|
|
goto out_done;
|
|
|
|
|
|
|
|
spin_lock(&eosw_txq->lock);
|
|
|
|
credits = cpl->credits;
|
|
|
|
while (credits > 0) {
|
|
|
|
skb = eosw_txq->desc[eosw_txq->cidx].skb;
|
|
|
|
if (!skb)
|
|
|
|
break;
|
|
|
|
|
cxgb4: add FLOWC based QoS offload
Rework SCHED API to allow offloading TC-MQPRIO QoS configuration.
The existing QUEUE based rate limiting throttles all queues sharing
a traffic class, to the specified max rate limit value. So, if
multiple queues share a traffic class, then all the queues get
the aggregate specified max rate limit.
So, introduce the new FLOWC based rate limiting, where multiple
queues can share a traffic class with each queue getting its own
individual specified max rate limit.
For example, if 2 queues are bound to class 0, which is rate limited
to 1 Gbps, then 2 queues using QUEUE based rate limiting, get the
aggregate output of 1 Gbps only. In FLOWC based rate limiting, each
queue gets its own output of max 1 Gbps each; i.e. 2 queues * 1 Gbps
rate limit = 2 Gbps.
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 23:59:09 +08:00
|
|
|
if (unlikely((eosw_txq->state ==
|
|
|
|
CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
|
|
|
|
eosw_txq->state ==
|
|
|
|
CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
|
|
|
|
eosw_txq->cidx == eosw_txq->flowc_idx)) {
|
|
|
|
flits = DIV_ROUND_UP(skb->len, 8);
|
|
|
|
if (eosw_txq->state ==
|
|
|
|
CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
|
|
|
|
eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
|
|
|
|
else
|
|
|
|
eosw_txq->state = CXGB4_EO_STATE_CLOSED;
|
|
|
|
complete(&eosw_txq->completion);
|
|
|
|
} else {
|
|
|
|
hdr_len = eth_get_headlen(eosw_txq->netdev,
|
|
|
|
skb->data,
|
|
|
|
skb_headlen(skb));
|
|
|
|
flits = ethofld_calc_tx_flits(q->adap, skb,
|
|
|
|
hdr_len);
|
|
|
|
}
|
2019-11-07 23:59:08 +08:00
|
|
|
eosw_txq_advance_index(&eosw_txq->cidx, 1,
|
|
|
|
eosw_txq->ndesc);
|
|
|
|
wrlen16 = DIV_ROUND_UP(flits * 8, 16);
|
|
|
|
credits -= wrlen16;
|
|
|
|
}
|
|
|
|
|
|
|
|
eosw_txq->cred += cpl->credits;
|
|
|
|
eosw_txq->ncompl--;
|
|
|
|
|
|
|
|
spin_unlock(&eosw_txq->lock);
|
|
|
|
|
|
|
|
/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
|
|
|
|
* if there were packets waiting for completion.
|
|
|
|
*/
|
|
|
|
tasklet_schedule(&eosw_txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
|
|
|
|
out_done:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/*
|
|
|
|
* The MSI-X interrupt handler for an SGE response queue.
|
|
|
|
*/
|
|
|
|
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct sge_rspq *q = cookie;
|
|
|
|
|
|
|
|
napi_schedule(&q->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the indirect interrupt entries in the interrupt queue and kick off
|
|
|
|
* NAPI for each queue that has generated an entry.
|
|
|
|
*/
|
|
|
|
static unsigned int process_intrq(struct adapter *adap)
|
|
|
|
{
|
|
|
|
unsigned int credits;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_rspq *q = &adap->sge.intrq;
|
2014-09-26 02:53:52 +08:00
|
|
|
u32 val;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
spin_lock(&adap->sge.intrq_lock);
|
|
|
|
for (credits = 0; ; credits++) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
|
|
if (!is_new_response(rc, q))
|
|
|
|
break;
|
|
|
|
|
2015-04-09 09:49:29 +08:00
|
|
|
dma_rmb();
|
2015-05-12 07:13:43 +08:00
|
|
|
if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
|
2010-04-01 23:28:24 +08:00
|
|
|
unsigned int qid = ntohl(rc->pldbuflen_qid);
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
qid -= adap->sge.ingr_start;
|
2010-04-01 23:28:24 +08:00
|
|
|
napi_schedule(&adap->sge.ingr_map[qid]->napi);
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
}
|
|
|
|
|
2015-01-05 19:00:43 +08:00
|
|
|
val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
|
2014-12-03 22:02:53 +08:00
|
|
|
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 19:00:43 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
|
|
|
|
val | INGRESSQID_V(q->cntxt_id));
|
2014-09-26 02:53:52 +08:00
|
|
|
} else {
|
2015-01-05 19:00:43 +08:00
|
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
2014-12-03 22:02:53 +08:00
|
|
|
q->bar2_addr + SGE_UDB_GTS);
|
2014-09-26 02:53:52 +08:00
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_unlock(&adap->sge.intrq_lock);
|
|
|
|
return credits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MSI interrupt handler, which handles data events from SGE response queues
|
|
|
|
* as well as error and other async events as they all use the same MSI vector.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_msi(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
2019-03-04 20:13:02 +08:00
|
|
|
if (adap->flags & CXGB4_MASTER_PF)
|
2015-04-15 04:32:34 +08:00
|
|
|
t4_slow_intr_handler(adap);
|
2010-04-01 23:28:24 +08:00
|
|
|
process_intrq(adap);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt handler for legacy INTx interrupts.
|
|
|
|
* Handles data events from SGE response queues as well as error and other
|
|
|
|
* async events as they all use the same interrupt line.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_intx(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
2015-01-05 19:00:44 +08:00
|
|
|
t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
|
2019-03-04 20:13:02 +08:00
|
|
|
if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
|
2015-04-15 04:32:34 +08:00
|
|
|
process_intrq(adap))
|
2010-04-01 23:28:24 +08:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
return IRQ_NONE; /* probably shared interrupt */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_intr_handler - select the top-level interrupt handler
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Selects the top-level interrupt handler based on the type of interrupts
|
|
|
|
* (MSI-X, MSI, or INTx).
|
|
|
|
*/
|
|
|
|
irq_handler_t t4_intr_handler(struct adapter *adap)
|
|
|
|
{
|
2019-03-04 20:13:02 +08:00
|
|
|
if (adap->flags & CXGB4_USING_MSIX)
|
2010-04-01 23:28:24 +08:00
|
|
|
return t4_sge_intr_msix;
|
2019-03-04 20:13:02 +08:00
|
|
|
if (adap->flags & CXGB4_USING_MSI)
|
2010-04-01 23:28:24 +08:00
|
|
|
return t4_intr_msi;
|
|
|
|
return t4_intr_intx;
|
|
|
|
}
|
|
|
|
|
2017-10-27 13:54:53 +08:00
|
|
|
static void sge_rx_timer_cb(struct timer_list *t)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
unsigned long m;
|
2015-05-05 17:29:55 +08:00
|
|
|
unsigned int i;
|
2017-10-27 13:54:53 +08:00
|
|
|
struct adapter *adap = from_timer(adap, t, sge.rx_timer);
|
2010-04-01 23:28:24 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2015-03-26 12:34:25 +08:00
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
2010-04-01 23:28:24 +08:00
|
|
|
for (m = s->starving_fl[i]; m; m &= m - 1) {
|
|
|
|
struct sge_eth_rxq *rxq;
|
|
|
|
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
|
|
|
|
struct sge_fl *fl = s->egr_map[id];
|
|
|
|
|
|
|
|
clear_bit(id, s->starving_fl);
|
2014-03-18 01:06:10 +08:00
|
|
|
smp_mb__after_atomic();
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-04-15 04:32:31 +08:00
|
|
|
if (fl_starving(adap, fl)) {
|
2010-04-01 23:28:24 +08:00
|
|
|
rxq = container_of(fl, struct sge_eth_rxq, fl);
|
|
|
|
if (napi_reschedule(&rxq->rspq.napi))
|
|
|
|
fl->starving++;
|
|
|
|
else
|
|
|
|
set_bit(id, s->starving_fl);
|
|
|
|
}
|
|
|
|
}
|
2015-05-05 17:29:55 +08:00
|
|
|
/* The remainder of the SGE RX Timer Callback routine is dedicated to
|
|
|
|
* global Master PF activities like checking for chip ingress stalls,
|
|
|
|
* etc.
|
|
|
|
*/
|
2019-03-04 20:13:02 +08:00
|
|
|
if (!(adap->flags & CXGB4_MASTER_PF))
|
2015-05-05 17:29:55 +08:00
|
|
|
goto done;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-05-05 17:29:55 +08:00
|
|
|
t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-05-05 17:29:55 +08:00
|
|
|
done:
|
2010-04-01 23:28:24 +08:00
|
|
|
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
2017-10-27 13:54:53 +08:00
|
|
|
static void sge_tx_timer_cb(struct timer_list *t)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2017-10-27 13:54:53 +08:00
|
|
|
struct adapter *adap = from_timer(adap, t, sge.tx_timer);
|
2010-04-01 23:28:24 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned long m, period;
|
|
|
|
unsigned int i, budget;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-03-26 12:34:25 +08:00
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
2010-04-01 23:28:24 +08:00
|
|
|
for (m = s->txq_maperr[i]; m; m &= m - 1) {
|
|
|
|
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
|
2016-11-18 19:07:40 +08:00
|
|
|
struct sge_uld_txq *txq = s->egr_map[id];
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
clear_bit(id, s->txq_maperr);
|
|
|
|
tasklet_schedule(&txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
|
2017-07-04 19:16:20 +08:00
|
|
|
if (!is_t4(adap->params.chip)) {
|
|
|
|
struct sge_eth_txq *q = &s->ptptxq;
|
|
|
|
int avail;
|
|
|
|
|
|
|
|
spin_lock(&adap->ptp_lock);
|
|
|
|
avail = reclaimable(&q->q);
|
|
|
|
|
|
|
|
if (avail) {
|
|
|
|
free_tx_desc(adap, &q->q, avail, false);
|
|
|
|
q->q.in_use -= avail;
|
|
|
|
}
|
|
|
|
spin_unlock(&adap->ptp_lock);
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
budget = MAX_TIMER_TX_RECLAIM;
|
|
|
|
i = s->ethtxq_rover;
|
|
|
|
do {
|
2019-02-14 20:49:15 +08:00
|
|
|
budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
|
|
|
|
budget);
|
|
|
|
if (!budget)
|
|
|
|
break;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (++i >= s->ethqsets)
|
|
|
|
i = 0;
|
2019-02-14 20:49:15 +08:00
|
|
|
} while (i != s->ethtxq_rover);
|
2010-04-01 23:28:24 +08:00
|
|
|
s->ethtxq_rover = i;
|
2019-02-14 20:49:15 +08:00
|
|
|
|
|
|
|
if (budget == 0) {
|
|
|
|
/* If we found too many reclaimable packets schedule a timer
|
|
|
|
* in the near future to continue where we left off.
|
|
|
|
*/
|
|
|
|
period = 2;
|
|
|
|
} else {
|
|
|
|
/* We reclaimed all reclaimable TX Descriptors, so reschedule
|
|
|
|
* at the normal period.
|
|
|
|
*/
|
|
|
|
period = TX_QCHECK_PERIOD;
|
|
|
|
}
|
|
|
|
|
|
|
|
mod_timer(&s->tx_timer, jiffies + period);
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2014-09-26 02:53:52 +08:00
|
|
|
/**
|
2014-12-03 22:02:53 +08:00
|
|
|
* bar2_address - return the BAR2 address for an SGE Queue's Registers
|
|
|
|
* @adapter: the adapter
|
|
|
|
* @qid: the SGE Queue ID
|
|
|
|
* @qtype: the SGE Queue Type (Egress or Ingress)
|
|
|
|
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
|
2014-09-26 02:53:52 +08:00
|
|
|
*
|
2014-12-03 22:02:53 +08:00
|
|
|
* Returns the BAR2 address for the SGE Queue Registers associated with
|
|
|
|
* @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
|
|
|
|
* returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
|
|
|
|
* Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
|
|
|
|
* Registers are supported (e.g. the Write Combining Doorbell Buffer).
|
|
|
|
*/
|
|
|
|
static void __iomem *bar2_address(struct adapter *adapter,
|
|
|
|
unsigned int qid,
|
|
|
|
enum t4_bar2_qtype qtype,
|
|
|
|
unsigned int *pbar2_qid)
|
|
|
|
{
|
|
|
|
u64 bar2_qoffset;
|
|
|
|
int ret;
|
2014-09-26 02:53:52 +08:00
|
|
|
|
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
1) Add TX fast path in mac80211, from Johannes Berg.
2) Add TSO/GRO support to ibmveth, from Thomas Falcon
3) Move away from cached routes in ipv6, just like ipv4, from Martin
KaFai Lau.
4) Lots of new rhashtable tests, from Thomas Graf.
5) Run ingress qdisc lockless, from Alexei Starovoitov.
6) Allow servers to fetch TCP packet headers for SYN packets of new
connections, for fingerprinting. From Eric Dumazet.
7) Add mode parameter to pktgen, for testing receive. From Alexei
Starovoitov.
8) Cache access optimizations via simplifications of build_skb(), from
Alexander Duyck.
9) Move page frag allocator under mm/, also from Alexander.
10) Add xmit_more support to hv_netvsc, from KY Srinivasan.
11) Add a counter guard in case we try to perform endless reclassify
loops in the packet scheduler.
12) Extern flow dissector to be programmable and use it in new "Flower"
classifier. From Jiri Pirko.
13) AF_PACKET fanout rollover fixes, performance improvements, and new
statistics. From Willem de Bruijn.
14) Add netdev driver for GENEVE tunnels, from John W Linville.
15) Add ingress netfilter hooks and filtering, from Pablo Neira Ayuso.
16) Fix handling of epoll edge triggers in TCP, from Eric Dumazet.
17) Add an ECN retry fallback for the initial TCP handshake, from Daniel
Borkmann.
18) Add tail call support to BPF, from Alexei Starovoitov.
19) Add several pktgen helper scripts, from Jesper Dangaard Brouer.
20) Add zerocopy support to AF_UNIX, from Hannes Frederic Sowa.
21) Favor even port numbers for allocation to connect() requests, and
odd port numbers for bind(0), in an effort to help avoid
ip_local_port_range exhaustion. From Eric Dumazet.
22) Add Cavium ThunderX driver, from Sunil Goutham.
23) Allow bpf programs to access skb_iif and dev->ifindex SKB metadata,
from Alexei Starovoitov.
24) Add support for T6 chips in cxgb4vf driver, from Hariprasad Shenai.
25) Double TCP Small Queues default to 256K to accomodate situations
like the XEN driver and wireless aggregation. From Wei Liu.
26) Add more entropy inputs to flow dissector, from Tom Herbert.
27) Add CDG congestion control algorithm to TCP, from Kenneth Klette
Jonassen.
28) Convert ipset over to RCU locking, from Jozsef Kadlecsik.
29) Track and act upon link status of ipv4 route nexthops, from Andy
Gospodarek.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1670 commits)
bridge: vlan: flush the dynamically learned entries on port vlan delete
bridge: multicast: add a comment to br_port_state_selection about blocking state
net: inet_diag: export IPV6_V6ONLY sockopt
stmmac: troubleshoot unexpected bits in des0 & des1
net: ipv4 sysctl option to ignore routes when nexthop link is down
net: track link-status of ipv4 nexthops
net: switchdev: ignore unsupported bridge flags
net: Cavium: Fix MAC address setting in shutdown state
drivers: net: xgene: fix for ACPI support without ACPI
ip: report the original address of ICMP messages
net/mlx5e: Prefetch skb data on RX
net/mlx5e: Pop cq outside mlx5e_get_cqe
net/mlx5e: Remove mlx5e_cq.sqrq back-pointer
net/mlx5e: Remove extra spaces
net/mlx5e: Avoid TX CQE generation if more xmit packets expected
net/mlx5e: Avoid redundant dev_kfree_skb() upon NOP completion
net/mlx5e: Remove re-assignment of wq type in mlx5e_enable_rq()
net/mlx5e: Use skb_shinfo(skb)->gso_segs rather than counting them
net/mlx5e: Static mapping of netdev priv resources to/from netdev TX queues
net/mlx4_en: Use HW counters for rx/tx bytes/packets in PF device
...
2015-06-25 07:49:49 +08:00
|
|
|
ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
|
2014-12-03 22:02:53 +08:00
|
|
|
&bar2_qoffset, pbar2_qid);
|
|
|
|
if (ret)
|
|
|
|
return NULL;
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
return adapter->bar2 + bar2_qoffset;
|
2014-09-26 02:53:52 +08:00
|
|
|
}
|
|
|
|
|
2015-05-05 17:29:52 +08:00
|
|
|
/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
|
|
|
|
* @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
|
|
|
|
struct net_device *dev, int intr_idx,
|
2016-02-15 01:32:41 +08:00
|
|
|
struct sge_fl *fl, rspq_handler_t hnd,
|
|
|
|
rspq_flush_handler_t flush_hnd, int cong)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
int ret, flsz = 0;
|
|
|
|
struct fw_iq_cmd c;
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
2019-03-04 20:13:02 +08:00
|
|
|
int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* Size needs to be multiple of 16, including status entry. */
|
|
|
|
iq->size = roundup(iq->size, 16);
|
|
|
|
|
|
|
|
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
|
2015-12-23 13:59:55 +08:00
|
|
|
&iq->phys_addr, NULL, 0,
|
|
|
|
dev_to_node(adap->pdev_dev));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!iq->desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
2014-11-07 12:05:25 +08:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-28 01:00:24 +08:00
|
|
|
FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
|
2014-11-21 15:22:03 +08:00
|
|
|
c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
|
2010-04-01 23:28:24 +08:00
|
|
|
FW_LEN16(c));
|
2014-11-21 15:22:03 +08:00
|
|
|
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
|
|
|
|
FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
|
2015-05-12 07:13:43 +08:00
|
|
|
FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
|
|
|
|
FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
|
2014-11-21 15:22:03 +08:00
|
|
|
FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
|
2010-04-01 23:28:24 +08:00
|
|
|
-intr_idx - 1));
|
2014-11-21 15:22:03 +08:00
|
|
|
c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
|
|
|
|
FW_IQ_CMD_IQGTSMODE_F |
|
|
|
|
FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
|
|
|
|
FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.iqsize = htons(iq->size);
|
|
|
|
c.iqaddr = cpu_to_be64(iq->phys_addr);
|
2015-05-05 17:29:52 +08:00
|
|
|
if (cong >= 0)
|
2018-07-09 19:22:03 +08:00
|
|
|
c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
|
|
|
|
FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
|
|
|
|
: FW_IQ_IQTYPE_OFLD));
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (fl) {
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned int chip_ver =
|
|
|
|
CHELSIO_CHIP_VERSION(adap->params.chip);
|
2015-06-02 16:29:39 +08:00
|
|
|
|
2015-05-05 17:29:51 +08:00
|
|
|
/* Allocate the ring for the hardware free list (with space
|
|
|
|
* for its status page) along with the associated software
|
|
|
|
* descriptor ring. The free list size needs to be a multiple
|
|
|
|
* of the Egress Queue Unit and at least 2 Egress Units larger
|
|
|
|
* than the SGE's Egress Congrestion Threshold
|
|
|
|
* (fl_starve_thres - 1).
|
|
|
|
*/
|
|
|
|
if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
|
|
|
|
fl->size = s->fl_starve_thres - 1 + 2 * 8;
|
2010-04-01 23:28:24 +08:00
|
|
|
fl->size = roundup(fl->size, 8);
|
|
|
|
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
|
|
|
|
sizeof(struct rx_sw_desc), &fl->addr,
|
2015-12-23 13:59:55 +08:00
|
|
|
&fl->sdesc, s->stat_len,
|
|
|
|
dev_to_node(adap->pdev_dev));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!fl->desc)
|
|
|
|
goto fl_nomem;
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
|
2015-05-05 17:29:52 +08:00
|
|
|
c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
|
2017-08-15 11:23:26 +08:00
|
|
|
FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
|
|
|
|
FW_IQ_CMD_FL0DATARO_V(relaxed) |
|
2015-05-05 17:29:52 +08:00
|
|
|
FW_IQ_CMD_FL0PADEN_F);
|
|
|
|
if (cong >= 0)
|
|
|
|
c.iqns_to_fl0congen |=
|
|
|
|
htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
|
|
|
|
FW_IQ_CMD_FL0CONGCIF_F |
|
|
|
|
FW_IQ_CMD_FL0CONGEN_F);
|
2016-03-01 19:49:33 +08:00
|
|
|
/* In T6, for egress queue type FL there is internal overhead
|
|
|
|
* of 16B for header going into FLM module. Hence the maximum
|
|
|
|
* allowed burst size is 448 bytes. For T4/T5, the hardware
|
|
|
|
* doesn't coalesce fetch requests if more than 64 bytes of
|
|
|
|
* Free List pointers are provided, so we use a 128-byte Fetch
|
|
|
|
* Burst Minimum there (T6 implements coalescing so we can use
|
|
|
|
* the smaller 64-byte value there).
|
|
|
|
*/
|
2015-05-12 07:13:43 +08:00
|
|
|
c.fl0dcaen_to_fl0cidxfthresh =
|
2019-02-14 20:49:15 +08:00
|
|
|
htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
|
2016-03-01 19:49:33 +08:00
|
|
|
FETCHBURSTMIN_128B_X :
|
2019-02-14 20:49:15 +08:00
|
|
|
FETCHBURSTMIN_64B_T6_X) |
|
|
|
|
FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
|
2015-06-02 16:29:39 +08:00
|
|
|
FETCHBURSTMAX_512B_X :
|
|
|
|
FETCHBURSTMAX_256B_X));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.fl0size = htons(flsz);
|
|
|
|
c.fl0addr = cpu_to_be64(fl->addr);
|
|
|
|
}
|
|
|
|
|
2015-05-28 01:00:24 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
|
|
|
|
iq->cur_desc = iq->desc;
|
|
|
|
iq->cidx = 0;
|
|
|
|
iq->gen = 1;
|
|
|
|
iq->next_intr_params = iq->intr_params;
|
|
|
|
iq->cntxt_id = ntohs(c.iqid);
|
|
|
|
iq->abs_id = ntohs(c.physiqid);
|
2014-12-03 22:02:53 +08:00
|
|
|
iq->bar2_addr = bar2_address(adap,
|
|
|
|
iq->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_INGRESS,
|
|
|
|
&iq->bar2_qid);
|
2010-04-01 23:28:24 +08:00
|
|
|
iq->size--; /* subtract status entry */
|
|
|
|
iq->netdev = dev;
|
|
|
|
iq->handler = hnd;
|
2016-02-15 01:32:41 +08:00
|
|
|
iq->flush_handler = flush_hnd;
|
|
|
|
|
|
|
|
memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
|
|
|
|
skb_queue_head_init(&iq->lro_mgr.lroq);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* set offset to -1 to distinguish ingress queues without FL */
|
|
|
|
iq->offset = fl ? 0 : -1;
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (fl) {
|
2010-04-21 16:09:21 +08:00
|
|
|
fl->cntxt_id = ntohs(c.fl0id);
|
2010-04-01 23:28:24 +08:00
|
|
|
fl->avail = fl->pend_cred = 0;
|
|
|
|
fl->pidx = fl->cidx = 0;
|
|
|
|
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
|
2014-09-26 02:53:52 +08:00
|
|
|
|
2014-12-03 22:02:53 +08:00
|
|
|
/* Note, we must initialize the BAR2 Free List User Doorbell
|
|
|
|
* information before refilling the Free List!
|
2014-09-26 02:53:52 +08:00
|
|
|
*/
|
2014-12-03 22:02:53 +08:00
|
|
|
fl->bar2_addr = bar2_address(adap,
|
|
|
|
fl->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
|
|
&fl->bar2_qid);
|
2010-04-01 23:28:24 +08:00
|
|
|
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
|
|
|
|
}
|
2015-05-05 17:29:53 +08:00
|
|
|
|
|
|
|
/* For T5 and later we attempt to set up the Congestion Manager values
|
|
|
|
* of the new RX Ethernet Queue. This should really be handled by
|
|
|
|
* firmware because it's more complex than any host driver wants to
|
|
|
|
* get involved with and it's different per chip and this is almost
|
|
|
|
* certainly wrong. Firmware would be wrong as well, but it would be
|
|
|
|
* a lot easier to fix in one place ... For now we do something very
|
|
|
|
* simple (and hopefully less wrong).
|
|
|
|
*/
|
|
|
|
if (!is_t4(adap->params.chip) && cong >= 0) {
|
2015-12-24 01:17:18 +08:00
|
|
|
u32 param, val, ch_map = 0;
|
2015-05-05 17:29:53 +08:00
|
|
|
int i;
|
2015-12-24 01:17:18 +08:00
|
|
|
u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
|
2015-05-05 17:29:53 +08:00
|
|
|
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
|
|
|
|
FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
|
|
|
|
if (cong == 0) {
|
|
|
|
val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
|
|
|
|
} else {
|
|
|
|
val =
|
|
|
|
CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
if (cong & (1 << i))
|
2015-12-24 01:17:18 +08:00
|
|
|
ch_map |= 1 << (i << cng_ch_bits_log);
|
2015-05-05 17:29:53 +08:00
|
|
|
}
|
2015-12-24 01:17:18 +08:00
|
|
|
val |= CONMCTXT_CNGCHMAP_V(ch_map);
|
2015-05-05 17:29:53 +08:00
|
|
|
}
|
2015-05-28 01:00:24 +08:00
|
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
|
2015-05-05 17:29:53 +08:00
|
|
|
¶m, &val);
|
|
|
|
if (ret)
|
|
|
|
dev_warn(adap->pdev_dev, "Failed to set Congestion"
|
|
|
|
" Manager Context for Ingress Queue %d: %d\n",
|
|
|
|
iq->cntxt_id, -ret);
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
fl_nomem:
|
|
|
|
ret = -ENOMEM;
|
|
|
|
err:
|
|
|
|
if (iq->desc) {
|
|
|
|
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
|
|
|
|
iq->desc, iq->phys_addr);
|
|
|
|
iq->desc = NULL;
|
|
|
|
}
|
|
|
|
if (fl && fl->desc) {
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
|
|
|
|
fl->desc, fl->addr);
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
|
|
|
|
{
|
2013-03-14 13:08:51 +08:00
|
|
|
q->cntxt_id = id;
|
2014-12-03 22:02:53 +08:00
|
|
|
q->bar2_addr = bar2_address(adap,
|
|
|
|
q->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
|
|
&q->bar2_qid);
|
2010-04-01 23:28:24 +08:00
|
|
|
q->in_use = 0;
|
|
|
|
q->cidx = q->pidx = 0;
|
|
|
|
q->stops = q->restarts = 0;
|
|
|
|
q->stat = (void *)&q->desc[q->size];
|
2012-05-18 17:59:26 +08:00
|
|
|
spin_lock_init(&q->db_lock);
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.egr_map[id - adap->sge.egr_start] = q;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/**
|
|
|
|
* t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
|
|
|
|
* @adap: the adapter
|
|
|
|
* @txq: the SGE Ethernet TX Queue to initialize
|
|
|
|
* @dev: the Linux Network Device
|
|
|
|
* @netdevq: the corresponding Linux TX Queue
|
|
|
|
* @iqid: the Ingress Queue to which to deliver CIDX Update messages
|
|
|
|
* @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
|
|
|
|
*/
|
2010-04-01 23:28:24 +08:00
|
|
|
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
|
|
|
|
struct net_device *dev, struct netdev_queue *netdevq,
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned int iqid, u8 dbqt)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
2019-02-14 20:49:15 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
struct fw_eq_eth_cmd c;
|
|
|
|
int ret, nentries;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 10:39:38 +08:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
2012-09-26 10:39:38 +08:00
|
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
2010-12-15 05:36:55 +08:00
|
|
|
netdev_queue_numa_node_read(netdevq));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
2014-11-07 12:05:25 +08:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-28 01:00:24 +08:00
|
|
|
FW_EQ_ETH_CMD_PFN_V(adap->pf) |
|
2014-11-21 15:22:03 +08:00
|
|
|
FW_EQ_ETH_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
|
|
|
|
FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
|
2019-02-14 20:49:15 +08:00
|
|
|
|
|
|
|
/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
|
|
|
|
* mechanism, we use Ingress Queue messages for Hardware Consumer
|
|
|
|
* Index Updates on the TX Queue. Otherwise we have the Hardware
|
|
|
|
* write the CIDX Updates into the Status Page at the end of the
|
|
|
|
* TX Queue.
|
|
|
|
*/
|
2019-10-24 01:33:55 +08:00
|
|
|
c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
|
2019-02-14 20:49:15 +08:00
|
|
|
FW_EQ_ETH_CMD_VIID_V(pi->viid));
|
|
|
|
|
2015-05-12 07:13:43 +08:00
|
|
|
c.fetchszm_to_iqid =
|
2019-10-24 01:33:55 +08:00
|
|
|
htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
2015-05-12 07:13:43 +08:00
|
|
|
FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
|
2019-02-14 20:49:15 +08:00
|
|
|
|
|
|
|
/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
|
2015-05-12 07:13:43 +08:00
|
|
|
c.dcaen_to_eqsize =
|
2019-02-14 20:49:15 +08:00
|
|
|
htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
|
|
|
|
? FETCHBURSTMIN_64B_X
|
|
|
|
: FETCHBURSTMIN_64B_T6_X) |
|
2015-05-12 07:13:43 +08:00
|
|
|
FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_ETH_CMD_EQSIZE_V(nentries));
|
2019-02-14 20:49:15 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2019-02-14 20:49:15 +08:00
|
|
|
/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
|
|
|
|
* currently configured Timer Index. THis can be changed later via an
|
|
|
|
* ethtool -C tx-usecs {Timer Val} command. Note that the SGE
|
|
|
|
* Doorbell Queue mode is currently automatically enabled in the
|
|
|
|
* Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
|
|
|
|
*/
|
|
|
|
if (dbqt)
|
|
|
|
c.timeren_timerix =
|
|
|
|
cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
|
|
|
|
FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
|
|
|
|
|
2015-05-28 01:00:24 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
txq->q.sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
txq->q.q_type = CXGB4_TXQ_ETH;
|
2014-11-21 15:22:03 +08:00
|
|
|
init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
2010-04-01 23:28:24 +08:00
|
|
|
txq->txq = netdevq;
|
2019-11-22 09:00:02 +08:00
|
|
|
txq->tso = 0;
|
|
|
|
txq->uso = 0;
|
|
|
|
txq->tx_cso = 0;
|
|
|
|
txq->vlan_ins = 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
txq->mapping_err = 0;
|
2019-02-14 20:49:15 +08:00
|
|
|
txq->dbqt = dbqt;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid,
|
|
|
|
unsigned int cmplqid)
|
|
|
|
{
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
2019-02-14 20:49:15 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
struct fw_eq_ctrl_cmd c;
|
|
|
|
int ret, nentries;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 10:39:38 +08:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
|
|
|
|
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
|
2015-05-05 17:29:54 +08:00
|
|
|
NULL, 0, dev_to_node(adap->pdev_dev));
|
2010-04-01 23:28:24 +08:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2014-11-07 12:05:25 +08:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-28 01:00:24 +08:00
|
|
|
FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
|
2014-11-21 15:22:03 +08:00
|
|
|
FW_EQ_CTRL_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
|
|
|
|
FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
|
|
|
|
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.physeqid_pkd = htonl(0);
|
2015-05-12 07:13:43 +08:00
|
|
|
c.fetchszm_to_iqid =
|
|
|
|
htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
|
|
FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
|
|
|
|
c.dcaen_to_eqsize =
|
2019-02-14 20:49:15 +08:00
|
|
|
htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
|
|
|
|
? FETCHBURSTMIN_64B_X
|
|
|
|
: FETCHBURSTMIN_64B_T6_X) |
|
2015-05-12 07:13:43 +08:00
|
|
|
FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
|
2010-04-01 23:28:24 +08:00
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2015-05-28 01:00:24 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
txq->q.q_type = CXGB4_TXQ_CTRL;
|
2014-11-21 15:22:03 +08:00
|
|
|
init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
|
2010-04-01 23:28:24 +08:00
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-09-17 10:42:39 +08:00
|
|
|
int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
|
|
|
|
unsigned int cmplqid)
|
|
|
|
{
|
|
|
|
u32 param, val;
|
|
|
|
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
|
|
|
|
FW_PARAMS_PARAM_YZ_V(eqid));
|
|
|
|
val = cmplqid;
|
|
|
|
return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:07 +08:00
|
|
|
static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
|
|
|
|
struct net_device *dev, u32 cmd, u32 iqid)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2019-02-14 20:49:15 +08:00
|
|
|
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
|
2010-04-01 23:28:24 +08:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
2019-11-07 23:59:07 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
struct fw_eq_ofld_cmd c;
|
|
|
|
u32 fb_min, nentries;
|
|
|
|
int ret;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* Add status entries */
|
2019-11-07 23:59:07 +08:00
|
|
|
nentries = q->size + s->stat_len / sizeof(struct tx_desc);
|
|
|
|
q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
|
|
|
|
sizeof(struct tx_sw_desc), &q->phys_addr,
|
|
|
|
&q->sdesc, s->stat_len, NUMA_NO_NODE);
|
|
|
|
if (!q->desc)
|
2010-04-01 23:28:24 +08:00
|
|
|
return -ENOMEM;
|
|
|
|
|
2019-11-07 23:59:07 +08:00
|
|
|
if (chip_ver <= CHELSIO_T5)
|
|
|
|
fb_min = FETCHBURSTMIN_64B_X;
|
|
|
|
else
|
|
|
|
fb_min = FETCHBURSTMIN_64B_T6_X;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
memset(&c, 0, sizeof(c));
|
2016-11-18 19:07:40 +08:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
|
2014-11-07 12:05:25 +08:00
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-28 01:00:24 +08:00
|
|
|
FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
|
2014-11-21 15:22:03 +08:00
|
|
|
FW_EQ_OFLD_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
|
|
|
|
FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
|
2015-05-12 07:13:43 +08:00
|
|
|
c.fetchszm_to_iqid =
|
|
|
|
htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
|
|
FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
|
|
|
|
c.dcaen_to_eqsize =
|
2019-11-07 23:59:07 +08:00
|
|
|
htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
|
2015-05-12 07:13:43 +08:00
|
|
|
FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
|
2019-11-07 23:59:07 +08:00
|
|
|
c.eqaddr = cpu_to_be64(q->phys_addr);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2015-05-28 01:00:24 +08:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 23:28:24 +08:00
|
|
|
if (ret) {
|
2019-11-07 23:59:07 +08:00
|
|
|
kfree(q->sdesc);
|
|
|
|
q->sdesc = NULL;
|
2010-04-01 23:28:24 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
2019-11-07 23:59:07 +08:00
|
|
|
q->desc, q->phys_addr);
|
|
|
|
q->desc = NULL;
|
2010-04-01 23:28:24 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:07 +08:00
|
|
|
init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid,
|
|
|
|
unsigned int uld_type)
|
|
|
|
{
|
|
|
|
u32 cmd = FW_EQ_OFLD_CMD;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (unlikely(uld_type == CXGB4_TX_CRYPTO))
|
|
|
|
cmd = FW_EQ_CTRL_CMD;
|
|
|
|
|
|
|
|
ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
txq->q.q_type = CXGB4_TXQ_ULD;
|
2010-04-01 23:28:24 +08:00
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:07 +08:00
|
|
|
int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
|
|
|
|
struct net_device *dev, u32 iqid)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
txq->q.q_type = CXGB4_TXQ_ULD;
|
|
|
|
spin_lock_init(&txq->lock);
|
|
|
|
txq->adap = adap;
|
|
|
|
txq->tso = 0;
|
2019-11-22 09:00:03 +08:00
|
|
|
txq->uso = 0;
|
2019-11-07 23:59:07 +08:00
|
|
|
txq->tx_cso = 0;
|
|
|
|
txq->vlan_ins = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
void free_txq(struct adapter *adap, struct sge_txq *q)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev,
|
2012-09-26 10:39:38 +08:00
|
|
|
q->size * sizeof(struct tx_desc) + s->stat_len,
|
2010-04-01 23:28:24 +08:00
|
|
|
q->desc, q->phys_addr);
|
|
|
|
q->cntxt_id = 0;
|
|
|
|
q->sdesc = NULL;
|
|
|
|
q->desc = NULL;
|
|
|
|
}
|
|
|
|
|
2016-08-17 15:03:03 +08:00
|
|
|
void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
|
|
|
|
struct sge_fl *fl)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
2012-09-26 10:39:38 +08:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 23:28:24 +08:00
|
|
|
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
|
|
|
|
|
2010-08-24 01:20:58 +08:00
|
|
|
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
|
2015-05-28 01:00:24 +08:00
|
|
|
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
|
2010-08-02 21:19:21 +08:00
|
|
|
rq->cntxt_id, fl_id, 0xffff);
|
2010-04-01 23:28:24 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
|
|
|
|
rq->desc, rq->phys_addr);
|
|
|
|
netif_napi_del(&rq->napi);
|
|
|
|
rq->netdev = NULL;
|
|
|
|
rq->cntxt_id = rq->abs_id = 0;
|
|
|
|
rq->desc = NULL;
|
|
|
|
|
|
|
|
if (fl) {
|
|
|
|
free_rx_bufs(adap, fl, fl->avail);
|
2012-09-26 10:39:38 +08:00
|
|
|
dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
|
2010-04-01 23:28:24 +08:00
|
|
|
fl->desc, fl->addr);
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
fl->cntxt_id = 0;
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-08-04 19:31:30 +08:00
|
|
|
/**
|
|
|
|
* t4_free_ofld_rxqs - free a block of consecutive Rx queues
|
|
|
|
* @adap: the adapter
|
|
|
|
* @n: number of queues
|
|
|
|
* @q: pointer to first queue
|
|
|
|
*
|
|
|
|
* Release the resources of a consecutive block of offload Rx queues.
|
|
|
|
*/
|
|
|
|
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
|
|
|
|
{
|
|
|
|
for ( ; n; n--, q++)
|
|
|
|
if (q->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &q->rspq,
|
|
|
|
q->fl.size ? &q->fl : NULL);
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:07 +08:00
|
|
|
void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
|
|
|
|
{
|
|
|
|
if (txq->q.desc) {
|
|
|
|
t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
|
|
|
|
txq->q.cntxt_id);
|
|
|
|
free_tx_desc(adap, &txq->q, txq->q.in_use, false);
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
free_txq(adap, &txq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/**
|
|
|
|
* t4_free_sge_resources - free SGE resources
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Frees resources used by the SGE queue sets.
|
|
|
|
*/
|
|
|
|
void t4_free_sge_resources(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
2016-04-11 13:37:58 +08:00
|
|
|
struct sge_eth_rxq *eq;
|
|
|
|
struct sge_eth_txq *etq;
|
|
|
|
|
|
|
|
/* stop all Rx queues in order to start them draining */
|
|
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
|
|
eq = &adap->sge.ethrxq[i];
|
|
|
|
if (eq->rspq.desc)
|
|
|
|
t4_iq_stop(adap, adap->mbox, adap->pf, 0,
|
|
|
|
FW_IQ_TYPE_FL_INT_CAP,
|
|
|
|
eq->rspq.cntxt_id,
|
|
|
|
eq->fl.size ? eq->fl.cntxt_id : 0xffff,
|
|
|
|
0xffff);
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
/* clean up Ethernet Tx/Rx queues */
|
2016-04-11 13:37:58 +08:00
|
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
|
|
eq = &adap->sge.ethrxq[i];
|
2010-04-01 23:28:24 +08:00
|
|
|
if (eq->rspq.desc)
|
2014-08-04 19:31:30 +08:00
|
|
|
free_rspq_fl(adap, &eq->rspq,
|
|
|
|
eq->fl.size ? &eq->fl : NULL);
|
2019-11-07 23:59:05 +08:00
|
|
|
if (eq->msix) {
|
|
|
|
cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
|
|
|
|
eq->msix = NULL;
|
|
|
|
}
|
2016-04-11 13:37:58 +08:00
|
|
|
|
|
|
|
etq = &adap->sge.ethtxq[i];
|
2010-04-01 23:28:24 +08:00
|
|
|
if (etq->q.desc) {
|
2015-05-28 01:00:24 +08:00
|
|
|
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
|
2010-08-02 21:19:21 +08:00
|
|
|
etq->q.cntxt_id);
|
2016-04-26 22:40:24 +08:00
|
|
|
__netif_tx_lock_bh(etq->txq);
|
2010-04-01 23:28:24 +08:00
|
|
|
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
|
2016-04-26 22:40:24 +08:00
|
|
|
__netif_tx_unlock_bh(etq->txq);
|
2010-04-01 23:28:24 +08:00
|
|
|
kfree(etq->q.sdesc);
|
|
|
|
free_txq(adap, &etq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up control Tx queues */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc) {
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
2015-05-28 01:00:24 +08:00
|
|
|
t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
|
2010-08-02 21:19:21 +08:00
|
|
|
cq->q.cntxt_id);
|
2010-04-01 23:28:24 +08:00
|
|
|
__skb_queue_purge(&cq->sendq);
|
|
|
|
free_txq(adap, &cq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-07 23:59:05 +08:00
|
|
|
if (adap->sge.fw_evtq.desc) {
|
2010-04-01 23:28:24 +08:00
|
|
|
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
|
2019-11-07 23:59:05 +08:00
|
|
|
if (adap->sge.fwevtq_msix_idx >= 0)
|
|
|
|
cxgb4_free_msix_idx_in_bmap(adap,
|
|
|
|
adap->sge.fwevtq_msix_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adap->sge.nd_msix_idx >= 0)
|
|
|
|
cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
|
2010-04-01 23:28:24 +08:00
|
|
|
|
|
|
|
if (adap->sge.intrq.desc)
|
|
|
|
free_rspq_fl(adap, &adap->sge.intrq, NULL);
|
|
|
|
|
2017-07-04 19:16:20 +08:00
|
|
|
if (!is_t4(adap->params.chip)) {
|
|
|
|
etq = &adap->sge.ptptxq;
|
|
|
|
if (etq->q.desc) {
|
|
|
|
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
|
|
|
|
etq->q.cntxt_id);
|
|
|
|
spin_lock_bh(&adap->ptp_lock);
|
|
|
|
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
|
|
|
|
spin_unlock_bh(&adap->ptp_lock);
|
|
|
|
kfree(etq->q.sdesc);
|
|
|
|
free_txq(adap, &etq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
/* clear the reverse egress queue map */
|
2015-03-26 12:34:25 +08:00
|
|
|
memset(adap->sge.egr_map, 0,
|
|
|
|
adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void t4_sge_start(struct adapter *adap)
|
|
|
|
{
|
|
|
|
adap->sge.ethtxq_rover = 0;
|
|
|
|
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_sge_stop - disable SGE operation
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Stop tasklets and timers associated with the DMA engine. Note that
|
|
|
|
* this is effective only if measures have been taken to disable any HW
|
|
|
|
* events that may restart them.
|
|
|
|
*/
|
|
|
|
void t4_sge_stop(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
if (in_interrupt()) /* actions below require waiting */
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (s->rx_timer.function)
|
|
|
|
del_timer_sync(&s->rx_timer);
|
|
|
|
if (s->tx_timer.function)
|
|
|
|
del_timer_sync(&s->tx_timer);
|
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
if (is_offload(adap)) {
|
|
|
|
struct sge_uld_txq_info *txq_info;
|
|
|
|
|
|
|
|
txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
|
|
|
|
if (txq_info) {
|
|
|
|
struct sge_uld_txq *txq = txq_info->uldtxq;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2016-11-18 19:07:40 +08:00
|
|
|
for_each_ofldtxq(&adap->sge, i) {
|
|
|
|
if (txq->q.desc)
|
|
|
|
tasklet_kill(&txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
}
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|
2016-11-18 19:07:40 +08:00
|
|
|
|
|
|
|
if (is_pci_uld(adap)) {
|
|
|
|
struct sge_uld_txq_info *txq_info;
|
|
|
|
|
|
|
|
txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
|
|
|
|
if (txq_info) {
|
|
|
|
struct sge_uld_txq *txq = txq_info->uldtxq;
|
|
|
|
|
|
|
|
for_each_ofldtxq(&adap->sge, i) {
|
|
|
|
if (txq->q.desc)
|
|
|
|
tasklet_kill(&txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &s->ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc)
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-01-13 17:49:25 +08:00
|
|
|
* t4_sge_init_soft - grab core SGE values needed by SGE code
|
2010-04-01 23:28:24 +08:00
|
|
|
* @adap: the adapter
|
|
|
|
*
|
2015-01-13 17:49:25 +08:00
|
|
|
* We need to grab the SGE operating parameters that we need to have
|
|
|
|
* in order to do our job and make sure we can live with them.
|
2010-04-01 23:28:24 +08:00
|
|
|
*/
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
static int t4_sge_init_soft(struct adapter *adap)
|
2010-04-01 23:28:24 +08:00
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2012-09-26 10:39:38 +08:00
|
|
|
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
|
|
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
|
|
u32 ingress_rx_threshold;
|
2010-04-01 23:28:24 +08:00
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
/*
|
|
|
|
* Verify that CPL messages are going to the Ingress Queue for
|
|
|
|
* process_responses() and that only packet data is going to the
|
|
|
|
* Free Lists.
|
|
|
|
*/
|
2015-01-05 19:00:43 +08:00
|
|
|
if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
|
|
|
|
RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
|
2012-09-26 10:39:38 +08:00
|
|
|
dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate the Host Buffer Register Array indices that we want to
|
|
|
|
* use ...
|
|
|
|
*
|
|
|
|
* XXX Note that we should really read through the Host Buffer Size
|
|
|
|
* XXX register array and find the indices of the Buffer Sizes which
|
|
|
|
* XXX meet our needs!
|
|
|
|
*/
|
|
|
|
#define READ_FL_BUF(x) \
|
2015-01-05 19:00:43 +08:00
|
|
|
t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
|
|
|
|
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
|
|
|
|
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
|
|
|
|
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
|
|
|
|
|
2014-03-13 23:20:46 +08:00
|
|
|
/* We only bother using the Large Page logic if the Large Page Buffer
|
|
|
|
* is larger than our Page Size Buffer.
|
|
|
|
*/
|
|
|
|
if (fl_large_pg <= fl_small_pg)
|
|
|
|
fl_large_pg = 0;
|
|
|
|
|
2012-09-26 10:39:38 +08:00
|
|
|
#undef READ_FL_BUF
|
|
|
|
|
2014-03-13 23:20:46 +08:00
|
|
|
/* The Page Size Buffer must be exactly equal to our Page Size and the
|
|
|
|
* Large Page Size Buffer should be 0 (per above) or a power of 2.
|
|
|
|
*/
|
2012-09-26 10:39:38 +08:00
|
|
|
if (fl_small_pg != PAGE_SIZE ||
|
2014-03-13 23:20:46 +08:00
|
|
|
(fl_large_pg & (fl_large_pg-1)) != 0) {
|
2012-09-26 10:39:38 +08:00
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
|
|
|
|
fl_small_pg, fl_large_pg);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (fl_large_pg)
|
|
|
|
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
|
|
|
|
fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
|
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
|
|
|
|
fl_small_mtu, fl_large_mtu);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Retrieve our RX interrupt holdoff timer values and counter
|
|
|
|
* threshold values from the SGE parameters.
|
|
|
|
*/
|
2015-01-05 19:00:44 +08:00
|
|
|
timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
|
|
|
|
timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
|
|
|
|
timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[0] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE0_G(timer_value_0_and_1));
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[1] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE1_G(timer_value_0_and_1));
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[2] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE2_G(timer_value_2_and_3));
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[3] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE3_G(timer_value_2_and_3));
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[4] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE4_G(timer_value_4_and_5));
|
2012-09-26 10:39:38 +08:00
|
|
|
s->timer_val[5] = core_ticks_to_us(adap,
|
2015-01-05 19:00:44 +08:00
|
|
|
TIMERVALUE5_G(timer_value_4_and_5));
|
2012-09-26 10:39:38 +08:00
|
|
|
|
2015-01-05 19:00:43 +08:00
|
|
|
ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
|
|
|
|
s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-01-13 17:49:25 +08:00
|
|
|
/**
|
|
|
|
* t4_sge_init - initialize SGE
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Perform low-level SGE code initialization needed every time after a
|
|
|
|
* chip reset.
|
|
|
|
*/
|
2012-09-26 10:39:38 +08:00
|
|
|
int t4_sge_init(struct adapter *adap)
|
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2015-12-24 01:17:13 +08:00
|
|
|
u32 sge_control, sge_conm_ctrl;
|
2014-03-13 23:20:49 +08:00
|
|
|
int ret, egress_threshold;
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Ingress Padding Boundary and Egress Status Page Size are set up by
|
|
|
|
* t4_fixup_host_params().
|
|
|
|
*/
|
2015-01-05 19:00:43 +08:00
|
|
|
sge_control = t4_read_reg(adap, SGE_CONTROL_A);
|
|
|
|
s->pktshift = PKTSHIFT_G(sge_control);
|
|
|
|
s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
|
2014-11-07 19:36:30 +08:00
|
|
|
|
2015-12-24 01:17:13 +08:00
|
|
|
s->fl_align = t4_fl_pkt_align(adap);
|
2015-01-13 17:49:25 +08:00
|
|
|
ret = t4_sge_init_soft(adap);
|
2012-09-26 10:39:38 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A FL with <= fl_starve_thres buffers is starving and a periodic
|
|
|
|
* timer will attempt to refill it. This needs to be larger than the
|
|
|
|
* SGE's Egress Congestion Threshold. If it isn't, then we can get
|
|
|
|
* stuck waiting for new packets while the SGE is waiting for us to
|
|
|
|
* give it more Free List entries. (Note that the SGE's Egress
|
2014-03-13 23:20:49 +08:00
|
|
|
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
|
|
|
|
* there was only a single field to control this. For T5 there's the
|
|
|
|
* original field which now only applies to Unpacked Mode Free List
|
|
|
|
* buffers and a new field which only applies to Packed Mode Free List
|
|
|
|
* buffers.
|
2012-09-26 10:39:38 +08:00
|
|
|
*/
|
2015-01-05 19:00:43 +08:00
|
|
|
sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
|
2015-12-24 01:17:14 +08:00
|
|
|
switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
|
|
|
|
case CHELSIO_T4:
|
2015-01-05 19:00:43 +08:00
|
|
|
egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
|
2015-12-24 01:17:14 +08:00
|
|
|
break;
|
|
|
|
case CHELSIO_T5:
|
2015-01-05 19:00:43 +08:00
|
|
|
egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
2015-12-24 01:17:14 +08:00
|
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
|
|
egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
|
|
|
|
CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2014-03-13 23:20:49 +08:00
|
|
|
s->fl_starve_thres = 2*egress_threshold + 1;
|
2012-09-26 10:39:38 +08:00
|
|
|
|
2015-05-05 17:29:55 +08:00
|
|
|
t4_idma_monitor_init(adap, &s->idma_monitor);
|
|
|
|
|
2015-05-12 07:13:43 +08:00
|
|
|
/* Set up timers used for recuring callbacks to process RX and TX
|
|
|
|
* administrative tasks.
|
|
|
|
*/
|
2017-10-27 13:54:53 +08:00
|
|
|
timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
|
|
|
|
timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
|
2015-05-05 17:29:55 +08:00
|
|
|
|
2010-04-01 23:28:24 +08:00
|
|
|
spin_lock_init(&s->intrq_lock);
|
2012-09-26 10:39:38 +08:00
|
|
|
|
|
|
|
return 0;
|
2010-04-01 23:28:24 +08:00
|
|
|
}
|